déc. 2024
Intervenant : | Pierre Monmarché |
Institution : | Sorbonne Université, LJLL |
Heure : | 14h00 - 15h00 |
L'équation des milieux granulaires est une EDP non-linéaire obtenue dans la limite champ moyen d'un système de particules de Langevin en interaction. Elle peut être interprétée comme la descente de gradient dans un espace de probabilités d'une certaine énergie libre. Pour de tels flots gradients, il est connu qu'une convergence exponentiellement rapide vers le minimum global de l'énergie libre est impliquée par une inégalité fonctionnelle reliant l'énergie libre à sa dissipation (qui généralise à ce cadre non-linéaire l'inégalité classique dite de log-Sobolev). Cependant une telle inégalité n'a aucune chance d'être satisfaite quand l'EDP admet des solutions stationnaires autres que les minimiseurs globaux de l'énergie libre, ce qui est par exemple le cas pour l'équation des milieux granulaires dans un double puit avec interaction attractive en-deça d'une température critique. Basé sur un travail récent avec Julien Reygner, on montrera comment des inégalités fonctionnelles locales peuvent néanmoins être établies dans ce contexte, impliquant des taux de convergence locale pour des conditions initiales dans une boule Wasserstein centrée sur les minimiseurs locaux. En pratique, ceci implique également que l'énergie libre du système de particules approchant le flot décroît rapidement en-dessous du niveau du minimiseur local, à un terme d'erreur près. La même analyse s'applique au cas cinétique (c'est-à-ditre pour l'équation de Vlasov-Fokker-Planck).