with Olivier Bernardi and Grégory Miermont PDF Published in Canadian J. Math
We study the percolation model on Boltzmann triangulations using a generating function approach. More precisely, we consider a Boltzmann model on the set of finite planar triangulations, together with a percolation configuration (either site-percolation or bond-percolation) on this triangulation.
By enumerating triangulations with boundaries according to both the boundary length and the number of vertices/edges on the boundary, we are able to identify a phase transition for the geometry of the origin cluster.
For instance, we show that the probability that a percolation interface has length $n$ decays exponentially with $n$ except at a particular value $p_c$ of the percolation parameter $p$ for which the decay is polynomial (of order $n^{-10/3}$). Moreover, the probability that the origin cluster has size $n$ decays exponentially if $p < p_c$ and polynomially if $p\geq p_c$.
The critical percolation value is $$ p_c=1/2 \mbox{ for site percolation, and} \ \ p_c=\frac{2\sqrt{3}-1}{11} \mbox{ for bond percolation.}$$ These values coincide with critical percolation thresholds for infinite triangulations identified by Angel for site-percolation, and by Angel & Curien for bond-percolation, and we give an independent derivation of these percolation thresholds.
Lastly, we revisit the criticality conditions for random Boltzmann maps, and argue that at $p_c$, the percolation clusters conditioned to have size $n$ should converge toward the stable map of parameter $ \frac{7}{6}$ introduced by Le Gall & Miermont. This enables us to derive heuristically some new critical exponents.