mars 2025
Intervenant : | Alain Durmus |
Institution : | Ecole Polytechnique IPP |
Heure : | 15h30 - 16h30 |
Lieu : | 3L15 |
My talk will be based on the two following contributions on diffusion models.
1. KL Convergence Guarantees for Score diffusion models under minimal data assumptions, Joint work with Giovanni Conforti, Marta Gentiloni Silveri
Diffusion models are a new class of generative models that revolve around the estimation of the score function associated with a stochastic differential equation. Subsequent to its acquisition, the approximated score function is then harnessed to simulate the corresponding time-reversal process, ultimately enabling the generation of approximate data samples. Despite their evident practical significance these models carry, a notable challenge persists in the form of a lack of comprehensive quantitative results, especially in scenarios involving non-regular scores and estimators. In almost all reported bounds in Kullback Leibler (KL) divergence, it is assumed that either the score function or its approximation is Lipschitz uniformly in time. However, this condition is very restrictive in practice or appears to be difficult to establish. To circumvent this issue, previous works mainly focused on establishing convergence bounds in KL for an early stopped version of the diffusion model and a smoothed version of the data distribution, or assuming that the data distribution is supported on a compact manifold. These explorations have led to interesting bounds in either Wasserstein or Fortet-Mourier metrics. However, the question remains about the relevance of such early-stopping procedure or compactness conditions. In particular, if there exist a natural and mild condition ensuring explicit and sharp convergence bounds in KL. In this article, we tackle the aforementioned limitations by focusing on score diffusion models with fixed step size stemming from the Ornstein-Uhlenbeck semigroup and its kinetic counterpart. Our study provides a rigorous analysis, yielding simple, improved and sharp convergence bounds in KL applicable to any data distribution with finite Fisher information with respect to the standard Gaussian distribution.
2. Piecewise deterministic generative models joint with Andrea Bertazzi, Dario Shariatian, Umut Simsekli, Eric Moulines
We introduce a novel class of generative models based on piecewise deterministic Markov processes (PDMPs), a family of non-diffusive stochastic processes consisting of deterministic motion and random jumps at random times. Similarly to diffusions, such Markov processes admit time reversals that turn out to be PDMPs as well. We apply this observation to the Zig-Zag process. For this particular instance, we will show that the jump rates and kernels of the corresponding time reversals admit explicit expressions depending on some conditional densities of the PDMP under consideration before and after a jump. Based on these results, we propose efficient training procedures to learn these characteristics and consider methods to approximately simulate the reverse process. Finally, we provide bounds in the total variation distance between the data distribution and the resulting distribution of our model in the case where the base distribution is the standard d-dimensional Gaussian distribution. Promising numerical simulations support further investigations into this class of models.