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Abstract

Given an Iterated Function System (IFS) of topical maps verify-
ing some conditions, we prove that the asymptotic height optimization
problems are equivalent to finding the extrema of a continuous func-
tional, the average height, on some compact space of measures. We
give general results to determine these extrema, and then apply them
to two concrete problems. First, we give a new proof of the theorem
that the densest heaps of two Tetris pieces are sturmian. Second, we
construct an explicit counterexample to the Lagarias-Wang finiteness
conjecture for the joint spectral radius of a set of matrices.

Résumé

Etant donné un système itéré de fonctions (IFS) topicales, vérifiant
certaines conditions, nous montrons que les questions d’optimisation
asymptotique de la hauteur sont équivalentes à la recherche des ex-
trema d’une fonctionnelle continue, la hauteur moyenne, sur un certain
espace compact de mesures. Nous présentons des résultats généraux
permettant de déterminer ces extrema, puis appliquons ces méthodes
à deux problèmes concrets. Premièrement, nous redémontrons que les
empilements les plus denses de deux pièces de Tetris sont sturmiens.
Deuxièmement, nous construisons un contre-exemple effectif à la con-
jecture de finitude de Lagarias et Wang sur le rayon spectral joint d’un
ensemble de matrices.
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Introduction

A topical map is a map from Rn into itself verifying some conditions (see
§1.2) and which, roughly speaking, behaves like a translation along some
line, the amount of which is measured by a real number, called the average
height (or average displacement) of the map. Then we look at a topical
Iterated Function System (IFS), that is, a (finite) collection (Ti) of such
maps, and want to find asymptotic bounds for the average height of arbitrary
compositions of the Ti ; this can be seen as an infinite-horizon optimal control
problem.

There are lots of motivations for this study. Discrete Event Systems
(DES), a convenient abstraction for many man-made systems such as com-
munication networks, digital circuits, or manufacturing systems, can usu-
ally be modelled by topical maps and IFS; the extrema of the asymptotic
height then correspond to the best and the worst throughput of the DES
[Ba, Co, BV, GM1, GM2]. Among topical maps, a special role is played by
max-plus maps which appear in the modelling of event graphs, 1-bounded
Petri nets and Tetris-like heap models [Ga2]. Topical IFS also appear in
other contexts, for example, in various problems of automata and formal
language theory [Pin, Sim]. Another motivation which will become evident
in the course of this paper is that some linear IFS can be represented by top-
ical IFS, and the Liapunov exponents of the linear IFS (which are important
things, see [DL1, CKN]) can be computed thanks to the topical model.

The asymptotic optimization problem is approached from the thermody-
namic formalism viewpoint, and is rewritten as a variational problem on a
space of measures, allowing us to see the “optimal schedules” of the topical
IFS as the “ground states” of a system with an infinite number of particles.
To justify the relevance of this approach, we solve completely two problems
of some practical importance, and a priori unrelated: the optimization of
Tetris heaps, and the Lagarias-Wang finiteness conjecture.

The paper is structured as follows. The first two sections of the paper
develop a lot of general-purpose machinery, with the intent of using it later;
and then the last two sections are devoted to “applications”.

The first section introduces a fair amount of preliminary material, some
of which may be already familiar to the reader (although the presentation
and the proofs are probably new).

The second section discusses an important fixed point result known as
Mañé’s lemma, and its consequences. We prove in particular an inequality
which basically says that optimal measures must have a “small” support;
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and because of this, sturmian measures appear as natural candidates for
optimality.

An instance of the Tetris model, which is probably the simplest nontrivial
topical IFS (it consists of two max-plus maps of R2), is studied in Section
3 as an application of the techniques described earlier in the paper. In this
model, we let pieces pile up according to the Tetris game mechanism. We
give new proofs of the theorems of Gaujal, Mairesse and Vuillon, that the
densest heaps are sturmian, even if we constrain the relative proportion of
the two pieces.

Finally, the connection between linear IFS and topical IFS is exploited
in Section 4, to construct a linear IFS which has no maximizing periodic
orbit, thus disproving the Lagarias-Wang finiteness conjecture. The coun-
terexample is constructed as a simple variant of a topical IFS which has
been introduced in the previous section.

1 Preliminaries

1.1 Stationary processes and sturmian processes

Let I be a finite nonempty set, IN the set of right-infinite sequences endowed
with the product topology, and σ : IN → IN the shift map, defined by
σ
[
(ak)k

]
= (ak+1)k. This dynamical system is called a Bernoulli shift. A

random variable ξ = (ξk)k∈N with values in IN is called a (stochastic) process
with values in I. If the law of ξ is a shift-invariant measure on IN, the process
is called stationary. The set of equivalence classes of stationary processes
on I is exactly the set of shift-invariant Borel probability measures on IN.

This space of measures will be noted StN(I). It is obviously a convex
subset ofMs(I

N), the set of signed Borel measures on IN, and when endowed
with the vague topology (that is, the weak-∗ topology1 relatively to its pred-
ual C(IN)), it is compact and metrizable. For more background on invariant
measures for compact dynamical systems (in particular the Bernoulli shift),
the reader might consult [M1, DGS].

Similarly, we define StZ(I) as the set of shift-invariant Borel probability
measures on IZ. The natural map StZ(I)→ StN(I) is bijective, allowing us
to identify these two spaces when appropriate (and then we will drop the N
or Z subscript).

Every periodic orbit of σ in IN can be considered as an element of
StN(I). This is because we can identify a periodic orbit with the unique
invariant probability supported by this orbit. These particular elements of
StN(I) will simply be called “periodic orbits”. It is a well-known theorem
of Parthasarathy and Sigmund that periodic orbits are dense in StN(I), see

1This topology is also called the narrow or weak topology, or the topology of conver-
gence in law (or in distribution).
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Proposition 21.8 in [DGS], pp. 196–198. Because of this, StN(I) can be seen
as a compactification of the set of periodic orbits.

At this point it will be useful to introduce a notation for periodic or-
bits. If z = (a0a1 . . . an−1 . . .) ∈ IN is a n-periodic point, it will be noted
a0a1 . . . an−1, whereas the corresponding periodic orbit (considered as a mea-
sure) will be noted a0a1 . . . an−1].

In the special case where I has two elements, St(I) contains remarkable
measures, the so-called sturmian measures, which are characterized by the
following theorem.

Proposition-Definition 1.1. For every ρ ∈ [0, 1], there exists a stationary
process ξ = (ξk)k∈Z with values in I = {0, 1}, unique up to equivalence, such
that

∀s ∈ N
∣∣∣−sρ+

s−1∑

k=0

ξk

∣∣∣ < 1 a.s. (1.1)

Such a process verifies E(ξ0) = ρ, and will be called a sturmian process of
parameter ρ. The corresponding invariant measures on IN and IZ will be
noted sρ and ŝρ, and will be called the sturmian measures of parameter ρ on
IN and IZ.

Proof. The existence of such a process, for ρ ∈ [0, 1], is easy. Let ψ0 be
a uniform random variable on [0, 1), and define ψn = ψ0 + nρ and ξn =
bψn+1c − bψnc for n ∈ Z. Then we have, for every s ∈ N,

−sρ+
s−1∑

k=0

ξk = bψ0 + sρc − bψ0c − sρ (1.2)

which is always in (−1, 1). Moreover, ψ0 and ψ1 have the same law modulo
1, and it readily implies that the process (ξk)k∈Z is stationary.

Let us prove now there is a unique stationary process (up to equivalence)
which verifies condition (1.1). Let ξ = (ξk)k∈Z be such a process, for some
given ρ ∈ [0, 1]; since it is stationary, condition (1.1) is equivalent to

∀n ∈ Z ∀s ∈ N
∣∣∣−sρ+

n+s−1∑

k=n

ξk

∣∣∣ < 1 a.s. (1.3)

Rewriting this condition in terms of the new random variables τs, defined
by τ0 = 0 and τs+1 − τs = ξs for all s ∈ Z, we get the equivalent condition

∀n ∈ Z ∀s ∈ N
∣∣τn+s − τn − sρ

∣∣ < 1 a.s. (1.4)

Since τn+s − τn must be an integer, this is equivalent to

∀n ∈ Z ∀s ∈ N bsρc 6 τn+s − τn 6 dsρe a.s. (1.5)
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which is, in turn, equivalent to

∀n ∈ Z ∀s ∈ N −1 + ε(ρ) 6 τn+s − τn − sρ 6 1− ε(ρ) a.s. (1.6)

where ε(ρ) is defined as 1/q if ρ = p/q (with p, q relatively prime) and 0 if
ρ is irrational. Defining now θs = τs − sρ, we get

∀n, p ∈ Z
∣∣θn − θp

∣∣ 6 1− ε(ρ) (1.7)

Consequently, the random variables

θ−(ξ) = inf
s∈Z

θs and θ+(ξ) = sup
s∈Z

θs (1.8)

are finite and verify

θ−(ξ) 6 θ0 =0 6 θ+(ξ) 6 θ−(ξ) + 1− ε(ρ) (1.9)

almost surely. In particular,

θ+(ξ) ∈ [0, 1 − ε(ρ)] a.s. (1.10)

Now let σξ be the shifted process (ξk+1)k∈Z. A straightforward calculation
gives

θ+(σξ) = θ+(ξ)− ξ0 + ρ (1.11)

Since ξ and σξ are equivalent, so are θ+(ξ) and θ+(σξ). This, and eq. (1.11),
imply that θ+(ξ) and θ+(ξ)+ρ have the same law modulo 1. Combined with
(1.10), it completely determines the law of θ+(ξ): if ρ /∈ Q, it is the uniform
law on [0, 1]; if ρ = p/q, it is the equireparted probability on {0, 1/q . . . (q−
1)/q}. From this, one can reconstruct the law of the (τn), which are entirely
determined (a.s.) by θ+ and the inequalities

∀n ∈ Z −1 + ε(ρ) 6 τn − nρ− θ+ 6 0 (1.12)

and then the law of the (ξn).

From the construction of sturmian processes, we can see that sρ is peri-
odic if and only if ρ is rational, and in this case the period is precisely the
denominator of ρ. For example, we have s0 = 0], s1 = 1], s1/2 = 01], etc.
One also remarks that if ξ = (ξn)n∈Z is a sturmian process of parameter ρ,
then (ξ−n)n∈Z and (1 − ξn)n∈Z are also sturmian, with parameters ρ and
1− ρ respectively.

Proposition 1.2. Let ρ ∈ [0, 1], and a0, a1 . . . an−1 be elements of I =
{0, 1}, and let a0a1 . . . an−1∗ be the order-n cylinder in IN defined by these
letters. Then we have

sρ(a0a1 . . . an−1∗) =
[
1 + min

06k6n
(ck − kρ)− max

06k6n
(ck − kρ)

]+
(1.13)

5



where
ck =

∑

06s<k
as (1.14)

for k = 0, 1 . . . n.

Proof. Note that the measure of the above cylinder can be interpreted as
the probability of the event E, defined by

∀k ∈ [0, n− 1] ξk = ak (1.15)

where ξ is a sturmian process of parameter ρ. We have constructed such a
process in the proof of Proposition-Definition 1.1, and we shall use this one.
Since bψ0c = 0 and ξk = bψk+1c − bψkc, the event E can be rewritten as

∀k ∈ [0, n] bψkc = ck (1.16)

Rewriting everything in terms of ψ0, we see that E is defined by

∀k ∈ [0, n] ck 6 ψ0 + kρ < ck + 1 (1.17)

which is equivalent to

max
06k6n

ck − kρ 6 ψ0 < 1 + min
06k6n

ck − kρ (1.18)

Since ψ0 is a uniform variable on [0, 1], the probability of E is simply the
length of the interval defined by the above formula (which is a subinterval
of [0, 1]), and the conclusion follows.

Corollary 1.3. Let I = {0, 1}. The maps ρ 7→ sρ and ρ 7→ ŝρ, from [0, 1]
to StN(I) and StZ(I) respectively, are continuous and injective.

Proof. Since sρ(1∗) = ρ, the first map is obviously injective. Moreover, for
every cylinder C, the function ρ→ sρ(C) is continuous, as we can see from
formula (1.13), so ρ → sρ is indeed continuous for the vague topology on
StN(I). Because of the natural isomorphism between StN(I) and StZ(I), the
same properties hold for the map ρ→ ŝρ.

Corollary 1.4. Let I = {0, 1}, and ρ ∈ [0, 1]. The support of sρ consists of
the points a = (a0a1a2 . . .) ∈ IN such that

∀n, s ∈ N
∣∣∣−sρ+

n+s−1∑

k=n

ak

∣∣∣ < 1 (1.19)

Proof. Define c0, c1 . . . according to (1.14). The condition a ∈ supp sρ is
equivalent to

∀s ∈ N sρ(a0 . . . as−1∗) > 0 (1.20)
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which can be rewritten as

∀s ∈ N ( max
06k6s

− min
06k6s

)(ck − kρ) < 1 (1.21)

or equivalently
∀n, t ∈ N

∣∣cn+t − cn − tρ
∣∣ < 1 (1.22)

which is precisely condition (1.19).

The points of supp sρ are called mechanical or sturmian sequences2. It
is generally considered that the history of sturmian sequences begins with
the article [MH]. They have been extensively studied since, mainly from the
combinatorial viewpoint. A summary of the main results (with bibliography)
can be found in [BeS, BS].

The next theorem gives another characterization of sturmian measures,
as a property of their support. In what follows, {0, 1}N is endowed with the
lexicographic order, and the “interval” [z1, z2] denotes the set of z such that
z1 6 z 6 z2.

Proposition 1.5. Let I = {0, 1}. For every α ∈ IN, there exists a unique
invariant measure µ ∈ StN(I) such that supp µ ⊂ [0α, 1α], and this measure
is sturmian. Conversely, the support of any sturmian measure is contained
in some interval of this form.

Proof. Let us prove first that the support of any sturmian measure sρ is con-
tained in some [0α, 1α]. Because of condition (1.1), we see that a necessary
condition for a cylinder a0 . . . an−1∗ to have nonzero mass is

bnρc 6
n−1∑

k=0

ak 6 dnρe (1.23)

In particular, if w = a1 . . . an−2 is some word on {0, 1}, the two cylinders
0w0∗ and 1w1∗ cannot have positive mass simultaneously. This means that
the support of sρ cannot contain two points of the form 0u and 1v with
u < v. This is equivalent to supp µ being contained in [0α, 1α] for some α.

Now let us prove that Sα = [0α, 1α] carries a unique invariant measure,
which is sturmian. Let K be the greatest invariant3 set contained in Sα:

K =
⋂

n>0

σ−nSα (1.24)

It is easily verified (using σSα = IN) that K is nonempty and compact, and
therefore, it carries at least one invariant measure by the Krylov-Bogoliubov

2Some authors reserve the adjective sturmian for nonperiodic sequences, i.e., when ρ
is irrational; see for example [BeS].

3We say that a subset K is invariant under the map T when TK ⊂ K, and strictly
invariant when TK = K.
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theorem [DGS]. We have to prove that K is uniquely ergodic, and prove
that its invariant measure is sturmian. To do this, we introduce an extension
(K, ς) of the dynamical system (K,σ), as follows. We take K = Z × K
endowed with the lexicographic order, and define

∀(n, z) ∈ Z×K ς
[
(n, z)

]
= (n+ z0, σz) (1.25)

(where z0 is the first digit of z). It is not difficult to verify that this map
ς : K → K is increasing4. Besides, it commutes with the “translation” τ
defined by

∀(n, z) ∈ Z×K τ
[
(n, z)

]
= (n+ 1, z) (1.26)

We will use the notation z + k as a shorthand for τ k(z).
For n > 0 and z ∈ K, define h−n (z) and h+

n (z) as the greatest and the
smallest integers, respectively, such that

z + h−n (z) 6 ςn(z) 6 z + h+
n (z) (1.27)

Obviously these numbers exist and verify

∀n ∈ N ∀z ∈ K 0 6 h−n (z) 6 h+
n (z) 6 n (1.28)

h+
n (z)− h−n (z) 6 1 (1.29)

Applying ςp to (1.27), we get

∀n, p ∈ N ∀z ∈ K ςp(z) + h−n (z) 6 ςn+p(z) 6 ςp(z) + h+
n (z) (1.30)

from which one easily deduces

∀n, p > 0 ∀z ∈ K h−n+p(z) > h−n (z) + h−p (z) (1.31)

h+
n+p(z) 6 h+

n (z) + h+
p (z) (1.32)

and all these inequalities imply that the sequences h−n (z)/n and h+
n (z)/n

have a common limit in [0, 1], which does not depend on z because

∀z, z′ ∈ K
∣∣h+
n (z)− h+

n (z′)
∣∣ 6 1 (1.33)

and we will note it ρ. The subadditive lemma also tells us that

∀n ∈ N ∀z ∈ K nρ− 1 6 h−n (z) 6 nρ 6 h+
n (z) 6 nρ+ 1 (1.34)

Now let z = (z0z1 . . . ) be an arbitrary point in K, and z = (0, z).
Applying (1.30) to z, we obtain

∀n, p ∈ N nρ− 1 6 h−n (z) 6
p+n−1∑

k=p

zk 6 h+
n (z) 6 nρ+ 1 (1.35)

4As in [AB], we use the terms increasing and decreasing as synonyms for nondecreasing
and nonincreasing. We call strictly increasing (resp. strictly decreasing) a map f such that
x < y implies fx < fy (resp. fx > fy).
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Therefore, if ξ = (ξn)n∈N is a stationary process whose support is contained
in Sα (and thus in K), we can apply the above relation with p = 0 and
z = ξ, and obtain

∀n ∈ N
∣∣∣−nρ+

n−1∑

k=0

ξk

∣∣∣ 6 1 a.s. (1.36)

which is not exactly what we want. . . we want a strict inequality. This
will obviously be the case when nρ /∈ Z, but the case nρ ∈ Z requires an
additional argument.

Suppose nρ ∈ Z; then for every z ∈ K, we have h−n (z) = nρ or h+
n (z) =

nρ (possibly both). In either case, all the numbers

−nρ+

p+n−1∑

k=p

zk (1.37)

have the same sign when p runs over N, and consequently

∀s ∈ N ∀z ∈ K
∣∣∣−nsρ+

ns−1∑

k=0

zk

∣∣∣ =
s−1∑

`=0

∣∣∣−nρ+
n−1∑

k=0

z`n+k

∣∣∣ (1.38)

Applying this identity to ξ and taking expectations, we obtain

∀s ∈ N 1 > E
[∣∣∣−nsρ+

ns−1∑

k=0

ξk

∣∣∣
]

= sE

[∣∣∣−nρ+
n−1∑

k=0

ξk

∣∣∣
]

(1.39)

by (1.36), and therefore

−nρ+
n−1∑

k=0

ξk = 0 a.s. (1.40)

So we have proved
∣∣∣−nρ+

n−1∑

k=0

ξk

∣∣∣ < 1 a.s. (1.41)

for all values of n, which means that ξ is a sturmian process of parameter
ρ.

Corollary 1.6. The support of any sturmian measure is uniquely ergodic.
In particular, every sturmian measure is ergodic.
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1.2 Topical functions

Let E = Rn (with n > 1) be the usual n-dimensional affine space, endowed
with the partial order defined by

x 6 y ⇐⇒ x1 6 y1 . . . and xn 6 yn (1.42)

when x = (x1 . . . xn) and y = (y1 . . . yn), and dn the “max” distance on Rn:

dn
(
x,y) = ‖y− x‖ = max

i
|yi − xi| (1.43)

We also define the vector un = (1, . . . 1) ∈ ~E, and d̃n is the distance on the
quotient space Ẽ = E/Run:

d̃n(x,y) = inf
t∈R
‖y − x− tun‖ (1.44)

= 1
2

[
max
i

(yi − xi)−min
i

(yi − xi)
]

(1.45)

We will omit the subscripts in dn, d̃n and un when obvious from the context.

Definition 1.7. Let n,m > 1, and Ω be a subset of Rn which is invariant by
the translation group Run. An application f : Ω→ Rm will be called topical
if it is increasing w.r.t. the partial orders on Rn and Rm, and verifies

∀x ∈ Ω ∀t ∈ R f(x + tun) = f(x) + tum (1.46)

The set of all topical applications Ω→ Rm will be noted Top(Ω,Rm). Real-
valued topical applications (that is, when m = 1) will be called topical forms.

Because of the following proposition, we can assume, without any loss
of generality, that topical maps are defined on the whole space Rn.

Lemma 1.8. Every topical function defined on some Run-invariant subset
Ω ⊂ Rn can be extended to a topical function defined on Rn.

Proof. We omit the trivial case Ω = ∅. Let p ∈ Top(Ω,Rm), and define

∀x ∈ Rn p̄(x) = sup
{
p(y) : y 6 x, y ∈ Ω

}
(1.47)

(this is the supremum relatively to the partial order on Rm). It is easily
verified that p̄ : Rn → Rm is well-defined and topical, and coincides with p
on Ω. (Of course, p may have other extensions.)

Proposition 1.9. Every topical map f ∈ Top(Rn,Rm) is 1-lipschitz (“non-
expansive”) w.r.t. the distances dn and dm on Rn and Rm. In particular, a
topical map is always continuous.
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Proof. Let x,y ∈ Rn. Note that D = dn(x,y) is the smallest real such that

x−Dun 6 y 6 x +Dun (1.48)

Since f is topical, this implies

fx−Dum 6 fy 6 fx +Dum (1.49)

which is equivalent to dm(fx, fy) 6 D = dn(x,y). So f is indeed 1-lipschitz
(and therefore continuous).

Remarks. This is a classical result; conversely, it is also true that a
1-lipschitz map p : Rn → Rm which verifies (1.46) is topical [CT]. This
equicontinuity property of topical maps easily implies the following result.

Corollary 1.10. Let Ω be a Run-invariant nonempty subset of Rn. The
topology of pointwise convergence on Top(Ω,Rm) coincides with the topology
of uniform convergence on bounded subsets of Ω, and is always metrizable.
For this topology, the quotient space Top(Ω,Rm)/Rm, that is, the set of
topical maps modulo the addition of a constant, is compact.

Definition 1.11. A subset Ω ⊂ Rn will be called a tube if it is nonempty,
invariant by the translation group Run, and such that the quotient Ω/Run
is compact. The diameter of Ω/Run in the quotient space (Rn/Run, d̃n) will
be called the width of Ω and noted wd(Ω).

As a particular case, note that lines parallel to u (which will be called u-
lines for brevity) are tubes, and their width is zero. A more typical example
is the following: in R2, the closed band

Ωa,b =
{

(x, y) ∈ R2 : a 6 y − x 6 b
}

(1.50)

(with a, b ∈ R and a 6 b) is a tube of width (b− a)/2.

Definition 1.12. Let E = Rn, E′ = Top(E,R). For x,y ∈ E and α, β ∈
E′, we define the Gram symbol as follows:

{
α x
β y

}
= (α− β) x − (α− β) y (1.51)

The above symbol is a continuous function of (α, β,x,y); it is also well-
defined (and continuous) for x,y ∈ E/Ru and α, β ∈ E ′/R.

To conclude this section, we mention some useful properties of topical
forms. Topical forms play a role similar to linear forms in linear algebra. For
instance, the n coordinate functions on E = Rn are not only linear forms,
but also topical forms.
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It is possible, and useful, to express the order and distance on E in terms
of topical forms; the reader will easily convince himself that

x 6 y ⇐⇒ ∀α ∈ E′ αx 6 αy (1.52)

d(x,y) = max
α∈E′

|αy − αx| (1.53)

d̃(x,y) =
1

2
· max
α,β∈E′

{
α x
β y

}
(1.54)

As a consequence of (1.54), note that for any α, β ∈ E ′, the oscillation of
α− β on a tube Ω is bounded by 2 wd(Ω).

Topical forms also allow us to define the dual of a topical map: for every
topical function T : Rn → Rm, we define the function T ′ : (Rm)′ → (Rn)′ by
T ′ : α 7→ α ◦ T .

1.3 Conjugate-linear and max-plus functions

Conjugate-linear maps are a remarkable subset of Top(Rn,Rm) which is con-
structed as follows. Let A = (aij)16i6m,16j6n be a matrix with nonnegative
real entries, with no line being identically zero, so that A defines a map from
(R∗+)n to (R∗+)m. Now let κ > 0 and define the map

cl(A, κ) : Rn −→ Rm
(x1, . . . xn) 7−→ (y1, . . . ym)

(1.55)

by the formula

∀i ∈ [1,m] expκyi =
n∑

j=1

aij expκxj (1.56)

It is plain that cl(A, κ) ∈ Top(Rn,Rm) for every κ > 0. Such a map will be
called κ-linear (or simply conjugate-linear, if we do not care about the value
of κ).

Max-plus functions are another important class of topical maps, and
they can be seen as limits of κ-linear maps (more on this later). They are
constructed as follows: let A = (aij)16i6m,16j6n be an array of elements of
R ∪ {−∞} (such an array is called a max-plus matrix), with no line being
identically −∞. Then A defines a map

mp(A) : Rn −→ Rm
(x1, . . . xn) 7−→ (y1, . . . ym)

(1.57)

by the formula
∀i ∈ [1,m] yi = max

16j6n
(aij + xj) (1.58)
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Such a map is called a max-plus map. Obviously mp(A) ∈ Top(Rn,Rm), and
it is easily verified that mp(A) is the limit of the κ-linear maps (xi) 7→ (yκi )
defined by

∀i ∈ [1,m] expκyκi =
∑

16j6n
exp κaij expκxj (1.59)

when κ → +∞. Let us finally mention, without proof, a well-known char-
acterization of max-plus functions:

Proposition 1.13. A topical map f : Rn → Rm is max-plus if and only if

∀x,y ∈ Rn f(x ∨ y) = f(x) ∨ f(y) (1.60)

The reader might consult [GG] for a more complete description of the
class of topical functions and its remarkable subclasses (conjugate-linear,
max-plus, etc.).

1.4 Properties of topical IFS

A topical IFS is simply a collection T = (Ti)i∈I of topical maps from some Rn
into itself. Like any IFS (Iterated Function System), it naturally defines an
action of the free monoid I∗ on E = Rn. But it also acts on E ′ = Top(E,R)
by duality. It is convenient to define both the left- and right-action of I∗ on
E and E′, as follows:

∀w ∈ I∗ ∀x ∈ E w B x = x C ¬w = Tw(x) (1.61)

∀α ∈ E′ ¬w B α = α C w = T ′w(α) (1.62)

where ¬w denotes the mirror word of w, and Tw is defined by

∀m > 0 ∀i0, i1 . . . im−1 ∈ I Ti0...im−1 = Ti0 ◦ · · · ◦ Tim−1 (1.63)

and Te = Id, where e denotes the empty word. Note that we have, by
definition of T ′w,

∀α ∈ E′ ∀w ∈ I∗ ∀x ∈ E (α C w) x = α (w B x) (1.64)

Obviously, I∗ also acts on the quotient spaces E/Ru and E ′/R, and we will
also use the symbols B and C for this.

This framework is a bit too general, and we will need additional con-
straints on the IFS to be able to say nontrivial things about its dynamic
behaviour; among other things, we want I to be finite.

Definition 1.14. Let I be a nonempty finite set, and T = (Ti)i∈I a topical
IFS on Rn. This IFS will be called tubular if it admits an invariant tube,
i.e., if there exists a tube Ω such that

∀i ∈ I Ti(Ω) ⊂ Ω (1.65)
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The IFS will be called squeezing if it is tubular and verifies

∀i ∈ I ∀x,y ∈ Rn/Run x 6= y =⇒ d̃(Tix, Tiy) < d̃(x,y) (1.66)

Not every topical map has an invariant tube — this is a fortiori true
for iterated function systems, of course. Tubularity is not implied by (1.66)
either; for example, the κ-linear map defined by (x, y) 7→ (x′, y′), with

(
expκx′

expκy′

)
=

(
1 1
0 1

)(
expκx
expκy

)
(1.67)

does verify (1.66), but has no invariant tube, so it does not define a squeezing
IFS. It is also essential that all the functions of the IFS have the same
invariant tube; for example, each of the applications

T0 : (x, y) 7→ (y + 1, x− 1) (1.68)

T1 : (x, y) 7→ (y − 1, x+ 1) (1.69)

has an invariant tube, but there exists no tube which is invariant by both
T0 and T1, so the IFS (T0, T1) is not tubular.

On the other hand, once an IFS has an invariant tube, it has lots of
them; more precisely:

Lemma 1.15. Suppose T is a tubular IFS on Rn. Then every tube of Rn
is contained in an invariant tube.

Proof. Let Ω0 be an invariant tube, and Υ an arbitrary tube. For every
s ∈ R+, the tube

Ωs =
{
x ∈ Rn : dn(x,Ω0) 6 s

}
(1.70)

is invariant by T, and it will contain Υ when s is big enough.

Proposition 1.16. Let T = (Ti)i∈I be a squeezing IFS on E = Rn, and note
E′ = Top(E,R). Then there exists a unique function Q ∈ C(IN, E/Ru) and
a unique Q′ ∈ C(IN, E′/R) such that

∀i ∈ I ∀z ∈ IN Q(iz) = i B Q(z) (1.71)

Q′(iz) = i B Q′(z) (1.72)

Furthermore, for any z = (z0z1z2 . . .) in IN, any bounded sequence (xm)m∈N
of elements of E/Ru and any sequence (αm)m∈N of elements of E′/R, we
have

z0 . . . zm−1 B xm → Q(z) (1.73)

z0 . . . zm−1 B αm → Q′(z) (1.74)

when m→∞.
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Remarks. Equations (1.71) and (1.72) can equivalently be rewritten as

∀w ∈ I∗ ∀z ∈ IN Q(wz) = w B Q(z) (1.75)

Q′(wz) = w B Q′(z) (1.76)

In other words, Proposition 1.16 asserts that the left action of I∗ on E/Ru
and on E′/R are both semiconjugate to the standard left action of I∗ on IN.

An important special case of Proposition 1.16 is when I is a singleton,
i.e., when the IFS consists of a single map T . Since IN is a singleton, the
“functions” Q and Q′ are simply two points, in E/Ru and E ′/R respectively.
What Proposition 1.16 asserts in this case is that T and its dual T ′ have
unique fixed points in E/Ru and E ′/R respectively, given by Q and Q′

respectively, and which attract the whole space (i.e., every orbit converges
to the fixed point). This will be used in §3.3.

To prove the proposition, we first need a lemma.

Lemma 1.17. Let T = (Ti)i∈I be a squeezing IFS on E = Rn, with Ω an
invariant tube. Then we have

wd(w B Ω)→ 0 when |w| → ∞ (1.77)

in the sense that, for every ε > 0, there exists L with the property that
wd(w B Ω) 6 ε for every word w ∈ I∗ such that |w| > L.

Proof of the lemma. Let Ω̃ = Ω/Ru, and ε > 0 arbitrary. By a compacity
argument, there exists k < 1 such that

∀i ∈ I ∀x,y ∈ Ω̃ d̃(x,y) > ε =⇒ d̃(Tix, Tiy)

d̃(x,y)
6 k (1.78)

from which we deduce, by induction on |w|,

∀w ∈ I∗ ∀x,y ∈ Ω̃ d̃(w B x, w B y) 6 max
[
ε, k|w|d̃(x,y)

]
(1.79)

In particular, we have

∀w ∈ I∗ wd(w B Ω) 6 max
[
ε, k|w|wd(Ω)

]
(1.80)

and therefore

∀w ∈ I∗ |w| > log
(
wd(Ω)/ε

)

log k−1
=⇒ wd(w B Ω) 6 ε (1.81)

and the lemma is proved.

Proof of the proposition. Let Ω be an invariant tube, and Ω̃ = Ω/Ru. Let
z = (z0z1z2 . . .) ∈ IN. We remark that the intersection

QΩ(z) =
⋂

m∈N
z0 . . . zm−1 B Ω̃ (1.82)
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is a decreasing intersection of nonempty compact subsets of Ẽ = E/Ru, and
thus is compact and nonempty. Furthermore, it has diameter 0 by Lemma
1.17, so it is a singleton; note QΩ(z) its unique element.

The map Ω 7→ QΩ(z) is obviously increasing, so if Ω and Υ are two
invariant tubes, then QΩ(z) and QΥ(z) are both contained in QΩ∪Υ(z). Since
these sets are all singletons, they must be equal. Therefore, QΩ(z) does not
depend on the invariant tube Ω, and will be noted Q(z).

Note that the function Q takes its values in Ω̃, which is compact; and
for any z ∈ IN, the point y = Q(z) is the unique element of Ω̃ such that

∀m ∈ N y ∈ z0 . . . zm−1 B Ω̃ (1.83)

The set of (z, y) ∈ IN × Ω̃ defined by the above condition is a closed subset
of IN × Ω̃, and it is the graph of Q. By the closed graph theorem [AB], this
implies the continuity of the map Q.

If (xm)m∈N is any bounded sequence of elements of E/Ru, then it is
contained in some Ω̃ where Ω is a tube, which can be supposed invariant
because of Lemma 1.15. We then have

{
Q(z)

}
=
⋂

m∈N
z0 . . . zm−1 B Ω̃ (1.84)

so the sequence z0 . . . zm−1 B xm, which takes its values in Ω̃ (which is
compact) can only have one limit value, namely Q(z); so it converges to
Q(z), and we have (1.73).

The definition of Q′ is slightly simpler, because it does not require an
invariant tube; consider

Q′(z) =
⋂

m∈N
z0 . . . zm−1 B (E′/R) (1.85)

Here again we have a decreasing intersection of nonempty compact subsets of
E′/R, so Q′(z) is compact and nonempty. We claim that Q′(z) is a singleton.
Indeed, let α, β be two elements of Q′(z). This means that for every m ∈ N,
there exist αm, βm ∈ E′/R such that

α = z0 . . . zm−1 B αm (1.86)

β = z0 . . . zm−1 B βm (1.87)

Now let x,y be arbitrary elements of E/Ru, and let Ω be an invariant tube
such that Ω̃ contains x and y. We have

{
α x
β y

}
=

{
z0 . . . zm−1 B αm x
z0 . . . zm−1 B βm y

}
=

{
αm zm−1 . . . z0 B x
βm zm−1 . . . z0 B y

}
(1.88)

and consequently
∣∣∣∣
{
α x
β y

}∣∣∣∣ 6 2 wd(zm−1 . . . z0 B Ω) (1.89)
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But the right-hand side tends to 0 when m→∞, so we have
{
α x
β y

}
= 0 (1.90)

and this holds for all x,y ∈ E/Ru, so α = β. We have proved that Q′(z) is
a singleton, and we note Q′(z) its unique element. The continuity of Q′ and
the limit (1.74) are proved with the exact same arguments as for Q, using
the closed graph theorem and the intersection (1.85).

From the limits (1.73) and (1.74) it is easily verified that (1.71) and
(1.72) hold. Finally, we have to prove that Q and Q′ are the only continuous
functions verifying the functional equations (1.71) and (1.72). Suppose that
Q1 ∈ C(IN, E/Ru) is a solution of (1.71). Then we would have, for all
z ∈ IN,

Q1(z) = z0 . . . zm−1 B Q1(σmz)→ Q(z) (1.91)

by (1.73), since the sequence Q1(σmz) is bounded; so Q1(z) = Q(z) for all
z. The same argument can be applied to equation (1.72).

1.5 Orientation-preserving IFS on R2

A topical map T : E → E (with E = Rn) induces a quotient map T̃ on the
quotient space Ẽ = E/Ru, which is homeomorphic to Rn−1. This is why
the case n = 2 is somehow particular: the quotient space can be endowed
with a natural ordering. To be more precise, there are two natural orderings
on R2/Ru; we will choose the ordering, noted 4, such that the bijection

(R2/Ru,4) → (R,6)
(x, y) 7→ y − x (1.92)

is an isomorphism of ordered sets; equivalently, we can consider 4 as a
preorder on R2, defined by

(x1, y1) 4 (x2, y2) ⇐⇒ y1 − x1 6 y2 − x2 (1.93)

This preorder can equivalently be defined by

∀x,y ∈ R2 x 4 y ⇐⇒
{
α0 x
α1 y

}
> 0 (1.94)

where α0, α1 are the first- and second-coordinate functions.
Now (assuming n = 2) we can ask whether the quotient map T̃ : Ẽ → Ẽ

is increasing. If this is the case, the map T will be called orientation-
preserving. If T̃ is decreasing, T will be called orientation-reversing. There
exist topical maps of R2 which are neither orientation-preserving nor orien-
tation-reversing, for example the map

(x, y) 7→
(
min(x, y),max(x, y)

)
(1.95)
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but they are never injective. The reader will convince himself that, at least
for injective maps, our definitions of “orientation-preserving” and “orienta-
tion-reversing” coincide with the usual ones. He will also verify that a max-
plus map of R2 is always orientation-preserving or orientation-reversing.

Here are some useful results on orientation-preserving maps.

Lemma 1.18. Let T : R2 → R2 be an orientation-preserving topical map.
Assume that T̃ has a fixed point p ∈ R2/Ru. Then for every x ∈ R2/Ru,
the image T̃x is between x and p.

Proof. Suppose for instance x < p. Since T̃ is increasing, this implies T̃x <
p. On the other hand, d̃(T̃x,p) 6 d̃(x,p), which is possible only if T̃x 4 x.
So we have T̃x ∈ [p,x]. The other case, x 4 p, is similar.

Corollary 1.19. Suppose that T ∈ Top(R2,R2) is orientation-preserving.
A convex tube Ω ⊂ R2, i.e., a set of the form (1.50), is invariant by T iff
Ω̃ = Ω/Ru contains a fixed point of T̃ (or, in other words, iff Ω contains an
invariant u-line).

Proposition 1.20. Let I = {0, 1}, and T = (Ti)i∈I be a squeezing IFS on
E = R2 such that the quotient maps T̃i are strictly increasing on (Ẽ,4). The
set IN is endowed with the lexicographic order. Then we have the following.

1. The map Q : IN → Ẽ is increasing (resp. strictly increasing) iff Q(0) 4
Q(1) and Q(01) 4 Q(10) (resp. Q(0) ≺ Q(1) and Q(01) ≺ Q(10)).

2. The functions Q′(t) − Q′(s) : Ẽ → R are increasing (resp. strictly
increasing) for every s, t ∈ IN such that s < t iff the two functions
Q′(1) − Q′(0) and Q′(10) − Q′(01) are increasing (resp. strictly in-
creasing).

Proof. We start with part 1. Assume that Q verifies Q(0) 4 Q(1) and
Q(01) 4 Q(10). Let Qm ∈ C(IN, E/Ru) be the sequence of functions defined
by

∀z ∈ IN Q0(z) = Q(z0) (1.96)

Qm+1(z) = z0 B Qm(σz) (∀m ∈ N) (1.97)

where z0 is the first digit of z. A simple induction on m shows that all the
Qm coincide with Q on the points 0 and 1, and are increasing. By (1.73),
they converge pointwise to Q; therefore, Q is also increasing.

Now suppose we have Q(0) ≺ Q(1) and Q(01) ≺ Q(10). We know from
the previous paragraph that Q is increasing. To prove that Q is strictly
increasing, take z1, z2 ∈ IN with z1 < z2. This means that we can write
z1 = w0t1 and z2 = w1t2 for some w ∈ I∗ and t1, t2 ∈ IN. From Q(01) ≺
Q(10) we deduce

Q(w01) = w B Q(01) ≺ w B Q(10) = Q(w10) (1.98)
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and consequently

Q(z1) 4 Q(w01) ≺ Q(w10) 4 Q(z2) (1.99)

so Q is indeed strictly increasing.
Part 2 is similar. Assume Q(1)−Q(0) and Q(10)−Q(01) are increasing,

and let Q′m ∈ C(IN, E′/R) be the sequence of functions defined by

∀z ∈ IN Q′0(z) = Q′(z0) (1.100)

Q′m+1(z) = z0 B Q′m(σz) (∀m ∈ N) (1.101)

Here again, a simple induction shows that the Q′m coincide with Q′ on the
points 0 and 1, and that Q′m(z2) − Q′m(z1) is increasing for all z1, z2 ∈ IN
such that z1 6 z2. By (1.74), these functions converge pointwise to Q′, so
Q′(z2)−Q′(z1) is increasing whenever z1 6 z2.

Now suppose that Q′(1)−Q′(0) and Q′(10)−Q′(01) are strictly increas-
ing, and let z1, z2 ∈ IN with z1 < z2. We can write z1 = w0t1 and z2 = w1t2
for some w ∈ I∗ and t1, t2 ∈ IN. It is easily shown that Q′(w10)−Q′(w01)
is strictly increasing. So we can write Q′(z2) − Q′(z1) as a sum of three
functions,

Q′(z2)−Q′(z1) =
[
Q′(z2)−Q′(w10)

]
+
[
Q′(w10)−Q′(w01)

]

+
[
Q′(w01)−Q′(z1)

] (1.102)

These three functions are increasing, and one of them (the middle one) is
strictly increasing, so Q′(z2)−Q′(z1) is strictly increasing.

1.6 Average height

Let E = Rn, and Ω ⊂ E be an invariant tube for the topical map T : E → E.
We define the lower displacement h−Ω(T ) and upper displacement h+

Ω(T ) of
the map T on the tube Ω as the greatest (resp. smallest) reals such that

∀x ∈ Ω x + h−Ω(T )u 6 Tx 6 x + h+
Ω(T )u (1.103)

It is easily verified that these numbers exist, and verify

h−Ω(T ) = min
α∈E′

h−α,Ω(T ) (1.104)

h+
Ω(T ) = max

α∈E′
h+
α,Ω(T ) (1.105)

where

h−α,Ω(T ) = min
x∈Ω

αTx− αx (1.106)

h+
α,Ω(T ) = max

x∈Ω
αTx− αx (1.107)
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and this implies, in particular,

0 6 h+
Ω(T )− h−Ω(T ) 6 4 wd(Ω) (1.108)

Let us finally notice that if Ω is invariant by T,U ∈ Top(E,E), then

h−Ω(TU) > h−Ω(T ) + h−Ω(U) (1.109)

h+
Ω(TU) 6 h+

Ω(T ) + h+
Ω(U) (1.110)

and similarly, for any α ∈ E ′ we have

h−α,Ω(TU) > h−α,Ω(T ) + h−α,Ω(U) (1.111)

h+
α,Ω(TU) 6 h+

α,Ω(T ) + h+
α,Ω(U) (1.112)

and now we are able to state the result.

Proposition-Definition 1.21. Let T = (Ti)i∈I be a tubular IFS on E =
Rn. For every ξ ∈ St(I), there exists one real number H(ξ;T), the average
height of ξ, such that, for every invariant tube Ω, we have

∀m ∈ N E
[
h−Ω(Tξm−1...ξ0)

]
6 mH(ξ;T) 6 E

[
h+

Ω(Tξm−1...ξ0)
]

(1.113)

The function H : St(I) → R is affine and continuous. Moreover, for any
topical form α ∈ E′ we have the inequality

∀m ∈ N E
[
h−α,Ω(Tξm−1...ξ0)

]
6 mH(ξ;T) 6 E

[
h+
α,Ω(Tξm−1...ξ0)

]
(1.114)

and the limits

H(ξ;T) = lim
m→∞

E
[
h−Ω(Tξm−1 ...ξ0)

]

m
= lim

m→∞
E
[
h+

Ω(Tξm−1 ...ξ0)
]

m
(1.115)

= lim
m→∞

E
[
h−α,Ω(Tξm−1 ...ξ0)

]

m
= lim

m→∞

E
[
h+
α,Ω(Tξm−1 ...ξ0)

]

m
(1.116)

Proof. Let Ω be an invariant tube, and ξ ∈ St(I). From the inequalities
(1.109) and (1.110), it is plain that the sequences

a−m = E
[
h−Ω(Tξm−1 ...ξ0)

]
(1.117)

a+
m = E

[
h+

Ω(Tξm−1 ...ξ0)
]

(1.118)

are superadditive and subadditive, respectively, and in O(m), so the se-
quences (a−m/m) and (a+

m/m) both have limits in R, which must be equal
because of the inequality

0 6 a+
m − a−m 6 4 wd(Ω) (1.119)
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derived from (1.108). Noting HΩ(ξ) the common limit, we have

HΩ(ξ) = lim
m→∞

a−m
m

= sup
m>0

a−m
m

= lim
m→∞

a+
m

m
= inf

m>0

a+
m

m
(1.120)

so (1.113) and (1.115) are verified for the tube Ω. Now, we have to prove
that HΩ(ξ) does not depend on Ω. Indeed, if Υ is another invariant tube,
then we have

∀w ∈ I∗ h−Ω∪Υ(Tw) 6 h−Ω(Tw) 6 h+
Ω(Tw) 6 h+

Ω∪Υ(Tw) (1.121)

which implies HΩ(ξ) = HΩ∪Υ(ξ); reversing the roles of Ω and Υ, we get
HΩ(ξ) = HΥ(ξ). So we can drop the subscript, and simply note H(ξ) the
number we have defined.

For any α ∈ E′, we can apply similar arguments to the sequences

b−m = E
[
h−α,Ω(Tξm−1 ...ξ0)

]
(1.122)

b+m = E
[
h+
α,Ω(Tξm−1 ...ξ0)

]
(1.123)

and we see that the sequences (b−m/m) and (b+
m/m) have limits in R; because

of the inequalities

∀m ∈ N a−m 6 b−m 6 b+m 6 a+
m (1.124)

these limits must be equal to H(ξ), so that

H(ξ) = lim
m→∞

b−m
m

= sup
m>0

b−m
m

= lim
m→∞

b+m
m

= inf
m>0

b+m
m

(1.125)

and we have (1.114) and (1.116).
Note Hm(ξ) = E

[
h−Ω(Tξm−1...ξ0)/m

]
. Because of (1.113) and (1.119), we

have

∀m > 0 ∀ξ ∈ St(I) 0 6 (H −Hm)(ξ) 6 4 wd(Ω)

m
(1.126)

so the functions Hm : St(I) → R converge uniformly to H on St(I); since
they are affine and continuous, so is their limit H.

An important special case of the above definition is the case of a tubular
IFS consisting of a unique function: T = (T ). Then St(I) is a singleton,
and H(· ;T) is a simple number, which will be noted h(T ) and called the
average height (or average displacement) of T . It is defined for any topical
map T having an invariant tube5, and for any invariant tube Ω and any
topical form α we obviously have

h−Ω(T ) 6 h−α,Ω(T ) 6 h(T ) 6 h+
α,Ω(T ) 6 h+

Ω(T ) (1.127)

h(T ) = lim
n→∞

n−1h±Ω(T n) = lim
n→∞

n−1h±α,Ω(T n) (1.128)

5Such a map will, obviously, be called a tubular map; it is possible to prove that a
topical map is tubular if and only if it admits an invariant u-line.
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by specialization of Proposition-Definition 1.21. Here are two important
properties of h, to be used later on (they follow easily from the definitions).
For any tubular IFS T = (Ti)i∈I and for any nonempty word w ∈ I∗, we
have

H(w];T) =
h(T¬w)

|w| (1.129)

Besides, for conjugate-linear tubular operators we have the relation

h(cl
(
A, κ)

)
= κ−1 log %(A) (1.130)

where %(A) denotes the spectral radius of the matrix A.
Comments. This notion of “average height” is not a new concept. We

have chosen to define it in a context which requires the tubularity of T in
an essential way. Was it the right thing to do?

Other definitions exist in the literature [Ba, Vin], which do not require
any tubularity hypothesis; for any topical IFS T = (Ti)i∈I with I finite, and
ξ = (ξk)k∈N stationary process on I, one defines

H+(ξ;T) = lim
m→∞

m−1E
[
γ+(x C ξ0 . . . ξm−1)

]
(1.131)

where γ+ is the topical form defined by γ+(x1, . . . xn) = max xi, and x is
any point in Rn. One can prove [Vin] that the limit always exist, and does
not depend on x. If we make the additional assumption that ξ is ergodic,
then for any x ∈ Rn we have

m−1γ+(x C ξ0 . . . ξm−1) −→ H+(ξ;T) a.s. (1.132)

when m→∞, as a consequence of Kingman’s subadditive ergodic theorem.
If the IFS is tubular, then its behaviour is essentially unidimensional, as all
the coordinates of x C ξ0 . . . ξm−1 differ by bounded quantities, and the limit
in (1.131) obviously coincides with the average height as we have defined it.

If the IFS is not tubular, then (1.131) gives incomplete information
about its dynamics, as the various coordinates of x C ξ0 . . . ξm−1 can tend
to infinity at different speeds; choosing another topical form, in particu-
lar γ−(x1, . . . xn) = minxi, would give us another “average height” which
would probably be noted H−(ξ;T), and would be different in general. An-
other problem is that H+(ξ;T) will no longer depend continuously on ξ.
Because of this, the study of H+ as a functional in ξ is probably hopeless;
this is why we have deliberately limited ourselves to the tubular case, where
all this pathology disappears.

2 Mañé’s lemma and its applications

2.1 Mañé’s lemma

The following proposition and its immediate corollaries will subsequently
be referred to as Mañé’s lemma. Indeed, a related lemma appears in [M2]
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in the context of lagrangian flows; a more comprehensive exposition (and
proof) of this result can be found in [Fat]. Several more or less related
“Mañé’s lemmas” have appeared since in the literature [B1, B2, CLT] for
discrete-time hyperbolic dynamics. Similar results can also be found in the
literature on infinite-horizon optimal control; see for example Chapter 5 in
[CHL], in particular Theorem 5.2 page 98.

Proposition 2.1. Let T0, . . . Tm−1 ∈ Top(Rn,Rn) and Γ ∈ Top(Rm,R),
with m,n > 1. Then there exist λ ∈ R and ψ ∈ Top(Rn,R) such that

∀x ∈ Rn ψx = −λ+ Γ(ψT0x, . . . ψTm−1x) (2.1)

Proof. Let E = Rn and E′ = Top(E,R). To each topical form ψ ∈ E ′,
associate the function Aψ : E → R defined by

∀x ∈ E (Aψ) x = Γ(ψT0x, . . . ψTm−1x) (2.2)

It is obvious from the above formula that Aψ is topical, so A is an application
from E′ into itself. It is not difficult to see that A : E ′ → E′ is continuous.
Moreover, it commutes with the addition of a constant:

∀ψ ∈ E′ ∀λ ∈ R A(ψ + λ) = Aψ + λ (2.3)

so there exists a (continuous) quotient map Ã : E′/R → E′/R. But E′/R
is a convex compact subspace of C(E)/R, which is a Fréchet space (for the
topology of uniform convergence on bounded subsets of E), so we can apply
the Leray-Schauder-Tychonov fixed point theorem [AB], which tells us that
Ã has some fixed point ψ̃ ∈ E′/R. If ψ ∈ E′ is some lift of this fixed point,
then we have ψ = −λ+Aψ for some constant λ ∈ R.

Corollary 2.2. Let I be a nonempty finite set, and T = (Ti)i∈I a topical
IFS on Rn. Then there exist λ−, λ+ ∈ R and ψ−, ψ+ ∈ Top(Rn,R) such
that

∀x ∈ Rn ψ−x = −λ− + min
i∈I

ψ−(Tix) (2.4)

ψ+x = −λ+ + max
i∈I

ψ+(Tix) (2.5)

Proof. Assume I = {0, . . . m−1}, and apply Proposition 2.1 with the topical
forms Γ(xi) = minxi and Γ(xi) = maxxi.
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2.2 A characterization of maximizing processes

Obviously, if (λ−, ψ−) and (λ+, ψ+) are solutions of (2.4) and (2.5), then
we have

∀w ∈ I∗ ∀x ∈ Rn ψ−(x C w) > ψ−x + |w| λ− (2.6)

ψ+(x C w) 6 ψ+x + |w| λ+ (2.7)

and in particular, if Ω is an invariant tube,

∀w ∈ I∗ h−
ψ−,Ω(T¬w) > λ− (2.8)

h+
ψ+,Ω

(T¬w) 6 λ+ (2.9)

The words w ∈ I∗ which achieve equality in either (2.8) or (2.9) will be
called admissible words. This is mostly a technical concept (though a very
useful one) as its definition depends on a lot of context: a solution of either
(2.4) and (2.5), and an invariant tube. More precisely:

Definition 2.3. Let T = (Ti)i∈I be a tubular IFS on Rn, Ω an invariant
tube, and (λ+, ψ+) a solution of (2.5). We define the set of (max, ψ+,Ω)-
admissible words as

Adm+(ψ+,Ω) =
{
w ∈ I∗ : ∃x ∈ Ω ψ+ (x C w) = ψ+x + |w| λ+

}
(2.10)

=
{
w ∈ I∗ : h+

ψ+,Ω
(T¬w) = |w| λ+

}
(2.11)

Similarly, if (λ−, ψ−) is a solution of (2.4), we define the set of (min, ψ−,Ω)-
admissible words as

Adm−(ψ−,Ω) =
{
w ∈ I∗ : ∃x ∈ Ω ψ− (x C w) = ψ−x + |w| λ−

}
(2.12)

=
{
w ∈ I∗ : h−

ψ−,Ω(T¬w) = |w| λ−
}

(2.13)

Let us suppose that the context is given (that is, we fix the invariant
tube Ω, as well as a topical form ψ which verifies either the min or the max
form of Mañé’s equation), so we can simply talk of “admissible words”. It
is not difficult to verify that:

• The empty word e is admissible;

• Every subword of an admissible word is admissible;

• For every admissible word w, there exists a letter i such that wi is
admissible.

These properties immediately imply that there exist admissible words of
arbitrary length, and suggest a way to extend the notion of admissibility to
infinite sequences: an infinite sequence of letters is admissible iff all its finite
subsequences are admissible words.
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In particular, the right-infinite sequence (ai)i∈N ∈ IN is admissible iff all
the words a0 . . . am are admissible, whereas the bi-infinite sequence (ai)i∈Z ∈
IZ is admissible iff all the words a−m . . . a0 . . . am are admissible. These sub-
sets of IN and IZ will be noted Adm±N (ψ,Ω) and Adm±Z (ψ,Ω) respectively.
An easy compacity argument shows that they are non-empty. It is plain that
Adm±N (ψ,Ω) is an invariant compact subset of (IN, σ), whereas Adm±Z (ψ,Ω)
is a strongly invariant compact subset of (IZ, σ); moreover, the latter can
be seen as the projective limit (a.k.a. natural extension) of the former.

Theorem A. Let T = (Ti)i∈I be a tubular IFS on Rn, and let (λ−, ψ−)
and (λ+, ψ+) be arbitrary solutions of (2.4) and (2.5) respectively. Then we
have

λ− = min
ξ∈St(I)

H(ξ) (2.14)

λ+ = max
ξ∈St(I)

H(ξ) (2.15)

Moreover, stationary processes which attain the extrema of H are charac-
terized as follows:

∀ξ ∈ StN(I) H(ξ) = λ− ⇐⇒ supp ξ ⊂ Adm−N (ψ−,Ω) (2.16)

H(ξ) = λ+ ⇐⇒ supp ξ ⊂ Adm+
N (ψ+,Ω) (2.17)

Besides, for every word w ∈ I∗ we have

|w| λ− 6 h(T¬w) 6 |w| λ+ (2.18)

whereas

w ∈ Adm−(ψ−,Ω) =⇒ h−Ω(T¬w) 6 |w| λ− (2.19)

w ∈ Adm+(ψ+,Ω) =⇒ h+
Ω(T¬w) > |w| λ+ (2.20)

Proof. We shall only prove the results concerning max-admissible words and
maximizing processes, namely (2.15), (2.17) and (2.20); the other ones are
exactly similar.

If w ∈ Adm+(ψ+,Ω), then we have

h+
Ω(T¬w) > h+

ψ+,Ω
(T¬w) = |w| λ+ (2.21)

so we have proved (2.20).
Applying inequality (1.114) with the topical form ψ+, and combining

with (2.9), we get

∀m > 0 H(ξ) 6 E
[
h+
ψ+,Ω

(Tξm−1 ...ξ0)/m
]
6 λ+ (2.22)

25



(and besides, H(ξ) is the limit of the middle term), so we have

∀ξ ∈ St(I) H(ξ) 6 λ+ (2.23)

with a criterion for equality:

H(ξ) = λ+ ⇐⇒ ∀m > 0 E
[
h+
ψ+,Ω

(Tξm−1 ...ξ0)
]

= mλ+

⇐⇒ ∀m > 0 ξ0 . . . ξm−1 ∈ Adm+(ψ+,Ω) a.s.

⇐⇒ ξ0ξ1 . . . ∈ Adm+
N (ψ+,Ω) a.s.

⇐⇒ supp ξ ⊂ Adm+
N (ψ+,Ω)

(2.24)

We remember that Adm+
N (ψ+,Ω) is a shift-invariant nonempty compact

subset of IN, and thus carries at least one invariant measure ξ by the Krylov-
Bogoliubov theorem [DGS]. So there exists ξ ∈ StN(I) such that H(ξ) = λ+,
and this proves (2.15).

Finally, (2.18) is an obvious consequence of the formula (1.129), com-
bined with (2.14) and (2.15).

Corollary 2.4. With the hypotheses and notations of Theorem A, suppose
that z ∈ IN is in the support of some H-minimizing measure; then

∀m ∈ N h−Ω(Tzm−1 ...z0) 6 mλ− 6 h(Tzm−1 ...z0) (2.25)

Conversely, if z is in the support of a H-maximizing measure, then

∀m ∈ N h(Tzm−1 ...z0) 6 mλ+ 6 h+
Ω(Tzm−1 ...z0) (2.26)

Corollary 2.5. With the hypotheses and notations of Theorem A, we have

min
|w|=m

h(Tw) = mλ− +O(1) (2.27)

max
|w|=m

h(Tw) = mλ+ +O(1) (2.28)

when m→∞.

Comments. The last two corollaries are trivial consequences of Theo-
rem A, but they are interesting because they tell us how fast the asymp-
totic bounds can be approached by finite-length words. They also show
that the points z in the support of “optimal measures” (elements of St(I)
which minimize or maximize H) are “optimal sequences” in the sense that
m−1h(Tzm−1 ...z0) tends to λ±, with an error in O(m−1), which is the best
one can hope.

Theorem A implies, among many other things, that the constants λ±

appearing in Mañé’s equations (2.4) and (2.5) are well-defined (unlike the
topical forms ψ±). This property falls over, along with Theorem A, if we
drop the hypothesis that T is tubular. This is even the case with one map:
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take for example T (x, y) = (x+ 1, y + 2); this map is not tubular, and one
can see that Mañé’s equation ψ = −λ+ ψT has solutions for all λ ∈ [1, 2].

The literature on DES traditionally defines the following quantities as
analogues of minH and maxH:

Λ−+(T) = lim inf
|w|→∞

|w|−1 γ+(x C w) (2.29)

Λ+
+(T) = lim sup

|w|→∞
|w|−1 γ+(x C w) (2.30)

where x is any point in Rn, and γ+ is the topical form defined by γ+(xi) =
max xi (obviously, these quantities do not depend on x). These definitions
coincide with λ− = minH and λ+ = maxH in the tubular case, and are
well-defined even if T is not tubular; but they can have the same kind of
pathologic behaviour as the functional H+ defined by (1.131), discussed at
the end of §1.6. This probably explains why the possible existence of a
link between the Λ±+(T) and the functional H+(· ;T) has not been suggested
anywhere in the literature, in spite of the strong analogies between these
notions.

2.3 An inequality for squeezing IFS

For squeezing IFS, the set of bi-infinite admissible sequences is heavily con-
strained by the following theorem, which states that any two admissible se-
quences in IZ must somehow be “compatible”, through the relation (2.31).
Note that this relation is obviously reflexive and symmetric.

Proposition 2.6. Let T = (Ti)i∈I be a squeezing IFS on Rn, and Q,Q′

the functions defined in Proposition 1.16. Let Ω be an invariant tube, and
(λ, ψ) a solution of (2.5). Let u = (ui)i∈N, u′ = (u′i)i∈N, v = (vi)i∈N and v′ =
(v′i)i∈N be four elements in IN, and suppose that the two bi-infinite sequences
(. . . u2u1u0u

′
0u
′
1u
′
2 . . .) and (. . . v2v1v0v

′
0v
′
1v
′
2 . . .) are in Adm+

Z (ψ,Ω). Then
we have {

Q′(u′) Q(u)
Q′(v′) Q(v)

}
> 0 (2.31)

For min-admissible sequences, the above inequality is reversed.

Proof. Let m > 0 arbitrary. By hypothesis, the words um−1 . . . u0u
′
0 . . . u

′
m−1

and vm−1 . . . v0v
′
0 . . . v

′
m−1 are admissible, so we can find xm,ym ∈ Ω such

that

ψ (xm C um−1 . . . u0u
′
0 . . . u

′
m−1) = ψxm + 2mλ (2.32)

ψ (ym C vm−1 . . . v0v
′
0 . . . v

′
m−1) = ψym + 2mλ (2.33)

Introduce sm = xm C um−1 . . . u0 and tm = ym C vm−1 . . . v0. We obtain

ψ (sm C u′0 . . . u′m−1) = ψsm +mλ, ψsm = ψxm +mλ (2.34)

ψ (tm C v′0 . . . v′m−1) = ψtm +mλ, ψtm = ψym +mλ (2.35)
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whereas we have the inequalities

ψ (sm C v′0 . . . v′m−1) 6 ψsm +mλ (2.36)

ψ (tm C u′0 . . . u′m−1) 6 ψtm +mλ (2.37)

Changing notations, we have

(u′0 . . . u
′
m−1 B ψ) sm = ψsm +mλ (2.38)

(v′0 . . . v
′
m−1 B ψ) sm 6 ψsm +mλ (2.39)

(u′0 . . . u
′
m−1 B ψ) tm 6 ψtm +mλ (2.40)

(v′0 . . . v
′
m−1 B ψ) tm = ψtm +mλ (2.41)

and consequently

{
u′0 . . . u

′
m−1 B ψ u0 . . . um−1 B xm

v′0 . . . v
′
m−1 B ψ v0 . . . vm−1 B ym

}
> 0 (2.42)

When m→∞, the elements of the above Gram symbol tend to Q′(u′), Q′(v′)
and to Q(u), Q(v), in Top(Rn,R)/R and Rn/Ru respectively, and at the limit
we get (2.31).

Usually one will need to rewrite (2.31) as a combinatorial condition on
the sequences u, u′, v, v′ ; this will be easy when Q,Q′ verify some “mono-
tonicity” properties, in the sense of Proposition 1.20. This will be used to
prove Propositions 3.1, 3.2 and 4.1.

3 A special case: the Tetris IFS

3.1 Definition, and first properties

We want to apply these techniques to a particular problem: the study of
Tetris heaps in a simple case [GM2, MV]. We consider a Tetris game with
only three slots, and two pieces, as in Figure 1.

The first piece (numbered 0) occupies the left and middle slots, with
heights h0 and 1 respectively, whereas the other piece (numbered 1) occupies
the middle and right slots with heights 1 and h1 respectively. We suppose
h0 > 1 and h1 > 1.

We start with a flat contour (represented on the bottom) and pile pieces
atop of it. What is the height of the heap? It turns out that this problem
can be adequately modelized with a max-plus IFS, by studying the evolution
of the upper contour of the heap.

The upper contour of the heap at a given moment can be represented by
three numbers, u, v, w, which are the height of the heap in the left, middle
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1

h1

h0
1

Figure 1: The Tetris pieces

and right slots. At the beginning, we have u = v = w = 0. When we add
piece 0, the contour becomes

U0



u
v
w


 =




max(u, v) + h0

max(u, v) + 1
w


 (3.1)

and when we add piece 1, it becomes

U1



u
v
w


 =




u
max(v, w) + 1
max(v, w) + h1


 (3.2)

so the problem is to study the dynamical behaviour of the max-plus IFS
U = (U0, U1) on R3.

Unfortunately, U is not tubular (neither U0 nor U1 have invariant tubes)
so the techniques previously described do not apply immediately. However,
it is possible to sidestep the problem (and also to simplify the IFS) by
making the following observation: when (u′, v′, w′) = Ui(u, v, w) (with i ∈
{0, 1}), one can express x′ = max(u′, v′) and y′ = max(v′, w′) in terms of
x = max(u, v) and y = max(v, w) only. Indeed, when i = 0 we have

x′ = max(u′, v′) = x+ h0 (3.3)

y′ = max(v′, w′) = max(x+ 1, w) = max(x+ 1, y) (3.4)

and when i = 1 we have

x′ = max(u′, v′) = max(u, y + 1) = max(x, y + 1) (3.5)

y′ = max(v′, w′) = y + h1 (3.6)
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So the evolution of (x, y) is described by the max-plus IFS T = (T0, T1)
on R2, where T0 and T1 are given by

T0

(
x
y

)
=

(
x+ h0

max(x+ 1, y)

)
(3.7)

T1

(
x
y

)
=

(
max(x, y + 1)

y + h1

)
(3.8)

and this is the IFS we will study in this chapter. This reduction (from U
to T) is in fact a special case of the completion procedure for max-plus IFS
described in [GM3].

Note first that the maps T0 and T1 are orientation-preserving. Then we
notice that the points p0,p1 ∈ R2, defined by

p0 = (h0, 1) (3.9)

p1 = (1, h1) (3.10)

verify

T0(p0) = p0 + h0u (3.11)

T1(p1) = p1 + h1u (3.12)

so the corresponding points p̃0 and p̃1 in the quotient space R2/Ru are fixed
points of T̃0 and T̃1 respectively. Consequently, by Corollary 1.19, the tube

Ω =
{

(x, y) ∈ R2 : 1− h0 6 y − x 6 h1 − 1
}

(3.13)

is invariant by T. So the IFS is tubular, and there exists an average height
function H, according to Proposition-Definition 1.21.

On the other hand, the topical forms α0 and α1 defined by

α0(x, y) = x (3.14)

α1(x, y) = y (3.15)

(that is, the first and second coordinate functions) verify

T ′0(α0) = α0 + h0 (3.16)

T ′1(α1) = α1 + h1 (3.17)

3.2 Approximation by a conjugate-linear IFS

Unfortunately, the IFS T is not squeezing. It is however possible to approach
it by κ-linear squeezing IFS. We could use the formula (1.59) for this, but
it is convenient to tweak it slightly, as follows.
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Let κ > 0 be arbitrary, and define Tκ = (T κ0 , T
κ
1 ), where

T κ0

(
x
y

)
=

(
x+ κ−1 log(θ0 + 1)

κ−1 log(θ expκx+ expκy)

)
(3.18)

T κ1

(
x
y

)
=

(
κ−1 log(exp κx+ θ expκy)

y + κ−1 log(θ1 + 1)

)
(3.19)

with θ, θ0 and θ1 defined by

θ(κ) = expκ θ0(κ) = expκh0 θ1(κ) = expκh1 (3.20)

These κ-linear operators correspond, through eq. (1.56), to the matrices

A0 =

(
θ0 + 1 0
θ 1

)
and A1 =

(
1 θ
0 θ1 + 1

)
(3.21)

respectively.
Easy arguments show that the maps T κi are injective and orientation-

preserving, and a straightforward calculation shows that (1.66) holds. More-
over, we have

T κ0 (p0) = p0 + κ−1 log(θ0 + 1) · u (3.22)

T κ1 (p1) = p1 + κ−1 log(θ1 + 1) · u (3.23)

so p̃0, p̃1 are invariant by T̃ κ0 , T̃
κ
1 respectively, and by Corollary 1.19, the

tube Ω defined by (3.13) is invariant by Tκ. Therefore, Tκ is a squeezing
IFS.

We also see that

(T κ0 )′(α0) = α0 + κ−1 log(θ0 + 1) (3.24)

(T κ1 )′(α1) = α1 + κ−1 log(θ1 + 1) (3.25)

3.3 The functions Q and Q′

In this subsection, we will make the assumption that h0, h1 > 0 and h0+h1 >
2, instead of h0, h1 > 1; this does not affect anything we have said so far6

on T, and allows us to write strict inequalities.
Let Q,Q′ be the functions defined by Proposition 1.16 for the IFS Tκ.

From the results of the previous section, yielding the (unique) fixed points
of the T̃ κi and their duals, we get

{
Q(0) = p̃0

Q(1) = p̃1
and

{
Q′(0) = α̃0

Q′(1) = α̃1
(3.26)

6However, T will no longer be semiconjugate to U if h0 or h1 is less than 1.
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and from this we deduce
{
Q(01) = (T κ0 p1)∼

Q(10) = (T κ1 p0)∼
and

{
Q′(01) = (T κ0 )′(α1)∼

Q′(10) = (T κ1 )′(α0)∼
(3.27)

From the formulas

T κ0 p1 =

[
κ−1 log(θ0 + 1)θ
κ−1 log(θ2 + θ1)

]
(3.28)

T κ1 p0 =

[
κ−1 log(θ2 + θ0)
κ−1 log(θ1 + 1)θ

]
(3.29)

we obtain
{
α0 T κ0 p1

α1 T κ1 p0

}
= κ−1 log

θ2(θ0 + 1)(θ1 + 1)

(θ2 + θ0)(θ2 + θ1)
(3.30)

= κ−1 log

[
1 +

(θ2 − 1)(θ0θ1 − θ2)

(θ2 + θ0)(θ2 + θ1)

]
(3.31)

> 0 (3.32)

so T κ0 p1 ≺ T κ1 p0. On the other hand, it is plain that p0 ≺ p1, since

{
α0 p0

α1 p1

}
= h0 + h1 − 2 > 0 (3.33)

These two inequalities imply, by Proposition 1.20, that the map Q : IN →
R2/Ru is strictly increasing.

On the other hand, the topical forms α1−α0 and (T κ0 )′α1− (T κ1 )′α0 are
strictly increasing on R2/Ru; it is obvious for the former, and for the latter
we have

(
(T κ0 )′α1 − (T κ1 )′α0

)
(x, y) = (α1 ◦ T κ0 − α0 ◦ T κ1 )(x, y) (3.34)

= κ−1 log
θ expκx+ expκy

expκx+ θ expκy
(3.35)

= κ−1 log

[
1

θ
− θ2 − 1

1 + θ expκ(y − x)

]
(3.36)

which is a strictly increasing function of y − x. By the second part of
Proposition 1.20, it implies that Q′(z2) − Q′(z1) is strictly increasing on
R2/Ru for every z1, z2 ∈ IN such that z1 < z2.

Combining the properties of Q and Q′, we see that for any u, u′, v, v′ in
IN, we have the implication

u < v and u′ < v′ =⇒
{
Q′(u′) Q(u)
Q′(v′) Q(v)

}
> 0 (3.37)
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In particular, for every word w ∈ IN, and anything instead of the ellipses,
we have {

Q′(0 . . .) Q(w0 . . .)
Q′(1 . . .) Q(w1 . . .)

}
> 0 (3.38)

If (λ, ψ) is a solution of (2.4), we know by Proposition 2.6 that Adm−Z (ψ,Ω)
cannot contain simultaneously (. . . 0w0 . . .) and (. . . 1w1 . . .) with the same
w ∈ I∗. Equivalently, it means that its projection on IN,

$
(
Adm−Z (ψ,Ω)

)
=
⋂

n>0

σn
(
Adm−N (ψ,Ω)

)
(3.39)

(where $ : IZ → IN is the natural projection) cannot contain simultaneously
two elements of the form 0w0 . . . and 1w1 . . . with the same w, so it must
be a subset of some [0α, 1α] with α ∈ IN. By Proposition 1.5, this set (or
equivalently Adm−N (ψ,Ω)) carries a unique invariant measure, which is a
sturmian measure. So we have proved the following:

Proposition 3.1. Let Tκ = (T κ0 , T
κ
1 ) be the IFS defined by formulas (3.18)

and (3.19), with κ > 0, h0, h1 > 0 and h0 + h1 > 2. Then the function
ξ 7→ H(ξ;Tκ) admits a unique minimum in St

(
{0, 1}

)
, and it is a sturmian

measure.

3.4 First limit

Theorem B. Let T = (T0, T1) be the IFS defined by the formulas (3.7) and
(3.8), with h0, h1 > 0 and h0 + h1 > 2. Then T has a minimizing sturmian
measure, that is,

∃ρ ∈ [0, 1] ∀ξ ∈ St
(
{0, 1}

)
H(ξ;T) > H(sρ;T) (3.40)

Proof. Note that condition (3.40), that is, the property of having a mini-
mizing Stumian measure, is a closed condition on H (for the topology of
uniform convergence), and since H depends continuously on (h0, h1), it is
enough to prove (3.40) when h0, h1 > 0 and h0 + h1 > 2. In this case, T is
the limit of the Tκ when κ → +∞, and the functions H(· ;Tκ) converge to
H(· ;T). Since the functions H(· ;Tκ) have a minimizing sturmian measure
by Proposition 3.1, so does the function H(· ;T).

Remark. Depending on the values of h0 and h1, there can be several
minimizing measures. For instance, when (h0, h1) = (1, 2), all the sturmian
measures sρ with ρ ∈ [0, 1/2] are minimizing. Barycentres made with them
give us examples of non-sturmian mimimizing measures, but there also ex-
ist ergodic minimizing measures which are not sturmian, for example the
periodic orbit 0101001001].
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On Figure 2 we have represented the “phase diagram” of T in the re-
gion h0, h1 ∈ [1, 10]. This diagram represents the regions where the various
sturmian measures sρ are minimizing. These regions are represented by
the white “cells”, whereas the black lines represent the boundaries between
these regions (for example, the cell on the bottom left, which contains the
point h0 = h1 = 2, corresponds to ρ = 1/2). Numerical evidence suggests
that all these cells correspond to rational values of ρ, with small denomina-
tors. Apart from that, we have no idea about the shape and combinatorial
arrangement of these cells. It is more complicated than what we expected,
and rather different from the relatively simple “Farey tree” structure which
appears in [HO, Jen].

h0

h1

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

Figure 2: The Tetris phase diagram

Comments. Theorem B is not new, and is a special case of Theorem
C which will be proved in the next sections; however, their proofs are very
similar, and this is why we treated the simpler Theorem B first.

Theorem B has been proved in [MV] in the more general context of two
Tetris pieces with arbitrary shapes, using techniques which are completely
different and very specific to the Tetris problem. With these techniques,
Mairesse and Vuillon prove a stronger result: there always exists a periodic
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sturmian measure minimizing the average height, and it can be determined
explicitly. The more general techniques given in the present article are
probably not sharp enough to obtain this stronger form of Theorem B.

3.5 A different variational problem

A related optimization problem is to ask for the minimum of H(ξ) among
all ξ ∈ St(I) such that E(ξ0) = ρ, for some given ρ ∈ [0, 1].

The idea here is to introduce an additional parameter ν ∈ R, and con-
sider the IFS νT = (T0, νT1), where νT1 = νu + T1. Obviously this IFS is
tubular, just like T, and its average height function is given by

∀ξ ∈ St(I) H(ξ; νT) = H(ξ;T) + ν E(ξ0) (3.41)

and it can be approximated by the conjugate-linear IFS νT
κ = (T κ0 , νT

κ
1 ),

where νT
κ
1 = νu + T κ1 . This IFS differs from Tκ only by a translation, so

it is squeezing and has exactly the same functions Q,Q′, and in particular
they verify (3.37). The same reasoning as before then shows that (provided
that h0, h1 > 0 and h0 + h1 > 2) there exists a unique minimizing measure
for H(· ; νTκ), and it is sturmian. To summarize:

Proposition 3.2. Let Tκ = (T κ0 , T
κ
1 ) be the IFS defined by the formulas

(3.18) and (3.19), with κ > 0, h0, h1 > 0 and h0 + h1 > 2, and let ν ∈ R.
Then the function ξ 7→ H(ξ;Tκ) + ν E(ξ0) admits a unique minimum in
St
(
{0, 1}

)
, and it is a sturmian measure.

Here we shall take advantage of the uniqueness of the minimizing mea-
sure. For each ν ∈ R, let ρ = ρ(ν) be the unique number in [0, 1] such
that

∀ξ ∈ St(I) H(ξ;Tκ) + ν E(ξ0) > H(sρ;T
κ) + νρ (3.42)

This condition defines a closed graph for the map ν 7→ ρ, and consequently,
the map is continuous. Now we claim the following.

Proposition 3.3. Let Tκ = (T κ0 , T
κ
1 ) be the IFS defined by the formulas

(3.18) and (3.19), with κ > 0, h0, h1 > 0 and h0 + h1 > 2, and let ρ ∈ [0, 1]
arbitrary. Then there exists ν ∈ R such that

ν ∈
[
−κ−1 log(1 + θ1), κ−1 log(1 + θ0)

]
(3.43)

and sρ is the unique minimum of the function ξ 7→ H(ξ;Tκ) + ν E(ξ0).

Proof. A straightforward calculation shows that

∀x ∈ Ω −κ−1 log(1 + θ0) u 6 T κ1 (x)− T κ0 (x) 6 κ−1 log(1 + θ1) u (3.44)

and consequently

ν 6 −κ−1 log(1 + θ1) =⇒ νT
κ
1 6 T κ0 (3.45)

ν > κ−1 log(1 + θ0) =⇒ νT
κ
1 > T κ0 (3.46)
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on Ω. In the first case, s1 = 1] minimizes H(· ; νT), whereas s0 = 0] is
minimizing in the second case. So we have proved that the function ν 7→ ρ(ν)
takes the values 1 and 0 when ν is on the boundary on the interval (3.43), and
since it is continuous, it takes all the intermediary values on this interval.

Remark. An important consequence of Proposition 3.3 is the existence
of real numbers ν such that the unique minimizing measure of νT

κ is a
sturmian measure with irrational parameter. This gives us examples of
conjugate-linear IFS which have no minimizing periodic orbit. We will come
back to this in Section 4.

3.6 Second limit

Theorem C. Let T = (T0, T1) be the IFS defined by the formulas (3.7) and
(3.8), with h0, h1 > 0 and h0 + h1 > 2, and let ρ ∈ [0, 1] arbitrary. Then
there exists ν ∈ [−h1, h0] such that

∀ξ ∈ St
(
{0, 1}

)
H(ξ;T) + ν E(ξ0) > H(sρ;T) + νρ (3.47)

and it implies in particular,

∀ξ ∈ St
(
{0, 1}

)
E(ξ0) = ρ =⇒ H(ξ;T) > H(sρ;T) (3.48)

Proof. Condition (3.47) is closed in (h0, h1) and thus it is sufficient to prove
it on a dense subset of its definition domain, namely when h0, h1 > 0 and
h0 + h1 > 2. In this case, T is the limit of the Tκ when κ → +∞, and by
Proposition 3.3, for every κ > 0 there exists

νκ ∈
[
−κ−1 log(1 + θ1), κ−1 log(1 + θ0)

]
(3.49)

such that

∀ξ ∈ St(I) H(ξ;Tκ) + νκE(ξ0) > H(sρ;T
κ) + νκρ (3.50)

If ν is any limit of the νκ when κ→ +∞, then ν ∈ [−h1, h0], and we obtain
(3.47) by taking the limit in the above inequality.

Comments. The second part of Theorem C, that is, the statement (3.48),
has been proved by Gaujal [G2], using very specialized methods requiring
a deep understanding of sturmian sequences. We believe that our proof is
simpler, and involves ideas which are more likely to be reusable in other
contexts.

The formulation of the problem and its solution in [G2] is very different
from the one given here (it does not involve “stationary processes” at all),
and it requires some care to verify that it is indeed the same statement as
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(3.48). It is obvious that Gaujal’s theorem expressed as (3.48) implies Theo-
rem B, which is part of the Mairesse-Vuillon theorem, but it was not obvious
at all in their original formulations. This shows how the right formalism,
even if it seems abstract and unnecessary at first sight, can actually simplify
the approach.

4 Finiteness conjectures

4.1 The Lagarias-Wang conjecture

For any linear endomorphism A ∈ L(Rn,Rn), with eigenvalues λ1 . . . λn ∈ C,
we note %(A) = max |λi| the spectral radius of A. Let I be a nonempty finite
set, and A = (Ai)i∈I a collection of elements of L(Rn,Rn). For every word
w ∈ I∗, we define Aw as in (1.63), and Ae = Id.

Now we define λ−(A) ∈ R ∪ {−∞} and λ+(A) ∈ R, called the smallest
and greatest Liapunov exponents of A, as follows:

λ−(A) = inf
|w|>1

1

|w| log %(Aw) (4.1)

λ+(A) = sup
|w|>1

1

|w| log %(Aw) (4.2)

and a very natural question is to ask whether these bounds are attained for
an arbitrary A.

For the smallest Liapunov exponent, it is not difficult to see that the
answer is no. For instance, consider the IFS A = (A0, A1), where A0 and
A1 are the 2× 2 matrices defined by

A0 =

(
2 0
0 1/2

)
and A1 =

(
1/3 0
0 3

)
(4.3)

For every word w ∈ I∗, we have

Aw =

(
2a3−b 0

0 2−a3b

)
(4.4)

where a, b are the numbers of zeros and ones in the word w. From the
irrationality of log 3/ log 2, it is plain that %(Aw) is always greater than 1
when w is nonempty, but it can be arbitrarily close to 1, so the infimum in
(4.1) is λ−(A) = 0 and it is not attained.

For the greatest Liapunov exponent λ+(A), there is no such counterex-
ample, and it has been conjectured by Lagarias and Wang [LW] and Gurvits
[Gu1] (motivated by previous work in [DL1]), that the supremum in (4.2)
was always attained, for any A. This statement is known as the finiteness
conjecture.
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This conjecture is traditionally stated in terms of the joint spectral radius
(or generalized spectral radius), a notion introduced by Rota & Strang [RS],
later rediscovered in [DL1] and also studied in [BW]; with our notations, the
joint spectral radius is expλ+(A). Equivalent formulations of the finiteness
conjecture, and related statements, can be found in [LW, Gu2, DL2].

We shall prove in the next section that this conjecture is false, by con-
structing a linear IFS A, consisting of two 2× 2 matrices, with nonnegative
coefficients, and such that

∀w ∈ I∗ − {e} 1

|w| log %(Aw) < λ+(A) (4.5)

Incidentally, it should be mentioned that the explicit computation of
λ±(A) in the general case, either exact or approximate, raises some in-
teresting computability questions, some of them related to the finiteness
conjecture; see [BT1, BT2, TB] for a discussion of these issues.

4.2 The finiteness problem for tubular IFS

The same finiteness questions can be stated for tubular IFS. If T is a tubular
IFS on Rn of some kind (conjugate-linear, max-plus, etc.), does there exist
periodic orbits ξ ∈ St(I) which maximize or minimize the average height
H(ξ;T) ? This question is reasonable, because periodic orbits are dense in
St(I), and thus the upper and lower bounds of H(ξ;T) on periodic orbits
coincide with the maximum and the minimum of H on St(I).

The answer depends, in part, on the type of topical maps we consider. If
T is a max-plus IFS, then it is known [Ga1] that there exists a maximizing
periodic orbit, whose period does not exceed n (the dimension of the space).
On the other hand, there does not always exist a minimizing periodic or-
bit [MV], unless one assumes that all pieces have rational heights [GM3].
The Tetris IFS considered in this article, however, always has a minimizing
periodic orbit [MV], even if h0, h1 are irrational.

The class of topical functions which is the most relevant to the Lagarias-
Wang conjecture is the class of conjugate-linear maps, described in Section
1.3, and this is what we will study here. Let κ > 0. Consider the matrices
A0, A1 defined by (3.21), and T κ0 , T

κ
1 the corresponding κ-linear maps defined

by (3.18) and (3.19). As before, we define νT
κ
1 = νu+T κ1 , which corresponds

to the matrix νA1 = eκνA1. We shall note νA0 = A0 for convenience, and

νA = (νA0, νA1).
We have seen in Proposition 3.3 that under the conditions h0, h1 > 0

and h0 + h1 > 2, there were values of ν ∈ R so that νT
κ = (T κ0 , νT

κ
1 )

did not have any minimizing periodic orbit. A simple modification of this
construction allows us to exhibit conjugate-linear tubular IFS which do not
have any maximizing periodic orbit, and this yields a counterexample to the
Lagarias-Wang finiteness conjecture.
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Proposition 4.1. Let Tκ = (T κ0 , T
κ
1 ) be the IFS defined by formulas (3.18)

and (3.19), with κ > 0, h0, h1 > 0 and h0 +h1 < 2, and let ν ∈ R. Then the
function ξ 7→ H(ξ;Tκ) + ν E(ξ0) admits a unique maximum in St

(
{0, 1}

)
,

and it is a sturmian measure.

Proof. We follow the steps of the proof of Proposition 3.2, with the appro-
priate changes caused by the modified condition h0 + h1 < 2.

First, we notice that Tκ is still tubular, with an invariant tube delimited
by p̃0 and p̃1; the only change is that these u-lines are in opposite position:
p0 is “above” p1 (that is, p0 � p1), and the tube Ω is given by

Ω =
{

(x, y) ∈ R2 : h1 − 1 6 y − x 6 1− h0

}
(4.6)

We also find out that T κ0 p1 � T κ1 p0 which implies, by an obvious modifica-
tion of Proposition 1.20, that Q : {0, 1}N → R2/Ru is strictly decreasing.
The behaviour of Q′ : {0, 1}N → (R2)′/R, on the other hand, is unmodified:
Q′(z2)−Q′(z1) is strictly increasing on R2/Ru when z1 < z2.

Let (λ, ψ) be a solution of (2.5). For every u, u′, v, v′ ∈ IN, we have

u < v and u′ < v′ =⇒
{
Q′(u′) Q(u)
Q′(v′) Q(v)

}
< 0 (4.7)

from which we deduce that $
(
Adm+

Z (ψ,Ω)
)

is contained in some [0α, 1α]
(with α ∈ IN) and consequently carries a unique invariant measure, which
is a sturmian measure.

Proposition 4.2. Let Tκ = (T κ0 , T
κ
1 ) be the IFS defined by formulas (3.18)

and (3.19), with κ > 0, h0, h1 > 0 and h0 + h1 < 2, and let ρ ∈ [0, 1]
arbitrary. Then there exists ν ∈ R such that

ν ∈
[
−κ−1 log(1 + θ1), κ−1 log(1 + θ0)

]
(4.8)

and sρ is the unique maximum of the function ξ 7→ H(ξ;Tκ) + ν E(ξ0).

The proof is almost identical to the proof of Proposition 3.3, and we
leave it to the reader.

Now how do we conclude? Choose h0, h1, κ verifying the conditions of
Proposition 4.2, and ρ ∈ [0, 1] irrational, for instance ρ = (

√
5 − 1)/2.

According to the proposition, there exists ν ∈ R such that sρ is the unique
minimum of H(· ; νTκ). This κ-linear IFS corresponds to the linear IFS νA,
which consists of the two matrices

A0 = νA0 =

(
eκh0 + 1 0
eκ 1

)
and νA1 = eκν

(
1 eκ

0 eκh1 + 1

)
(4.9)

For every nonempty word w ∈ I∗, we have, as a consequence of (1.129) and
(1.130),

1

|w| log %(νA¬w) = κ
h(νT¬w)

|w| = κH(w]; νT
κ) (4.10)
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Taking the supremum over all these w, and using the density of periodic
orbits in St(I), we get

λ+(νA) = κ max
ξ∈St(I)

H(ξ; νT
κ) (4.11)

But the unique maximizing measure sρ is not periodic, so

∀w ∈ I∗ − {e} 1

|w| log %(νA¬w) < λ+(νA) (4.12)

as announced.

4.3 Geometric interpretation

As in [B1], it is enlightening to give a geometrical interpretation of the
above results and the methods used to derive them. Let p : St(I) → R2 be
the map defined by p(ξ) = (E(ξ0),H(ξ)). This map is obviously affine and
continuous, and since St(I) is compact and convex, its image P = p

[
St(I)

]

is also compact and convex. On Figure 3, we have represented P in gray, for
the IFS Tκ with h0 = 0.6, h1 = 0.7 and κ = 0.1.

0.00 0.25 0.50 0.75 1.00 
X = E(ξ0) 

7.25 

7.30 

7.35 

7.40 

Y
 =

 H
(ξ) 

Figure 3: The set P = p[St(I)], for h0 = 0.6, h1 = 0.7 and κ = 0.1

On the figure we have also drawn a non-vertical supporting line of P, the
support point being on the upper contour; let −ν be its slope. Proposition
4.1 implies that such a supporting line intersects P in one point, which is the
image of some sturmian measure; in other words, the upper contour of P is
strictly convex, and parametrized by y = H(sx). In particular, the function
x 7→ H(sx) is strictly convex on [0, 1]. This may not be very visible on the
figure; on the other hand, some points of non-differentiability of the upper
contour are clearly visible, at rational values of x with small denominator,
especially 1/2, 1/3 and 2/3 — the authors believe, because of the analogies
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with [B1], that the map x 7→ H(sx) is non-differentiable for every rational
x in (0, 1). So there can be several supporting lines at a point of the upper
contour, but each supporting line has a unique support point.

The support point (x0, y0) drawn on the figure is not arbitrary: we have
chosen x0 = (

√
5 − 1)/2, as in the counterexample of the previous section.

Proposition 4.2 (or the above arguments) shows that y0 = H(sx0) and there
exists ν ∈ R such that the line of slope −ν passing through (x0, y0) is a
support line. Besides, it is possible to prove (but it would lead us way too
far) that the function x 7→ H(sx) is differentiable at every irrational x in
(0, 1); consequently, the upper contour has a unique support line at (x0, y0),
whose slope can be computed numerically:

−ν =
[ ∂
∂x
H(sx)

]
(x0) = −0.078466267 . . . (4.13)

For this value of ν, the sturmian measure sx0 will be the unique minimum
of the functional ξ 7→ H(ξ) + νE(ξ0).

Proposition 4.2 also tells us that ν can always be taken in some bounded
interval. What this means geometrically is that the upper contour has non-
vertical semitangents at x = 0 and 1.

Finally, we have drawn on Figure 4 the graph of the function ν 7→ ρ.
We have proved earlier that this function is continuous; the figure suggests
that the continuity modulus is not very good (probably not Hölder). The
function is increasing, which is geometrically obvious when you consider ρ
as the absciss of the support point and −ν as the slope of the supporting
line.

-0.4 -0.2 0.0 0.2 0.4 
ν 

0.00 

0.25 

0.50 

0.75 

1.00 

ρ 

Figure 4: The graph of ν 7→ ρ, for h0 = 0.6, h1 = 0.7 and κ = 0.1

The function ρ(ν) is a devil’s staircase, which should be compared with
Fig. 1 in [BS]. Its plateaus come from non-differentiability points on the
upper contour of P, and we see that they correspond to rational values of ρ.
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The figure also suggests, although it is less visible, that almost every
ν ∈ R is in some plateau. In fact, it is possible to prove (with a detailed
study of the differentiability properties of the map x 7→ H(sx), which we
cannot include here) that the closure of the set

{
ν ∈ R : ρ(ν) /∈ Q

}
(4.14)

is a Cantor set with measure zero and Hausdorff dimension zero. This is very
similar to the results proved in [B1, BS] and explains why counterexamples
to the Lagarias-Wang conjecture are difficult to find: almost every choice of
ν will yield a maximizing (sturmian) periodic orbit.
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Proba. Stat. 36 (2000), pp. 489–508

[B2] T. Bousch, La condition de Walters, preprint, Univ. Orsay (2000),
to appear in Ann. Sci. Ec. Norm. Sup.

42



[BV] M. Brilman and J. M. Vincent, Dynamics of synchronized par-
allel systems, Stochastic Models 13 (1997), pp. 605–619

[BS] S. Bullett and P. Sentenac, Ordered orbits of the shift, square
roots, and the devil’s staircase, Math. Proc. Camb. Phil. Soc. 115
(1994), pp. 451–481

[CHL] D. A. Carlson, A. B. Haurie and A. Leizarowitz, Infinite
horizon optimal control: deterministic and stochastic systems, sec-
ond edition, Springer (1991)

[Co] G. Cohen, D. Dubois, J. P. Quadrat and M. Viot, A linear
system-theoretic view of discrete-event processes and its use for per-
formance evaluation in manufacturing, IEEE Trans. Aut. Cont. 30
(1985), pp. 210–220

[CKN] J. Cohen, H. Kesten and M. Newman (eds), Random matrices
and their applications, Contemporary Mathematics 50, AMS (1986)

[CLT] G. Contreras, A. Lopes and P. Thieullen, Lyapunov minimiz-
ing measures for expanding maps of the circle, manuscript (1999),
to appear in Ergodic Theory and Dynamical Systems

[CT] M. Crandall and L. Tartar, Some relations between nonexpan-
sive and order preserving mappings, Proc. Amer. Math. Soc. 78
(1980), pp. 385–390

[DL1] I. Daubechies and J. Lagarias, Sets of matrices all infinite prod-
ucts of which converge, Linear Algebra Appl. 161 (1992), pp. 227–
263

[DL2] I. Daubechies and J. Lagarias, Corrigendum/addendum to:
[DL1], Linear Algebra Appl. 327 (2001), pp. 69–83

[DGS] M. Denker, C. Grillenberger and K. Sigmund, Ergodic theory
on compact spaces, Lecture notes in Mathematics 0527, Springer
(1976)

[Fat] A. Fathi, Théorème KAM faible et théorie de Mather sur les
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