Mathematics in Lean
1. Introduction
2. Basics
3. Logic
4. Sets and Functions
5. Number Theory
6. Topology
Index
Mathematics in Lean
»
Index
Index
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
L
|
M
|
N
|
O
|
P
|
R
|
S
|
T
|
U
A
absolute value
absurd
anonyomous constructor
apply
assumption
B
bounded quantifiers
by_cases
by_contra
by_contradiction
C
calc
cases
change
check
command
open
commands
check
include
commutative ring
congr
contradiction
contrapose
convert
D
definitional equality
divisibility
dsimp
E
erw
exact
excluded middle
exfalso
exponential
ext
extentionality
F
filter
from
G
gcd
goal
group (algebraic structure)
(tactic)
H
have
,
[1]
I
implicit argument
include
inequalities
injective function
intros
L
lambda abstraction
lattice
lcm
left
let
linarith
local context
logarithm
M
max
metric space
min
monotone function
N
namespace
norm_num
O
open
order relation
P
partial order
proof state
push_neg
R
rcases
real numbers
reflexivity
repeat
rewrite
rfl
right
ring (algebraic structure)
(tactic)
rintros
rw
,
[1]
rwa
S
set operations
show
simp
,
[1]
split
surjective function
T
tactics
abel
apply
assumption
by_cases
by_contra and by_contradiction
calc
cases
change
congr
contradiction
contrapose
convert
dsimp
erw
exact
exfalso
ext
from
group
have
,
[1]
intros
left
let
linarith
noncomm_ring
norm_num
push_neg
rcases
refl and reflexivity
repeat
right
ring
rintros
rw and rewrite
,
[1]
rwa
show
simp
,
[1]
split
use
this
topology
U
use