Séminaire: Problèmes Spectraux en Physique Mathématique


Année 2024-2025



Pour tout renseignement complémentaire, veuillez contacter les organisateurs, Hakim Boumaza, Mathieu Lewin ou Stéphane Nonnenmacher.

Prochain séminaire le lundi 18 novembre 2024 après-midi à l'Institut Henri Poincaré, en salle Maryam Mirzakhani (ex-201, 2e étage)


14h - 15h Antoine Mouzard (Paris Nanterre)
Schrödinger operator with distributional potential and Strichartz inequalities

Abstract:

In this talk, I will present an approach to study Schrödinger operators with distributional potentials. The motivation comes from stochastics PDEs with the Anderson operator which is the Schrödinger operator with white noise potential. I will explain how paracontrolled calculus allows the construction and study of the operator and associated evolution PDEs with the example of the nonlinear Schrödinger equation. On the circle, we are able to consider generic rough potentials of Hölder regularity greater than one and prove invariance of the associated Gibbs measure, following works from Lebowitz, Rose and Speer and Bourgain. On compact surface, even the construction of the Anderson Hamiltonian requires a probabilistic renormalization procedure.

Based on joint works with A. Debussche and I. Zachhuber.


  15h15 - 16h15 Benoit Dagallier (Paris Dauphine) Stochastic dynamics and the Polchinski equation

Abstract:

I will discuss a general framework to obtain large-scale properties of statistical mechanics and field theory models. A well known idea is to introduce a dynamics that samples from the model and controls its long time behaviour. The Langevin dynamics is a popular and successful choice, but is hard to use in a number of cases as I will explain. In this talk I will introduce another object, the Polchinski dynamics, based on renormalisation group ideas. This dynamics has appeared in very different contexts in connection with convex analysis (it is the same as Eldan's stochastic localisation) and optimal transport. I will motivate the construction of the dynamics from a physics perspective and explain how it can be used to prove functional inequalities (Poincaré, log-Sobolev) via a generalisation of Bakry and Emery's convexity argument.

The talk is based on joint work with Roland Bauerschmidt and Thierry Bodineau, and the review paper https://arxiv.org/abs/2307.07619




Prochaines séances :

9 décembre 2024
13 janvier 2025
3 mars 2025
14 avril 2025
5 mai 2025
16 juin 2025

Historique du séminaire:

Année 2024-2025
Année 2023-2024
Année 2022-2023
Année 2021-2022
Année 2020-2021
Année 2019-2020
Année 2018-2019
Année 2017-2018
Année 2016-2017
Année 2015-2016
Année 2014-2015
Année 2013-2014
Année 2012-2013
Année 2011-2012
Année 2010-2011
Année 2009-2010
Année 2008-2009
Année 2007-2008
Année 2006-2007
Année 2005-2006

Dernière mise à jour: 28 octobre 2024
Page maintenue par Stéphane Nonnenmacher