T.D. numéro 18 Algèbre

Exercice 1 Les bagues de Suleima (d'après R. Mneimné) Le fiancé de Suleima, orfèvre arithméticien, prépare dans son atelier une bague pour sa bien-aimée. Il a en effet promis, comme preuve de son amour, de lui offrir chaque mois une bague en or différente incrustée d'émeraudes, de saphirs ou de rubis. Chaque bague a 10 pierres précieuses, régulièrement réparties, et se distingue des autres uniquement par l'ordonnancement des pierres qu'elle comporte. Pendant combien de temps Suleima pourra-t-elle être rassurée sur l'amour que lui voue son futur mari ?

Exercice 2 Notons \mathfrak{S} l'ensemble des bijections σ de \mathbb{N}^* dans \mathbb{N}^* dont le support (i.e. l'ensemble des n tels $\sigma(n) \neq n$) est fini. Montrer que les sous-groupes distingués de \mathfrak{S} sont $\{1\}$, \mathfrak{S} et un sous-groupe H d'indice 2.

Exercice 3 On veut colorier les côtés d'un octogone régulier : quatre en blanc et quatre en noir. Combien y a-t-il de façons de le faire ? (les coloriages déduits les uns des autres par symétries ou rotations ne sont comptés qu'une fois)

Exercice 4 On note H le groupe engendré par les générateurs I, J, K et ε et les relations suivantes (dans lesquelles on note 1 l'élément neutre de H):

$$I^2 = J^2 = K^2 = \varepsilon$$

$$\varepsilon^2 = 1 \qquad IJ = K \qquad JK = I$$

1. Montrer que ε commute à I, à J et à K, et qu'on a les relations suivantes :

$$IK = \varepsilon J$$
 $JI = \varepsilon K$ $KI = J$ $KJ = \varepsilon I$

2. En déduire que H est un groupe fini, de cardinal 8.

On note en général -1 l'élément ε , et -I, -J, -K les produits εI , εJ , εK (respectivement). On admet que les conventions habituelles (par exemple les règles (-x)(-y) = xy et -(-x) = x) sont encore valables (il s'agit d'une simple vérification, à partir des relations des questions 1. et 2.).

- 3. Donner la liste des sous-groupes de H, et se convaincre qu'ils sont tous distingués.
- 4. Quel est le centre de H?
- 5. Montrer que H ne peut pas se décomposer en produit semi-direct.
- 6. Considérons les matrices carrées suivantes, de taille 2, à coefficients dans $\mathbb C$:

$$A = \left[\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right] \quad \text{ et } \quad B = \left[\begin{smallmatrix} 0 & -i \\ -i & 0 \end{smallmatrix} \right]$$

A l'aide de ces deux matrices, construire un sous-groupe de $\mathrm{GL}_2(\mathbb{C})$ isomorphe à H.

Le groupe H s'appelle le groupe quaternionique. La multiplication sur H s'étend, par bilinéarité, à l'espace vectoriel $\mathbb H$ engendré sur $\mathbb R$ par 1, I, J et K. Cela munit $\mathbb H$ d'une structure d'anneau non commutatif dans lequel tout élément non nul est inversible (on parle aussi de corps non commutatif). L'absence de commutativité est cruciale : par exemple, le polynôme de degré deux $X^2 + 1$ admet les six racines $\pm I$, $\pm J$ et $\pm K$, ce qui n'arrive jamais dans un corps commutatif.

Exercice 5* Soient n un entier supérieur ou égal à deux, et H un sous-groupe commutatif de \mathfrak{S}_n . Montrer que l'ordre de H est inférieur ou égal à $3^{\frac{n}{3}}$. Pour quelles valeurs de n peut-il y avoir égalité ?

Exercice 6* Soit n un entier supérieur ou égal à deux. On se donne n-2 transpositions $\tau_1, \ldots, \tau_{n-2}$ dans \mathfrak{S}_n , et on note H le sous-groupe de \mathfrak{S}_n qu'elles engendrent. Montrer que H n'agit pas transitivement sur $\{1, \ldots, n\}$.

Cet exercice montre en particulier que \mathfrak{S}_n ne peut pas être engendré par n-2 transpositions. Si on s'autorise à utiliser n-1 transpositions, on peut engendrer \mathfrak{S}_n en considérant $(1\ 2),\ (1\ 3),\ \ldots,\ (1\ n)$.

Exercice 7* Soient G un groupe, k un entier strictement positif et Z un sous-groupe de \mathfrak{S}_k . On appelle produit en couronne de G avec Z, et on note $G \int Z$, le produit semi-direct $G^k \rtimes Z$ où Z agit sur G^k par permutation des facteurs.

1. Supposons que G agit fidèlement sur un ensemble S. Montrer que $G \int Z$ agit fidèlement sur $S \times \{1, \ldots, k\}$, en explicitant l'action.

Soit p un nombre premier. On note Z_p le sous-groupe de \mathfrak{S}_p engendré par la permutation cyclique $(1\ 2\dots p)$. On désigne par $Z_p^{\int r}$ la puissance r-ième de Z_p pour le produit en couronne, définie par $Z_p^{\int 0} = \{1\}$ (le groupe trivial) et $Z_p^{\int r+1} = Z_p^{\int r} \int Z_p$ pour $r \geq 0$.

- 2. Pour $r \geq 1$, plonger $Z_p^{\int r}$ dans \mathfrak{S}_{p^r} et calculer son ordre.
- 3. Soit n un entier strictement positif. Montrer que les p-sylows de \mathfrak{S}_n sont isomorphes à des produits (cartésiens) de puissances (pour le produit en couronne) de Z_p , qu'on explicitera en fonction de n.