[16] S. Ruette. Rotation set for maps of degree 1 on sun graphs (19 pages), 2019 (submitted). [arXiv:1901.01526] [pdf] [Abstract]
[14] Ll. Alsedà and S. Ruette. On the set of periods of sigma-maps of degree 1. Discrete Contin. Dyn. Syst. Ser. A, 35, No. 10, 4683-4734, 2015. [arXiv:1407.1419] [pdf (published paper)] [Abstract]
[13] D. Auger, J. Liu, D. Lupien Saint-Pierre, S. Ruette and O. Teytaud. Sparse Binary Zero-Sum Games. JMLR: Workshop and Conference Proceedings, 39, 173-188, 2014 (Proceedings of Asian Conference on Machine Learning 2014). [pdf] [Abstract] [Paper on JMLR website (free)]
[12] S. Ruette and Ľ. Snoha. For graph maps, one scrambled pair implies Li-Yorke chaos. Proceedings of the American Mathematical Society, 142, No. 6, 2087-2100, 2014. [arXiv:1205.3882] [pdf (published paper)] [Abstract]
[11] S. Ruette. Rotation set for maps of degree 1 on the graph sigma. Israel Journal of Mathematics, 184, 275-299, 2011. [arXiv:0712.3815] [pdf (published paper)] [Abstract]
[10] Ll. Alsedà and S. Ruette. Periodic orbits of large diameter for circle maps. Proceedings of the American Mathematical Society, 138, No 9, 3211-3217, 2010. [arXiv:1901.01533] [pdf (published paper)] [Abstract] [Paper on AMS website (free)]
[9] Ll. Alsedà and S. Ruette. Rotation sets for graph maps of degree 1. Annales de l'Institut Fourier, 58, No. 4, 1233-1294, 2008. [arXiv:1901.01524] [pdf (published paper)] [Abstract] [Paper on Annales de l'Institut Fourier website (free)]
[8] S. Gelly, S. Ruette, O. Teytaud. Comparison-based algorithms are robust and randomized algorithms are anytime. Evolutionary Computation, 15, No. 4 (special issue Bridging the gap between theory and practice), 411-434, 2007. [pdf (published paper)] [Abstract]
[7] J. Buzzi, S. Ruette. Large topological entropy implies existence of a maximal entropy measure for interval maps. Discrete Contin. Dyn. Syst. Ser. A, 14, No. 4, 673-688, 2006. [arXiv:1901.01073] [pdf (published paper)] [Abstract]
[6] S. Ruette. Dense chaos for continuous interval maps. Nonlinearity, 18, 1691-1698, 2005. [arXiv:1901.01064] [pdf (published article)] [Abstract]
[5] S. Ruette. Transitive, sensitive subsystems for interval maps. Studia Math., 169, No. 1, 81-104, 2005. [arXiv:1901.01067] [pdf (published paper)] [Abstract] [Paper of Studia Math. webpage (free)]
[4] S. Ruette. C n interval maps not Borel conjugate to any map. Proc. Amer. Math. Soc., 132, No. 4, 1091-1093, 2004. [pdf (published paper)] [Abstract] [Paper on Proc. Amer. Math. Soc. webpage (free)]
[3] S. Ruette. On the Vere-Jones classification and existence of maximal measures for countable topological Markov chains. Pacific J. Math., 209, No. 2, 365-380, 2003. [arXiv:1901.00339] [pdf (published paper)] [Abstract] [Paper on Pacific J. Math. website (free)]
[2] F. Blanchard, B. Host, S. Ruette. Asymptotic pairs in positive-entropy systems. Ergod. Th. & Dynam. Syst., 22, 671-686, 2002. [arXiv:1901.00327] [pdf] [Abstract]
[1] S. Ruette. Mixing Cr maps of the interval without maximal measure. Israel J. Math., 127, 253-277, 2002. [arXiv:1901.00325] [pdf] [Abstract]
For a paper version, please contact me.
Le chaos déterministe, version électronique d'un poster présenté aux Doctoriales (public : doctorants d'autres disciplines), 2002.
Habilitation thesis: Dynamique en dimension 1 - Transformations de l'intervalle, ensemble de rotation de graphes topologiques (in French). [pdf]
Ph.D. thesis: Chaos en dynamique topologique, en particulier sur l'intervalle, mesures d'entropie maximale (mostly in French). [pdf] [Résumé] [Summary]