T.D. numéro 11 Algèbre

Le premier exercice est un critère qu'on pourra utiliser dans la suite.

Exercice 1 Critère d'Eisenstein

- 1. Soit A un anneau factoriel, de corps des fractions K. Soit $P(X) = a_0 + a_1 X + ... + a_n X^n$ un polynôme à coefficients dans A. Soit $p \in A$ un élément irréductible. On suppose :
 - Que p ne divise pas a_n ,
 - Que p divise a_i pour tout $i \in \{0, \dots, n-1\}$,
 - Et que p^2 ne divise pas a_0 .

Démontrer que P est irréductible dans $\mathbb{K}[X]$. (Indication : en supposant que P est réductible, démontrer qu'il existe $Q, R \in A[X]$ non constants tels que P = QR et travailler ensuite dans le corps des fractions de A/(p))

- 2. Soit $p \in \mathbb{N}$ un nombre premier. Démontrer que le polynôme $P(X) = 1 + X + \ldots + X^{p-1}$ est irréductible dans $\mathbb{Z}[X]$. (Indication : on pourra considérer le polynôme P(X+1))
- 3. Démontrer que pout tout $n \in \mathbb{N}^*$ le polynôme $X^n 45$ est irréductible dans $\mathbb{Z}[X]$.

Exercice 2 Les polynômes suivants sont-ils irréductibles ? (on pourra utiliser des quotients bien choisis)

- 1. $P(X) = X^3 + 144X^2 2749X + 78539 \text{ dans } \mathbb{Z}[X].$
- 2. $P(X,Y) = X^2 + Y^2 + 1 \text{ dans } \mathbb{R}[X,Y].$
- 3. $P(X) = X^2 + aX + b$ dans $\mathbb{Z}[X]$ avec a et b entiers impairs.

Exercice 3 Quels sont les polynômes irréductibles dans $\mathbb{R}[X]$?

Exercice 4 Démontrer que le polynôme $X^3 + X^2 + 1$ est irréductible dans $\mathbb{F}_2[X]$. En déduire que $\mathbb{F}_2[X]/(X^3 + X^2 + 1)$ est un corps à huit éléments.

Exercice 5 Dans $\mathbb{Q}[X]$, considérons les polynômes $P(X) = 1 + X + X^2 + X^3 + X^4 + X^5$ et $Q(X) = X^4 - X^3 - X + 1$.

- 1. Calculer le p.g.c.d. de P(X) et Q(X) dans $\mathbb{Q}[X]$; on le note D(X).
- 2. Écrire explicitement une relation de Bezout entre P et Q, c'est-à-dire trouver deux polynômes A(X) et B(X) tels que AP + BQ = D.