Key words

  • Lorentzian geometry
  • Anti de Sitter
  • Globally hyperbolic
  • Critical exponents
  • Conformal boundary
  • Isometry groups
  • Convergence groups
  • Circle diffeomorphisms
  • Time functions
  • Causality

I work in Differential Geometry and Dynamical Systems, mostly around group actions on Lorentzian manifolds. Lately, I have been especially interested in pseudo-Riemannian geometry and Anosov representations.

Preprints

Publications

  • Isometries of Lorentz surfaces and convergence groups, arXiv:1402.7179, Mathematische Annalen (2015), 363(1), p.101-141.
  • Convergence groups and semi conjugacy, arXiv:1404.2829, Ergodic Theory and Dynamical Systems (2016), 36(4), p.1221-1246.
  • Differentiable conjugacy for groups of area preserving circle diffeomorphisms, arXiv:1402.0424, Transactions of the American Mathematical Society (2018), 370, p. 6357-6390.
  • Critical Exponent and Hausdorff Dimension in Pseudo-Riemannian Hyperbolic Geometry, with O. Glorieux, arXiv:1606.05512, International Mathematics Research Notices (2021), 2021 (16), p. 12463–12531.
  • Hausdorff dimension of limit sets for projective Anosov representations, with O. Glorieux and N. Tholozan, arXiv:1902.01844 , Journal de l'Ecole Polytechnique - Mathématiques, Tome 10 (2023), p. 1157-1193. .
  • Regularity of limit sets of AdS quasi-Fuchsian groups, with O. Glorieux, arXiv:1809.10639 (2018), to appear in Mathematical Research Letters.
  • Gromov-Thurston manifolds and anti-de Sitter geometry, with J-M. Schlenker and N. Tholozan, arXiv:2310.12003 (2023), to appear in Geometry and Topology.

Thesis