Submitted
- Attention layers provably solve single-location regression
P. Marion, R. Berthier, G. Biau, C. Boyer. [pdf] [hal] [arXiv] - Physics-Informed Kernel Learning
N. Doumèche, F. Bach, G. Biau, C. Boyer. [pdf] [hal] [arXiv] - A primer on classification with missing data
A. Reyero-Lobo, A. Ayme, C. Boyer, E. Scornet. [hal] - An analysis of the noise schedule in score-based generative models
S. Strasman, A. Ocello, C. Boyer, S. Le Corff, V. Lemaire. [hal]
2024
- On the convergence of PINNs
N. Doumèche, G. Biau, C. Boyer.
Bernoulli [hal] [arXiv] - Model-based Clustering with Missing Not At Random Data
A. Sportisse, C. Biernacki, C. Boyer, J. Josse, M. Marbac Lourdelle, G. Celeux, F. Laporte.
Statistics and Computing, Springer [hal] [arXiv] + [Accompanying note] - Physics-informed machine learning as a kernel method
N. Doumèche, F. Bach, G. Biau, C. Boyer.
Conference on Learning Theory (COLT 2024) [hal] - Random features models: a way to study the success of naive imputation
A. Ayme, C. Boyer, A. Dieuleveut, E. Scornet.
International Conference on Machine Learning (ICML 2024). [hal] [arXiv]
2023
- Naive imputation implicitly regularizes high-dimensional linear models
A. Ayme, C. Boyer, A. Dieuleveut, E. Scornet.
International Conference on Machine Learning (ICML 2023). [hal] - Sparse tree-based initialization for neural networks
P. Lutz, L. Arnould, C. Boyer, E. Scornet.
Eleventh International Conference on Learning Representations (ICLR 2023) [hal] [arXiv] - Is interpolation benign for random forest regression?
L. Arnould, C. Boyer, E. Scornet.
26th International Conference on Artificial Intelligence and Statistics (AISTATS 2023) [hal]
2022
- On the asymptotic rate of convergence of Stochastic Newton algorithms
and their Weighted Averaged versions
C. Boyer, A. Godichon-Baggioni.
Computational optimization and applications (2022) [journal] [hal] [arXiv] - Proximal boosting: aggregating weak learners to minimize non-differentiable losses.
E. Fouillen, C. Boyer, M. Sangnier.
Neurocomputing (2022) [hal] [journal] - Near-optimal rate of consistency for linear models with missing values
A. Ayme, C. Boyer, A. Dieuleveut, E. Scornet. International Conference on Machine Learning (ICML 2022). [hal] [arXiv] - Robust Lasso-Zero for sparse corruption and model selection with missing covariates
P. Descloux, C. Boyer, J. Josse, A. Sportisse, S. Sardy. Scandinavian Journal of Statistics (2022). [hal] [arXiv] - Sampling rates for l1-synthesis
M. März, C. Boyer, J. Kahn, P. Weiss Foundations of Computational Mathematics (FoCM) (2022). [arXiv]
2021
- Analyzing the tree-layer structure of Deep Forests
L. Arnould, C. Boyer, E. Scornet.
International Conference on Machine Learning (ICML 2021). [arXiv]
2020
- Debiasing Stochastic Gradient Descent to handle missing values
A. Sportisse, C. Boyer, A. Dieuleveut, J. Josse
Conference on Neural Information Processing Systems (NeurIPS 2020). [hal] [arXiv] - Estimation and imputation in Probabilistic Principal Component Analysis with Missing Not At Random data.
A. Sportisse, C. Boyer, J. Josse
Conference on Neural Information Processing Systems (NeurIPS 2020). [arXiv] - Imputation and low-rank estimation with Missing Non At Random data.
A. Sportisse, C. Boyer, J. Josse
Statistics & Computing, Springer. [hal] [arXiv] - Missing Data Imputation using Optimal Transport
B. Muzellec, J. Josse, C. Boyer, M. Cuturi
International Conference on Machine Learning (ICML 2020). [arXiv] - On oracle-type local recovery guarantees in compressed sensing.
B. Adcock, C. Boyer, S. Brugiapaglia
Information & Inference (2020). [journal] [hal] [arXiv]
2019
- On representer theorems and convex regularization.
C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. de Gournay, P. Weiss
SIAM Journal on Optimization (2019) [pdf] [hal] [arXiv]
2018
- Convex Regularization and Representer Theorems.
C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. de Gournay, P. Weiss
iTWIST'2018 [pdf] [arXiv]
2017
- Compressed sensing with structured sparsity and structured acquisition.
C. Boyer, J. Bigot, P. Weiss Applied and Computational Harmonic Analysis (2017). [pdf] [hal] [arXiv] [journal]
- Adapting to unknown noise level in sparse deconvolution.
C. Boyer, Y. De Castro, J. Salmon Information and Inference (2017). [pdf] [arXiv] [journal]
Code: example [notebook] , source code [.zip]
2016
- On the generation of sampling schemes for Magnetic Resonance Imaging.
C. Boyer, N. Chauffert, P. Ciuciu, J. Kahn, P. Weiss SIAM Journal on Imaging Sciences, Volume 9, Issue 4, pp. 1525-2098 (2016). [pdf]
- An analysis of block sampling strategies in compressed sensing.
J. Bigot, C. Boyer, P. Weiss IEEE Transactions on Information Theory, vol. 62, no. 4, pp. 2125-2139 (2016). [pdf] [arXiv]
2015
- Sur la génération de schémas d'échantillonnage compressé en IRM
P. Weiss, N. Chauffert, C. Boyer, P. Ciuciu GRETSI (2015). [pdf] -
Échantillonnage compressé avec acquisition structurée et parcimonie structurée
C. Boyer, J. Bigot, P. Weiss GRETSI 2015. [pdf]
2014
- An algorithm for variable density sampling with block-constrained acquisition
C. Boyer, P. Weiss and J. Bigot SIAM Imaging Science 2014 (Vol. 7, Issue 2). [pdf] , [arXiv]
2013
- Sampling by blocks of measurements in compressed sensing.
J. Bigot, C. Boyer, P. Weiss Proc. SampTA (2013). [pdf].
2012
- HYR2PICS: Hybrid Regularized Reconstruction for Combined Parallel Imaging and Compressive Sensing in MRI.
C. Boyer, P. Ciuciu, P. Weiss and S. Mériaux Proc. ISBI 2012. [pdf].