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Abstract. Let T : x 7→ 2x (mod 1) be the doubling map of the circle T = R/Z.
We construct a trigonometric polynomial f : T → R with the following property:∫
f dµ > 0 for every T -invariant probability measure µ, so that f is cohomologous

to a non-negative Lipschitz function, yet f is not cohomologous to any non-negative
C1 function.

1. Introduction

Given a continuous transformation T : X → X of a compact metric space X, let
M denote the set of T -invariant Borel probability measures on X, and C(X) the
space of real-valued continuous functions onX, equipped with the uniform topology.
A function on X is called a (continuous) coboundary if it can be written as ϕ−ϕ◦T
with ϕ ∈ C(X). Two functions are said to be (continuously) cohomologous if their
difference is a coboundary; this is clearly an equivalence relation on C(X), and we
are interested in its equivalence classes, the (continuous) cohomology classes.

Clearly, if f is a coboundary then we have
∫
fµ = 0 for any µ ∈ M. A celebrated

theorem of Livšic [L1,L2] states that the converse is also true, provided that the
dynamical system (X, T ) is hyperbolic and f is sufficiently regular; moreover, in
this case the cobounding function ϕ has the same regularity as f = ϕ− ϕ ◦ T .

Theorem (Livšic). Let T : T → T be a Cω expanding map. Let f : T → R be
Ck for some k = 1, 2, . . . ,∞, ω (resp. β-Hölder for some 0 < β 6 1), and suppose∫
fµ = 0 for all µ ∈ M. Then there exists a Ck (resp. β-Hölder) function ϕ ∈ C(T)

such that f = ϕ− ϕ ◦ T .

Livšic’ theorem in fact applies to more general uniformly hyperbolic dynamical
systems, but the case of expanding maps of the circle is sufficient for our needs.
In fact Livšic’ theorem is usually stated with the a priori weaker hypothesis that∫
fµ = 0 whenever µ is a periodic orbit, but this actually makes no difference, by a

classical result of Parthasarathy [Pa] and Sigmund [Sig] stating that periodic orbits
are dense in M for the weak∗ topology.

Actually Livšic only proved the “Hölder” part of the above theorem. He gives
some partial results on the “differentiable” part, but leaves the general Ck problem
as an open question. Livšic also gives an analogue of the above theorem for Anosov
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flows. These results were rediscovered independently by Guillemin & Kazhdan
[GK1,GK2] in their study of isospectral rigidity.

Livšic’ theorem relies very much on the hyperbolicity of the dynamical system.
In the non-hyperbolic setting, there is no such general result about the cohomolog-
ical equation ϕ−ϕ ◦T = f . In the special case where T is an irrational rotation of
the circle, the cohomological equation is essentially a problem of small denomina-
tors (writing f and ϕ as Fourier series), and the existence and smoothness of the
solutions depend on the arithmetic properties of the rotation number. Livšic’ the-
orem also requires a regularity hypothesis on f (the Hölder condition is sufficient,
though it can be weakened) but for reasons which are harder to explain; we will see
in §3 that arbitrary continuous f have a very different, and in a sense pathological,
behaviour with respect to cohomology.

Because of Livšic’ theorem, we can define a Ck coboundary in two different but
equivalent ways: either as a Ck function which is a coboundary, or as a function
of the form ϕ − ϕ ◦ T where ϕ is a Ck function. We can similarly define Hölder
coboundaries, and from this we derive the notions of Ck and Hölder cohomology
classes in the obvious way.

Henceforth we shall restrict ourselves to the case where T is a Cω expanding (i.e.
|T ′| > 1 everywhere) map of the circle T. In particular T is topologically transitive,
so the equation ϕ − ϕ ◦ T = f can have at most one solution, up to an additive
constant.

In this article we consider a problem analogous to that of Livšic. Suppose that
f, ϕ ∈ C(T) are such that f > ϕ − ϕ ◦ T ; then clearly we have

∫
fµ > 0 for all

µ ∈ M. Here again we can ask whether the converse, or a partial converse, is true.
One can prove the following:

Theorem A. Let T : T→ T be a C1 expanding map. Let f ∈ C(T) be a β-Hölder
function for some 0 < β 6 1, and suppose

∫
fµ > 0 for all µ ∈ M. Then there

exists a β-Hölder function ϕ ∈ C(T) such that f > ϕ− ϕ ◦ T .

This theorem has been stated and proved independently by several people. It
first appears in an unpublished manuscript by Conze & Guivarc’h [CG], where it is
proved using thermodynamic formalism; the same approach is used by Savchenko
[S]. More direct proofs, which do not use the Ruelle transfer operator, can be found
in [B1,B2,CLT].

Another way to state Theorem A is by introducing the minimum ergodic average
α(f), defined by α(f) = minµ∈M

∫
fµ. The theorem then says that if α(f) > 0

(we shall say that f is dynamically non-negative in this case), T is expanding and
f is Hölder, then f is cohomologous to a non-negative Hölder function.

Theorem A is closely related to the structure of the set of minimizing measures,
i.e., those µ ∈ M such that

∫
fµ = α(f). It implies in particular (as the reader will

readily verify) the so-called subordination principle [B2]: under the hypotheses of
Theorem A, if µ, ν ∈ M are such that supp µ ⊂ supp ν, and ν is minimizing, then
µ is also minimizing. The Hölder part of Livšic’ theorem can also be easily derived
from Theorem A [B2].

However, the differentiable case is conspicuously absent from Theorem A, and
one might wonder whether it is merely an artefact of the methods used to prove
it. A priori, it would be reasonable to conjecture, by analogy with Livšic’ theorem,
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that if T, f are Ck (for some k = 1, 2, . . . ,∞, ω) and α(f) > 0, then f > ϕ− ϕ ◦ T
for some Ck function ϕ. Indeed this result was claimed in an unpublished preprint
[PS]1, written at a time when very little was known about minimizing measures,
or about the possible obstructions to the above statement (and variants of it).
Soon afterwards, one of us [J1, J2] conjectured a model describing the minimizing
measures for the family of functions fθ : x 7→ cos 2π(x − θ), parametrized by
θ ∈ R/Z, and where T is the angle-doubling map. In this model, for some values of
θ there is a minimizing measure whose support is a Cantor subset of T. For such
values of θ there cannot exist a real-analytic ϕ satisfying f − α(f) > ϕ − ϕ ◦ T ,
for f − α(f) and ϕ− ϕ ◦ T would then coincide on the support of this measure, a
non-discrete subset of T, and thus be equal, easily leading to a contradiction. This
model (later proved in [B1]), shows that there is no Cω analogue of Theorem A
and, as we shall see in this article, can also provide an obstruction to ϕ being Ck

for arbitrary k, indeed even for k = 1.
In the following theorem, T is again the angle-doubling map, and f is a degree

one trigonometric polynomial such that α(f) = 0, so that T and f are both real-
analytic. By Theorem A, with β = 1, we know that f is cohomologous to a non-
negative Lipschitz function. On the other hand, however, Theorem B says that f is
not cohomologous to a non-negative C1 function. This counterexample shows that
Theorem A cannot be extended to the differentiable setting.

Theorem B. Let T : x 7→ 2x (mod 1) be the angle-doubling map on the circle T.
The trigonometric polynomial f : T→ R defined by

f(x) = 1− cos 2πx− C sin 2πx

= 1−
√

1 + C2 cos 2π(x− ω)

where

C =

∑∞
n=0 1− cos(π/2n)∑∞
n=0 sin(π/2n)

= 1.368231157 . . .

ω =
arctanC

2π
= 0.149550073 . . .

satisfies α(f) = minm∈M
∫
f dm = 0, yet it is not cohomologous to a C1 non-

negative function.

2. Proof of Theorem B

For any real parameter C, define the function fC : T→ R by

fC(x) = 1− cos 2πx− C sin 2πx

= 1−
√

1 + C2 cos 2π(x− ω)

where ω = (2π)−1 arctanC. Clearly fC(0) = 0 for all C. We claim that there exists
a unique C ∈ R such that f is cohomologous to a function which vanishes on the
semicircle [0, 1/2]. (In this case we say that f is cohomologous to zero on [0, 1/2]).

1This preprint was not submitted for publication, as Pollicott & Sharp discovered it was
incorrect soon after it was circulated.
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Figure 1. Graph of the function f in Theorem B

Lemma 1. A Lipschitz function f : T→ R is cohomologous to zero on the closed
semicircle [0, 1/2] if and only if f(0) = 0 and

∑∞
n=1 f(2−n) = 0.

Proof. Suppose there exists Φ ∈ C(T) such that the function g = Φ − Φ ◦ T + f
is zero on the semicircle [0, 1/2]. From g(0) = 0 we get f(0) = 0, and the relation

0 =
∑N
n=1 g(2−n) can be rewritten as

0 = Φ(2−N )− Φ(0) +
N∑

n=1

f(2−n)

Letting N →∞, we obtain 0 =
∑∞
n=1 f(2−n); so the conditions are necessary.

Conversely, suppose f(0) = 0 and
∑∞
n=1 f(2−n) = 0. The Lipschitz condi-

tion ensures that the series ϕ(x) =
∑∞
n=1 f(x2−n) is uniformly convergent on

every compact interval, so that ϕ is a continuous function on R. The condition∑∞
n=1 f(2−n) = 0 gives ϕ(1) = 0 = ϕ(0), so we can consider the restriction of ϕ

to [0, 1] as a continuous function on the circle T, which we denote by Φ. We then
have, for all x ∈ [0, 1/2], Φ(Tx) − Φ(x) = ϕ(2x) − ϕ(x) = f(x). So the function
f+Φ−Φ◦T is identically zero on [0, 1/2]; the condition is sufficient, and the lemma
is proved.

Remarks. We see that if f is Ck, or real-analytic, or an entire function, then so is
ϕ. However, Φ will not be C1 in general; ϕ′(0) and ϕ′(1) will usually differ, so the
left and right derivatives of Φ will disagree at the origin.

Lemma 2. Let f : T → R be as in the statement of Theorem B. Then f is
cohomologous to a non-negative function g satisfying

(1) g is identically zero on [0, 1/2],
(2) g is strictly positive on (1/2, 1),
(3) g is differentiable at all points except 0 and 1/2,
(4) The righthand derivative R = g′+(1/2) at the point 1/2 is strictly positive.
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Figure 2. Graph of ϕ, restricted to [0, 1]

Proof. The constant C in the statement of Theorem B was chosen precisely to
ensure that

∑∞
n=1 f(2−n) = 0, so Lemma 1 applies. If we define ϕ, Φ and g as in

the proof of Lemma 1 (ϕ is shown in Figure 2), then we know that g is identically
zero on [0, 1/2].

When x ∈ [1/2, 1], we have

g(x) = Φ(x)− Φ(2x) + f(x) = ϕ(x)− ϕ(2x− 1) + f(x)

= ϕ(2x)− ϕ(2x− 1),

so the restriction of g to [1/2, 1] is smooth (see the graph in Figure 3), with derivative
g′(x) = 2[ϕ′(2x)− ϕ′(2x− 1)]. At the endpoints, we have

g′+( 1
2 ) = 2[ϕ′(1)− ϕ′(0)] = 26.8703 . . . > 0

g′−(1) = 2[ϕ′(2)− ϕ′(1)] = −13.4351 . . . < 0.
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Figure 3. Graph of g restricted to [1/2, 1]
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The proof that g(x) > 0 for all x ∈ (1/2, 1) will use the following interpolation
lemma, which is a special case of a classical result on Hermite interpolation, see
e.g. [SB], Theorem (2.1.5.10), p. 56. We provide a proof for completeness.

Lemma 2a. Let a < b, and suppose u : [a, b] → R is a C4 function such that
u(a) = u(b) = 0. For all x ∈ (a, b), there exists ζ ∈ (a, b) such that

u(x)

(x− a)(b− x)
=

(b− x)u′(a)− (x− a)u′(b)
(b− a)2

+ (x− a)(b− x)
u(4)(ζ)

24

Proof of lemma 2a. Let x ∈ (a, b), and define

P (t) = (t− a)(b− t)
[

(b− t)u′(a)− (t− a)u′(b)
(b− a)2

+ (t− a)(b− t) θ
24

]

where the constant θ is chosen such that P (x) = u(x). The function v = u − P
satisfies v(a) = v′(a) = v(x) = v(b) = v′(b) = 0, so it has (at least) five zeros
(counted with multiplicity) and a repeated application of Rolle’s theorem shows
that there exists ζ ∈ (a, b) such that v(4)(ζ) = 0. Since P (4) = θ identically, we
obtain u(4)(ζ) = θ, and the lemma is proved.

To apply Lemma 2a, we need estimates on the fourth derivative of g. First we
note that

ϕ(4)(x) =
∞∑

n=1

16−nf (4)
C (x/2n)

= (2π)4
√

1 + C2

∞∑

n=1

16−n cos 2π(x/2n − ω)

and consequently ∣∣ϕ(4)(x)
∣∣ 6 1

15
(2π)4

√
1 + C2

for all x ∈ R. Now g(4)(x) = 16[ϕ(4)(2x) − ϕ(4)(2x − 1)] whenever 1/2 < x < 1,
thus ∣∣g(4)(x)

∣∣ 6 32

15
(2π)4

√
1 + C2 = 5634.75 . . .

Now applying Lemma 2a to the function g, with [a, b] = [1/2, 1], we see that, for
all x ∈ (1/2, 1),

g(x)

(x− 1
2)(1− x)

= 4
{

(1− x)g′+( 1
2 )− (x− 1

2)g′−(1)
}

+ (x− 1
2 )(1− x)

g(4)(ζ)

24

> 4
{

26(1− x) + 13(x− 1
2 )
}
− 235(x− 1

2 )(1− x)

> 21

which completes the proof of Lemma 2.

An immediate consequence of Lemma 2 is that f has a unique minimizing mea-
sure, the Dirac mass at the origin, δ0. In particular, α(f) = 0.
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Let θr,n = 2r/(2n − 1) (with 0 6 r 6 n − 1) denote the points on the periodic
orbit generated by 1/(2n − 1), and let R = g′+(1/2) > 0. We observe that these
orbits are “almost” minimizing, in the following sense: the sum

n−1∑

r=0

f(θr,n) =
n−1∑

r=0

g(θr,n) = g(θn−1,n) ∼ R (θn−1,n − 1
2 ) ∼ R/2n+1

tends to zero exponentially fast as n→∞.
Now we are ready to prove Theorem B. Suppose that f is cohomologous to a

non-negative h ∈ C1(T). Since h is cohomologous to g, which vanishes on [0, 1/2],
we see by Lemma 1 that h(0) = 0 and

∑∞
n=1 h(2−n) = 0. But the function h is

non-negative, so it must vanish on the set Z = {0} ∪ {2−n : n > 1}. Since h is C1,
all its zeros must be “double” zeros, that is, the derivative h′ must also vanish on
Z (see Figure 4). Since h′ is continuous, this implies that

h(x) = o
(
d(x, Z)

)

in the sense that, for every ε > 0, there exists δ > 0 such that d(x, Z) 6 δ implies
h(x) 6 εd(x, Z), where d denotes the usual distance function on T.

We have d(θr,n, Z) 6 θr,n − 2r−n = 2r−n/(2n − 1) 6 1/2(2n − 1), so d(θr,n, Z)
tends to 0 uniformly in r as n→∞, and consequently

n−1∑

r=0

f(θr,n) =
n−1∑

r=0

h(θr,n) = o

(n−1∑

r=0

d(θr,n, Z)

)
= o(2−n)

as n→∞, which contradicts our previous estimate of
∑n−1
r=0 f(θr,n), and concludes

the proof of Theorem B.

0.125 0.25 0.5 1

Figure 4. Schematic graph of h
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3. Weak cohomology classes for continuous functions

Both Livšic’ theorem and Theorem A require f to be Hölder. While this regu-
larity hypothesis can be weakened [B2], it cannot be dispensed with completely. In
this section, we will study what happens when f is an arbitrary continuous func-
tion, and T is the angle-doubling map. We shall see that both theorems fail, as
does a weaker form of Theorem A.

Lemma 3. A function f ∈ C(T) satisfies
∫
fµ = 0 for all µ ∈ M if and only if f

is a uniform limit of coboundaries.

Proof. It is easily verified that the condition
∫
fµ = 0 for all µ ∈ M is equivalent to

Snf/n→ 0 in C(T), where Snf = f+f ◦T + · · ·+f ◦T n−1 (see e.g. [CG], théorème
2.1). Moreover, f is cohomologous to Snf/n, so

∫
fµ = 0 ∀µ ∈ M implies that f

is the uniform limit of the sequence fn = f −Snf/n of coboundaries. The converse
is obvious.

A function which satisfies either of the conditions above will be called a weak
coboundary. Coboundaries are not closed in C(T), so weak coboundaries form a
larger (and closed) vector subspace of C(T). There are several ways to see this,
but the most convincing one is to construct an explicit weak coboundary which is
not a coboundary; for the following construction we are indebted to M. Zinsmeister
(private communication).

Exceptionally we will consider complex-valued functions on T, since the Fourier
series notation is more concise. Let (an)n>0 be a sequence of complex numbers such

that
∑ |an| <∞ and

∑
an = 0, and such that

∑ |rn|2 =∞, where rn =
∑
p>n ap.

For example we could take rn = 1/
√
n for n > 0 and r0 = 0, and then set an =

rn − rn+1. Finally, define E(t) = exp(2πit).

We then claim that f(t) =
∑∞
n=0 anE(2nt) is a weak coboundary, but not a

coboundary. It is a weak coboundary because it is the uniform limit as m → ∞
of ϕm(t) − ϕm(2t), where ϕm(t) =

∑m−1
n=0 rn+1E(2nt). To prove that f is not a

coboundary, assume f(t) = ϕ(t) − ϕ(2t) for some ϕ ∈ C(T). Considering ϕ as an
element of L2(T), we can expand it as a Fourier series, and by identification of the
coefficients in f(t) and ϕ(t)− ϕ(2t) we obtain ϕ(t) =

∑∞
n=0 rn+1E(2nt). We then

see that the Fourier coefficients of ϕ are not `2, which is absurd. So f is not a
coboundary.

For such a function f , which is a weak coboundary but not a coboundary, we
clearly have α(f) = 0. However there can be no ϕ ∈ C(T) such that f > ϕ−ϕ ◦T ,
for it would imply the equality of f and ϕ − ϕ ◦ T (indeed, both functions have
the same integral with respect to Lebesgue measure), contradicting our hypothesis
that f is not a coboundary. This means that both Livšic’ theorem and Theorem A
are not valid for arbitrary continuous functions.

However, one might ask if perhaps a weaker form of Theorem A is true. Say that
two functions f, g are weakly cohomologous if their difference is a weak coboundary,
that is, if

∫
fµ =

∫
gµ for all µ ∈ M.

Question. Let T be the angle-doubling map, and let f ∈ C(T) be such that α(f) >
0. Is f weakly cohomologous to a non-negative function?
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An affirmative answer to this question was claimed in [Sh1,Sh2], but both proofs
are incorrect. In fact the above question has a negative answer.

To understand this, we have to make explicit the link between the above assertion
and the subordination principle. Suppose that g is a non-negative function with
α(g) = 0; its minimizing measures are those µ ∈ M such that supp µ ⊂ g−1(0).
Therefore the subordination principle applies to g: if µ, ν are two invariant measures
such that supp µ ⊂ supp ν and ν is minimizing, then µ is also minimizing. Now
if f is weakly cohomologous to g, then it has the same minimizing measures, so
the subordination principle also holds for f . In particular, f cannot have a fully
supported minimizing measure, unless f is a weak coboundary (this point had
already been made by Sharp).

On the other hand, it turns out that a generic (in the uniform topology) f ∈
C(T) does have a fully supported minimizing measure! This obviously provides an
obstruction to f −α(f) being weakly cohomologous to a non-negative function, by
the above arguments. This assertion, that generically the minimizing measure has
full support in T, is claimed without proof in [B2], so we provide a proof here.

Lemma 4. Let K be a proper closed subset of T, and let Cmin(K) be the set of
functions f ∈ C(T) which have a minimizing measure µ with supp µ ⊂ K. Then
Cmin(K) is a closed subset of C(T) with empty interior.

Proof. Replacing K by its maximal invariant subset
⋂
n>0 T

−nK, we may assume,
without loss of generality, that K is invariant; that is, TK ⊂ K.

It is easily verified that Cmin(K) is closed. Now assume that Cmin(K) has an
interior point f0; up to translation, we can assume α(f0) = 0. Denote by M(K)
the set of µ ∈ M such that supp µ ⊂ K. Let µ0 ∈ M(K) be ergodic and such that∫
f0µ0 = 0. Let ε > 0 be arbitrary.
It is easy to see that µ0 can be approximated, in the weak∗ topology on M,

by periodic orbits which are not in M(K), so let µ ∈ M−M(K) be a periodic
orbit such that

∫
f0µ 6 ε. Since supp µ and K are disjoint, we can find a Urysohn

function g ∈ C(T) such that g(x) = 0 for all x ∈ K, g(x) = 1 for all x ∈ supp µ,
and 0 6 g(x) 6 1 everywhere. Therefore the function f = f0 − 2εg satisfies
‖f − f0‖ = 2ε and

∫
fµ 6 −ε. On the other hand, for any ν ∈ M(K) we have∫

fν =
∫
f0ν > α(f0) = 0, so such a ν cannot be a minimizing measure for f . Thus

f /∈ Cmin(K). Moreover, f is arbitrarily close to f0, contradicting our hypothesis
that f0 is an interior point of Cmin(K). The lemma is proved.

Theorem C. For a generic f ∈ C(T), every minimizing measure of f has full
support.

Proof. Let U0, U1 . . . be a countable base of open subsets of T, for instance, the
open intervals with rational endpoints. For any n ∈ N, the set Ωn of functions
f ∈ C(T) which do not have a minimizing measure whose support avoids Un is,
by Lemma 4, an open and dense subset of C(T). Their intersection

⋂
Ωn consists

of those f all of whose minimizing measures have full support, and is a dense Gδ

subset of C(T) by Baire’s theorem.

Actually, it is also known that a generic f ∈ C(T) has a unique minimizing
measure [B2,CG] but we did not want to use this argument, which does not simplify
the proof.
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Summarising all the above arguments, we conclude:

Corollary. For a generic f ∈ C(T), there is no non-negative function which is
weakly cohomologous to f − α(f).
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