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Abstract

This paper is concerned with the following problem: given a Lagrangian 𝐿 and

a Hamiltonian diffeomorphism 𝜑 such that 𝜑(𝐿) is in a small neighbourhood𝑈
of 𝐿, does there exist another Hamiltonian isotopy from 𝐿 to 𝜑(𝐿) supported in

𝑈? On one side, we construct an irrational counterexample in any symplectic

manifold of dimension at least six. On the other side, we answer an a priori
weaker form of the question by the positive in many cases when 𝐿 satisfies some

rationality condition. The techniques that we develop also have applications

for the Lagrangian counterpart of the 𝐶0
flux conjecture. In turn, these results

have many applications, in particular, to understand 𝐶0
-rigidity phenomena

of Hamiltonian diffeomorphisms and the space of Lagrangians with a given

rationality constant.

1 Introduction
Note: For the sake of conciseness, we will refer throughout the paper to a

closed connected Lagrangian submanifold of a connected symplectic manifold
without boundary as a “Lagrangian in a symplectic manifold.”

This paper aims to study the local topological properties of natural sets of

Lagrangians, most notably the Hamiltonian and symplectic orbits of a given

Lagrangian 𝐿, respectively

ℒHam(𝐿) := Ham(𝑀) · 𝐿 = {𝜑(𝐿) |𝜑 ∈ Ham(𝑀)} ,
ℒSymp

0
(𝐿) := Symp

0
(𝑀) · 𝐿 = {𝜓(𝐿) |𝜓 ∈ Symp

0
(𝑀)} .
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To do this, we first fix a metric 𝑔 on the underlying manifold 𝐿. Recall that

the Weinstein neighbourhood theorem ensures that there exist 𝑟 > 0 and a

symplectomorphism Ψ : 𝐷∗
𝑟𝐿 → 𝒲𝑟(𝐿) from the codisk bundle of 𝐿 of radius

𝑟 to a neighbourhood 𝒲𝑟(𝐿) of 𝐿 in 𝑀 which maps the 0-section to 𝐿.

Therefore, understanding ℒHam(𝐿) locally is intimately related to the

nearby Lagrangian conjecture (or NLC for short), which completely charac-

terizes Lagrangians which are in the Hamiltonian orbit of the 0-section in 𝑇∗𝐿.

Indeed, it states that those are precisely the exact Lagrangians. It is known

to hold for 𝑆1
, 𝑆2

[Hin04], RP
2

[HPW16, Ada22], and T2
[RGI16]. Without

restriction on the diffeomorphism type, the most advanced result in the di-

rection of the NLC states that the natural projection 𝜋 : 𝑇∗𝐿 → 𝐿 induces a

(simple) homotopy equivalence between any exact closed Lagrangian and the

0-section [AK18]. This latter result will play a crucial role in our study of the

local structure of ℒHam(𝐿)
Inspired by this conjecture, we propose that if 𝐿′ ∈ ℒHam(𝐿) is close to

𝐿, then there is an accordingly small Hamiltonian isotopy from 𝐿 to 𝐿′. More

precisely, we make the following conjecture.

Conjecture A (Strong conjecture) Let 𝐿 be a Lagrangian in a symplectic manifold
𝑀. There exists a neighbourhood𝑈 of 𝐿 with the following property. If 𝐿′ is Hamilto-
nian isotopic to 𝐿 in 𝑀 and 𝐿′ ⊆ 𝑈 , then there exists a Hamiltonian isotopy {𝜑𝑡}𝑡∈[0,1]
supported in𝑈 such that 𝜑1(𝐿) = 𝐿′.

That this conjecture holds would imply that the Hamiltonian orbitℒHam(𝐿)
of a Lagrangian 𝐿 is locally path connected via Hamiltonian isotopies. Al-

though this statement is new in the Lagrangian context, there are some results

towards its Hamiltonian counterpart. More precisely, the group Ham𝑐(𝑀) of

compactly supported Hamiltonian diffeomorphisms of a symplectic manifold

𝑀 is locally path connected in the 𝐶0
topology (via Hamiltonian isotopies)

if 𝑀 is a closed surface or the open ball 𝐵2𝑛
. The former case follows from

Fathi’s work on homeomorphisms preserving a volume form [Fat80] and the

folkloric fact that a path of such homeomorphisms on a closed surface can be

𝐶0
approximated by a path of symplectomorphisms (see [Oh06] for a proof).

The latter case was proved by Seyfaddini [Sey13].

Note that the local path connectedness of Ham(𝑀) implies Conjecture A for

graphs of symplectomorphisms of 𝑀. However, even if Conjecture A holds for

all graphs in 𝑀 × 𝑀, it does not imply local path connectedness of Ham(𝑀),
since the Hamiltonian isotopy given by the conjecture is not necessarily through

graphs.

In this work, we prove the existence of neighbourhoods of local exactness for

several classes of Lagrangians, by which we mean a Weinstein neighbourhood

𝒲(𝐿) of a Lagrangian 𝐿 so that any Lagrangian Hamiltonian isotopic to 𝐿
included in this neighbourhood is exact in 𝒲(𝐿). When the NLC is known to

hold for 𝐿, we can then deduce that 𝐿 satisfies the strong conjecture above.

This indicates that it is reasonable to believe that the strong conjecture is

extremely hard to prove in general. However, the following weaker form of the

conjecture holds and might be more easily provable in full generality.
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Conjecture B (Weak conjecture) Let 𝐿 be a displaceable Lagrangian in a symplectic
manifold 𝑀. There exists a neighbourhood𝑈 of 𝐿 with the following property. If 𝐿′ is
Hamiltonian isotopic to 𝐿 in 𝑀 and 𝐿′ ⊆ 𝑈 , then 𝐿 ∩ 𝐿′ ≠ ∅.

The Lagrangians which admit a neighbourhood of local exactness as de-

scribed above obviously satisfy the weak conjecture. In fact, such Lagrangians

must intersect in at least

∑𝑛
𝑖=0

𝛽𝑖(𝐿) ≥ 2 points, where 𝛽𝑖(𝐿) is the 𝑖-th Betti

number of 𝐿.

Actually, our methods allow us to prove that a large class of Lagrangians

satisfy a slightly strengthened version of the weak conjecture, namely that if

𝐿′ is the image of 𝐿 under any symplectomorphism and 𝐿′ ⊆ 𝑈 , then 𝐿 ∩ 𝐿′ ≠
∅. Note that we do not conjecture that this always holds (since it obviously

does not). In what follows, we will refer to satisfying the weak conjecture

(respectively its symplectic version) as having a neighbourhood of Hamiltonian
nondisplacement (respectively of symplectic nondisplacement).

1.1 Main results

Our first result provides a counterexample to Conjectures A and B (and to

Conjecture C below, as well as its 𝐶1
variant). This shows that there is no hope

to prove the above conjectures in full generality.

Theorem 1 In any symplectic manifold of dimension 2𝑛 ≥ 6, there exists a Lagrangian
torus whose Hamiltonian orbit

(i) is not closed in Hausdorff topology inside the set of Lagrangian tori,

(ii) admits arbitrarily Hausdorff-close disjoint elements.

Both claims actually hold for any reasonable notion of 𝐶1
topology — see

Section 2 below.

The existence of such tori follows directly from the characterization of prod-

uct tori in the Hamiltonian orbit of a given product Lagrangian torus in C𝑛 by

Chekanov [Che96] and in large enough balls by Chekanov and Schlenk [CS16].

We give the details in Section 2 below.

We make the crucial observation that these Lagrangian tori are not rational,
and we turn to specific families of Lagrangians which do satisfy either one or

both of the conjectures above.

1.1.1 Existence of nondisplacement neighbourhoods

We start with a simple exercise, which inspires our approach to the above

conjectures.

Proposition 2 Conjecture A holds for any closed embedded curve 𝐿 in an orientable
surface 𝑀.

Its proof, detailed in Appendix A, can be roughly summarized as follows.
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Sketch of proof. Fix a Weinstein neighbourhood Ψ : 𝐷∗
𝑟𝑆

1 → 𝒲𝑟(𝐿) of 𝐿, and let

𝐿′ = 𝜑(𝐿) ⊆ 𝒲𝑟(𝐿) for some symplectomorphism 𝜑 of 𝑀. Define

𝜏 := inf{𝜔(𝑢) > 0 | 𝑢 ∈ 𝐻2(𝑀, 𝐿;Z)} ∈ [0,+∞],

where we set 𝜏 = +∞ if 𝜔(𝐻2(𝑀, 𝐿;Z)) = 0.

If 𝜏 > 0, the proof then follows in two steps.

(1) Show that, if 𝑟 > 0 is such that 𝒲𝑟(𝐿) has area smaller than 𝜏, then 𝐿′

must be weakly exact in 𝒲𝑟(𝐿).
(2) Show that if 𝐿′ is weakly exact in 𝒲𝑟(𝐿), then it must in fact be exact.

Since the nearby Lagrangian conjecture is known to hold for the circle, this

yields Conjecture A when 𝜏 > 0.

If 𝜏 = 0, simple geometric considerations due to the low dimension of the

situation allow us to easily adapt the proof above. □

Inspired by this simple case, we develop a criterion which should ensure the

existence of neighbourhoods of nondisplacement for Lagrangians in arbitrary

dimensions. Namely, we define a notion of homological rationality, or 𝐻-

rationality for short.

Definition Let 𝐿 be a Lagrangian of a symplectic manifold (𝑀, 𝜔). We say that 𝐿 is
𝐻-rational in (𝑀, 𝜔) if 𝜔

(
𝐻2(𝑀, 𝐿;Z)

)
= 𝜏Z for some 𝜏 ≥ 0. We then call 𝜏 the

𝐻-rationality constant of 𝐿. When 𝜏 = 0, we say that 𝐿 is 𝐻-exact in (𝑀, 𝜔).

Note that 𝐻-rationality (respectively 𝐻-exactness) is the homological ver-

sion of the usual notion of rationality (respectively weak exactness). In fact,

as we shall see in Section 3.2 below, those conditions are equivalent in many

important cases, e.g. when 𝜋1(𝑀) = 0.

We denote by ℒ(𝜏) the space of all 𝐻-rational Lagrangian submanifolds of

𝑀 which have𝐻-rationality constant 𝜏 ≥ 0, and by ℒ(𝐿, 𝜏) its subspace formed

by those Lagrangians which have the same diffeomorphism type as 𝐿.

We now adapt the two steps of the 1-dimensional case to higher dimensions.

First, we prove the existence of neighbourhoods of homological exactness for

several classes of Lagrangians — this is Theorem 3 below. Second, we show

that such neighbourhoods lead to Weinstein neighbourhoods of exactness for

Hamiltonian isotopic Lagrangians. We also get such neighbourhoods for La-

grangians with a given 𝐻-rationality constant under an extra homological

condition — this is the content of Theorem 4.

Theorem 3 Suppose that 𝐿 is a Lagrangian submanifold of (𝑀, 𝜔) which satisfies
one of the following:

(a) the underlying manifold has 𝐻1(𝐿;R) = R and admits a Lagrangian embedding
in a Liouville domain𝑊 with 𝑆𝐻(𝑊) = 0,

(b) 𝐿 is a Klein bottle.
For every 𝜏 ≥ 0, there exists a Weinstein neighbourhood 𝒲(𝐿) of 𝐿 such that all
𝐿′ ∈ ℒ(𝐿, 𝜏) included in 𝒲(𝐿) is 𝐻-exact in 𝒲(𝐿).
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Theorem 4 Let 𝐿 be a 𝐻-rational Lagrangian submanifold of (𝑀, 𝜔) and let 𝐿′ ∈
ℒHam(𝐿) be a Lagrangian included in a Weinstein neighbourhood 𝒲𝑟(𝐿) of size
𝑟 > 0 such that 𝐿′ is 𝐻-exact in 𝒲𝑟(𝐿). Then, for a maybe smaller 𝑟, 𝐿′ is exact in
𝒲𝑟(𝐿).

Moreover, if the inclusion of 𝐿 into 𝑀 induces the 0-map 𝐻1(𝐿;R) → 𝐻1(𝑀;R),
then the same result holds with ℒHam(𝐿) replaced by ℒ(𝜏), where 𝜏 is the 𝐻-
rationality constant of 𝐿.

Remarks 1. In many instances, the constraints on 𝐿 and 𝐿′ can actually be weakened.
We refer the interested reader to Section 3.2 for specifics.

Corollary 5 A 𝐻-rational Lagrangian 𝐿 satisfying the assumptions of Theorem 3
admits a Hamiltonian non-displacement neighbourhood. If furthermore 𝐻1(𝐿;R) →
𝐻1(𝑀;R) is zero, then it also admits a neighbourhood of symplectic non-displacement.

In other words, such a Lagrangian 𝐿 satisfies Conjecture B (or its slightly

strengthened symplectic version). Furthermore, if the Nearby Lagrangian

Conjecture holds in 𝑇∗𝐿, we also get Conjecture A.

Remarks 2. Theorem 3 above also holds for 𝑛-dimensional Lagrangian tori. This can
be proven along the same lines as for case (a) by bounding our variant of the Cieliebak–
Mohnke capacities by the McDuff–Siegel higher capacities. However, the latter being
much harder to handle, the proof becomes much more involved and will appear in
further work.

Interestingly enough:

1. In dimension 2, we can prove that

(a) A displaceable rational Lagrangian 2-torus in a simply-connected Dar-
boux chart admits a neighbourhood of symplectic nondisplacement, i.e.
satisfies the symplectic version of Conjecture B.

(b) A nondisplaceable Lagrangian 2-torus 𝐿 whose fundamental class [𝐿]
does not vanish in 𝐻2(𝑀;Z), satisfies Conjecture A.

Because the proofs of these results do not fit in the general framework developed
here, we prove them in Appendix B, where we also state them precisely.

2. In their work in progress on the 𝐶0 flux conjecture for Hamiltonian diffeomor-
phisms, Atallah and Shelukhin [AS24a] get a similar result of local exactness for
graphs in 𝑀 × 𝑀 of 𝐶0-small Hamiltonian diffeomorphisms for 𝑀 closed. In
this case, they do not require that 𝑀 be rational, contrary to our setup.

3. As we were finalizing this paper, Atallah and Shelukhin also informed us [AS24b]
that they had results similar to Corollary 5. In particular, they established a
version of Theorem 4 whose proof is strikingly similar to ours. They also proved
a version of Theorem 3 for rational Lagrangians 𝐿 of the form T𝑛 × 𝑄, where
𝑄 is simply connected, under the assumption that 𝜋1(𝐿) → 𝜋1(𝑀) is zero. It
appears that combining their methods and ours leads to the following fact: if 𝐿
and 𝐿′ satisfy the conclusion of Theorem 3, then so does 𝐿 × 𝐿′. We want to
investigate this exciting direction together.
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1.1.2 Lagrangian flux conjectures

We now move on to another conjecture about Lagrangian submanifolds.

Conjecture C (Lagrangian 𝐶0
flux conjecture) Let 𝐿 be a Lagrangian in a sym-

plectic manifold 𝑀. Its Hamiltonian orbit ℒHam(𝐿) is Hausdorff-closed in the space
ℒLag(𝐿) of all Lagrangians which are Lagrangian isotopic to 𝐿.

As far as the authors know, this version of the conjecture has not been

studied previously — we will talk about its 𝐶1
cousin, which has been studied,

below. The name that we give it here is in analogy to the famous 𝐶0
flux conjec-

ture for Hamiltonian diffeomorphisms, which states that the group Ham(𝑀) of

Hamiltonian diffeomorphisms of a closed manifold 𝑀 is 𝐶0
closed in the iden-

tity component Symp
0
(𝑀) of the group of symplectomorphisms of 𝑀. This

conjecture is only known to hold in some fairly specific case [LMP98, Buh15].

This is in stark contrast with its 𝐶1
cousin, which is known to hold in full

generality [Ono06].

We note that, similarly to Conjecture A above, the Lagrangian 𝐶0
flux

conjecture does not imply the one for Hamiltonian diffeomorphisms. Indeed,

suppose that {𝜑𝑖} ⊆ Ham(𝑀) 𝐶0
-converges to 𝜓 ∈ Symp

0
(𝑀). Then, all

that the Lagrangian flux conjecture ensures is that there is some Hamiltonian

diffeomorphism Φ of 𝑀 × 𝑀 such that graph(𝜓) = Φ(Δ), where Δ ⊆ 𝑀 × 𝑀
is the diagonal. However, we cannot be sure that Φ can be chosen of the form

1×𝜑 for some 𝜑 ∈ Ham(𝑀), which is what the flux conjecture for Hamiltonian

diffeomorphisms would require.

To study this conjecture, we can use the techniques developed to prove

Theorems 3 and 4. In fact, they imply the following continuity result.

Theorem 6 Let {𝐿𝑖} be a sequence of 𝐻-rational Lagrangians of a tame symplectic
manifold 𝑀 such that

(i) {𝐿𝑖} Hausdorff-converges to a 𝑛-dimensional smooth submanifold 𝐿;
(ii) inf 𝜏𝑖 > 0, where 𝜏𝑖 denotes the 𝐻-rationality constant of 𝐿𝑖 .

Then, 𝐿 is itself Lagrangian.
Moreover, if 𝐿𝑖 is 𝐻-exact in a Weinstein neighbourhood 𝒲(𝐿) for 𝑖 large, then

𝜏𝑖 ≡ 𝜏 for larger 𝑖, and 𝜏 is the 𝐻-rationality constant of 𝐿. This is in particular the
case if the 𝐿𝑖 ’s respect the hypotheses of Theorem 3.

By tame, we mean that 𝑀 admits an almost structure 𝐽 making 𝑔𝐽 := 𝜔(·, 𝐽·)
into a complete Riemannian metric whose sectional curvature is bounded and

whose injectivity radius is bounded away from zero.

The first part of the theorem is a fairly direct application of Lauden-

bach and Sikorav’s result on the displaceability of non-Lagrangian subman-

ifolds [LS94] — we mostly write it here for the reader’s convenience. Fur-

thermore, the second part of the theorem is very reminiscent of Theorem 1

of [MO21] — the proof is in fact very inspired by what appears in that paper.

The strength of our result is that it applies to sequences {𝐿𝑖 = 𝜑𝑖(𝐿)} where

the sequence of Hamiltonian diffeomorphisms {𝜑𝑖} need not 𝐶0
-converge. See

Section 5.2 for more details.



7

Before moving on to corollaries of this result, note that, in the formulation

above, one could also ask for 𝐶0
-closure of Ham(𝑀) in larger groups than

Symp
0
(𝑀), most notably in Symp(𝑀) or Diff(𝑀). Here, Symp(𝑀) denotes the

group of symplectomorphisms of 𝑀 and Diff(𝑀), the group of its diffeomor-

phisms. For Symp(𝑀), this is harder to prove, since it is not known if Symp
0
(𝑀)

is 𝐶0
-closed in Symp(𝑀). However, the celebrated result from Gromov [Gro85]

and Eliashberg [Eli87] shows that Symp(𝑀) is 𝐶0
-closed in Diff(𝑀). Therefore,

the closure in Symp(𝑀) is equivalent to that in Diff(𝑀).
Following this logic, we can replaceℒLag(𝐿) in the above with larger spaces.

Most notably, we will also be interested in the spaces SMan(𝐿), of all subman-

ifolds of 𝑀 with the same diffeomorphism type as 𝐿, and SMan𝑛 , of all 𝑛-

dimensional submanifolds of 𝑀2𝑛
. By Theorem 6, closure of ℒHam(𝐿) in the

two latter spaces is equivalent to closure in the subspace formed by Lagrangian

submanifolds.

To address these many spaces, we will make use of the following weaker

form of Theorem 4.

Proposition 7 Let 𝐿 be a𝐻-rational Lagrangian submanifold of𝑀 with𝐻-rationality
constant 𝜏. There is some 𝑟0 > 0 with the following property. Assume that 𝐿′ ∈ ℒ(𝜏)
is a Lagrangian included in a Weinstein neighbourhood 𝒲𝑟(𝐿) of size 𝑟 ∈ (0, 𝑟0] such
that 𝐿′ is 𝐻-exact in 𝒲𝑟(𝐿). Then, there is a symplectic isotopy {𝜓𝑡}𝑡∈[0,1] of 𝑀 such
that 𝜓1(𝐿′) is exact in 𝒲𝑟(𝐿). Furthermore, the size of the isotopy is controlled by 𝑟.

The last sentence corresponds in actuality to a precise estimate on the flux

of the Lagrangian isotopy {𝜓𝑡(𝐿′)}, but we do not want to get into all the details

here. We refer the interested reader to Section 5.3.

Combining Theorem 3, Theorem 4, and Proposition 7, we thus get the

following — again, the precise proof is in Section 5.3.

Corollary 8 Let 𝐿 be a 𝐻-rational Lagrangian in a tame symplectic manifold 𝑀.
Suppose that

(i) 𝐿 satisfies the hypotheses of Theorem 3 or 𝐻1(𝐿;R) = 0

(ii) and the nearby Lagrangian conjecture holds in 𝑇∗𝐿.
Then, ℒHam(𝐿) and ℒSymp

0
(𝐿) are Hausdorff-closed in SMan(𝐿).

Remarks 3. Note that the tameness condition on 𝑀 can be dropped if one is only in-
terested in closedness in the subspace ℒ(𝐿) of SMan(𝐿) consisting of the Lagrangians.
Indeed, tameness is only used to ensure that the limit of Lagrangians is still a La-
grangian.

Likewise, one can, in some contexts, upgrade from SMan(𝐿) to SMan𝑛 . For
example, if 𝑛 = 2, this is the case. Indeed, any 𝐻-exact Lagrangian in the cotangent
bundle of a surface has the same diffeomorphism type as that surface (see Lemma 24
below). This is a nontrivial update: Polterovich [Pol93] constructed Lagrangian tori
in the cotangent bundle of any flat manifold; these tori can be made to be arbitrarily
close to the zero-section. We discuss these examples in more details at the very end of
Section 3.2.

We will explore in Section 1.2 below examples where these conditions are

all satisfied.
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The Lagrangian 𝐶1 flux conjecture A natural variant of Conjecture C is

obtained by replacing closedness in the Hausdorff metric with closedness in

the 𝐶1
topology. We call this the Lagrangian 𝐶1

flux conjecture.

By 𝐶1
topology, we mean the one constructed as follows. Fix a Riemannian

metric 𝑔 on 𝑀. We say that a closed connected half-dimensional submanifold

𝑁 ′
is 𝜀-𝐶1

-close to another one 𝑁 if 𝑁 ′
is in a tubular neighbourhood of 𝑁 and

there is a normal vector field 𝜈 along 𝑁 such that ∥𝜈∥ < 𝜀 and exp(𝜈(𝑁)) = 𝑁 ′
.

We then set

𝐵(𝑁, 𝜀) :=
{
𝑁 ′ �� 𝑁 ′

is 𝜀-𝐶1

-close to 𝑁 & vice-versa

}
.

The 𝐶1
topology on SMan𝑛 is then the topology generated by the 𝐵(𝑁, 𝜀)’s. One

can easily check that this is independent of the choice of Riemannian metric.

With our methods, we get the following.

Corollary 9 Let 𝐿 be a 𝐻-rational Lagrangian in a tame symplectic manifold 𝑀.
Then, ℒHam(𝐿) and ℒSymp

0
(𝐿) are 𝐶1-closed in SMan𝑛 .

The reason that we don’t need hypothesis (i) of Corollary 8 is because

Lagrangians with are 𝐶1
-close of 𝐿 are graphs of 1-forms in 𝒲(𝐿), and graphs

are necessarily 𝐻-exact. Likewise, hypothesis (ii) is not needed since exact

graphs are Hamiltonian isotopic to the zero-section in 𝒲(𝐿). Note that 𝐶1
-

close Lagrangians are necessarily diffeomorphic so that closure in SMan𝑛 is the

same as closure in SMan(𝐿).
The Lagrangian 𝐶1

flux conjecture has been studied previously by

Ono [Ono08] and Solomon [Sol13] in the case when 𝑀 is closed or a cotangent

bundle. They proved that it holds when 𝐿 has Maslov class zero and is un-

obstructed in the sense of [FOOO09] and when the so-called Lagrangian flux

group of 𝐿 is discrete, respectively. When 𝐿 is 𝐻-rational, the Lagrangian flux

group is automatically discrete. Therefore, our improvement with regards to

Solomon’s result is that we allow 𝑀 to be open — otherwise, we only have

proved a subcase. As for Ono’s, our condition is somewhat orthogonal to his:

he needs no bad disks, but we ask for a lot of them.

1.2 Examples
We give a few examples where Conjecture B follows from the results above.

Note that, as long as 𝜔(𝐻2(𝑀;Z)), an arbitrarily 𝐶1
-small perturbation of a

Lagrangian will be𝐻-rational. Therefore, we do not care if the precise examples

below are 𝐻-rational or not.

We start by giving a few examples of Lagrangians satisfying Case (a) of

Theorem 3 and natural situations when they are displaceable.

First of all, note that for any Liouville domain 𝑉 , 𝑊 = 𝑉 × D is such that

𝑆𝐻(𝑊) = 0, since that domain is displaceable in its completion. In particular,

Case (a) covers the case 𝐿 = 𝑄 × 𝑆1
with 𝐻1(𝑄;R) = 0. Note that these are

displaceable since D is displaceable in C.

If 𝑇𝑄 ⊗ C is additionally assumed to be trivial, then 𝐿 embeds as a La-

grangian in C𝑛 by the Gromov–Lees ℎ-principle [Gro70, Lee76] and a result

of Audin, Lalonde, and Polterovich [ALP94]. In particular, 𝐿 = 𝑆𝑛−1 × 𝑆1
,
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𝑛 ≥ 3 is an example of such a manifold. In particular, we have examples of 𝐿
satisfying Case (a) in any symplectic manifold of dimension at least 6. In fact,

any symplectic manifold containing a displaceable Lagrangian 𝑆𝑛 , e.g. the full

flag manifold of C3
[Pab15], will contain such Lagrangians, because 𝑇∗𝑆𝑛 has

Lagrangians 𝑆𝑛−1 × 𝑆1
arbitrarily close to the zero-section.

In another direction, Ekholm, Eliashberg, Murphy, and Smith [EEMS13]

showed that, given any 3-manifold𝑄, 𝐿 = 𝑄#(𝑆1 ×𝑆2) embeds as a Lagrangian

in C3
. But, by the van Kampen theorem, 𝜋1(𝐿) = 𝜋1(𝑄) ∗ 𝜋1(𝑆1 × 𝑆2), so that

𝐻1(𝐿;R) = 𝐻1(𝑄;R) ⊕ R. Therefore, Case (i) covers 𝐿 = 𝑄#(𝑆1 × 𝑆2) with

𝐻1(𝑄;R) = 0, e.g. 𝑄 can be a (connected sum of) lens spaces.

To resume the above discussion, we have the following.

Corollary 10 Conjecture B holds for displaceable 𝐻-rational Lagrangians of the form
𝑄 × 𝑆1 or 𝑄#(𝑆1 × 𝑆2) with 𝐻1(𝑄;R) = 0 and, in the latter case, dim𝑄 = 3.

There are of course examples which do not fit within this pattern. For

example, it is well known that the Lagrangian Grassmannian Λ𝑛 admits a

Lagrangian embedding in Sym(C𝑛) = C𝑛(𝑛+1)/2
(see, for example, [ALP94]).

This is an example of Case (a), since 𝜋1(Λ𝑛) = Z.

When it comes to Case (b) of Theorem 3, there is one main example: the

Lagrangian Klein bottle in 𝑆2×C. It is obtained from the usual Lagrangian Klein

bottle in 𝑆2 × 𝑆2
(see, for example, [Eva22]) by removing a point on the second

copy of 𝑆2
and identifying 𝑆2 \ {𝑝𝑡} with D ⊆ C. Again, it is displaceable,

because D is. In fact, the Klein bottle can even be made to be monotone. To

resume, we have the following.

Corollary 11 Conjecture B holds for displaceable𝐻-rational Lagrangian Klein bottles.
There exist such Lagrangians — and a monotone one — in 𝑆2 × C.

To conclude with Conjecture B, we go back to Remark 2: using different

methods, we can prove that the conjecture holds for rational 2-tori in simply

connected Darboux charts. Using Theorem C of [RGI16], we, in particular, get

the following result.

Corollary 12 Conjecture B holds for displaceable rational 2-tori in C2, 𝑆2 × 𝑆2, C𝑃2,
and blow-ups of C𝑃2.

We conclude with one additional case when we can establish Conjecture A:

when 𝐿 is a 2-sphere or a projective plane. Indeed, any other such Lagrangian

in 𝒲(𝐿) is then automatically exact in that neighbourhood, so there is no need

for Theorems 3 or 4. Since the NLC is known to hold in 𝑇∗𝑆2
[Hin04] and

𝑇∗R𝑃2
[HPW16], we thus directly get the following.

Corollary 13 Conjectures A and C hold for Lagrangian 2-spheres or projective planes.

1.3 Applications
We end this introduction with several applications of our results. These are

divided in four parts: additional rigidity results on Lagrangians with re-

gards to Hamiltonian diffeomorphisms, further study on the local topology
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of ℒHam(𝐿), new results on the space of (H-)rational Lagrangians with a fixed

rationality constant, and some computations of numerical invariants. The

next to last part has further implications when it comes to the space of all

Lagrangians of a given symplectic manifold.

This last part of the introduction is intended to be almost completely self-

contained, using the results above as black boxes (except for a couple of refer-

ences to further results when finer technical variants are needed.)

𝐶0 rigidity of Hamiltonian diffeomorphisms There is a natural variant

of Conjecture B where we ask not that 𝐿′ be close to 𝐿, but rather that the

Hamiltonian diffeomorphism sending 𝐿 to 𝐿′ be small. More precisely, we can

make the following conjecture.

Conjecture D Let 𝐿 be a displaceable Lagrangian in a symplectic manifold 𝑀. There
exists 𝛿 > 0 with the following property. If 𝜑 is a Hamiltonian diffeomorphism of 𝑀
and 𝑑𝐶0(1, 𝜑) < 𝛿, then 𝐿 ∩ 𝜑(𝐿) ≠ ∅.

In other words, any Hamiltonian diffeomorphism displacing 𝐿 is uniformly

𝐶0
-bounded away from 0.

The existence of such a bound is not at all trivial: if 𝐿 is a displaceable

𝑛-dimensional submanifold which is not Lagrangian, then it can be displaced

by an arbitrarily 𝐶0
-small Hamiltonian diffeomorphism [LS94]. Moreover, this

does not follow from the fact that Lagrangians have positive displacement

energy, since there are Hamiltonian diffeomorphisms which are arbitrarily 𝐶0
-

small, but arbitrarily Hofer-large.

However, this is not expected to be the case for the spectral metric, that

is, 𝐶0
-small Hamiltonian diffeomorphisms should also have small spectral

norm. More precisely, Conjecture D follows from the fact that Lagrangians have

positive spectral displacement energy [AAC23] in the cases where it is known

that the spectral metric is 𝐶0
-continuous, i.e. when 𝑀 is C𝑛 [Vit92], a closed

surface [Sey13], closed and symplectically aspherical [BHS21], C𝑃𝑛 [She22], or

closed and negative monotone [Kaw22].

In the context of this paper, Conjecture D is implied by Conjecture A or

by the Hamiltonian version of Conjecture B above when it holds. However, it

turns out to be much easier to prove than either one of these conjectures. More

precisely, we have the following lemma.

Lemma 14 For every Lagrangian 𝐿, there exists 𝛿 > 0 with the following property.
Suppose that 𝜓 : 𝑀 → 𝑀 is a map such that 𝑑𝐶0(1,𝜓) < 𝛿 and 𝜓(𝐿) is Lagrangian.
Then, 𝜓(𝐿) is 𝐻-exact in some 𝒲(𝐿).

Proof. Take a Riemannian metric 𝑔 on𝑀 which corresponds to a Sasaki metric

on𝑇∗𝐿 on a Weinstein neighbourhood𝒲(𝐿). With such a metric, the geodesics

starting at 𝐿 and going to 𝐿′ = 𝜓(𝐿) stay in 𝒲(𝐿) (see Lemma A.4 of [Cha24]

for example). Therefore, if we assume that 𝛿 is smaller than the injectivity

radius 𝑟inj(𝑇𝑀|𝐿) of the Riemannian exponential of 𝑔 restricted to 𝑇𝑀|𝐿, we

get for every 𝑥 ∈ 𝐿 a unique geodesic 𝛾𝑥 : [0, 1] → 𝑀 such that 𝛾𝑥(0) = 𝑥,

𝛾𝑥(1) = 𝜓(𝑥), and 𝛾𝑥([0, 1]) ⊆ 𝒲(𝐿). Moreover, 𝛾𝑥 smoothly depends on

𝑥. Therefore, (𝑥, 𝑡) ↦→ 𝛾𝑥(𝑡) defines a smooth homotopy in 𝒲(𝐿) from the
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inclusion 𝜄 : 𝐿 ↩→ 𝒲(𝐿) to 𝜑𝜄. Since 𝜄 is a homotopy equivalence, then so must

be 𝜑𝜄. In particular, 𝐻2(𝒲(𝐿), 𝐿′) = 0, and 𝐿′ is 𝐻-exact. □

Then, it suffices to use Theorem 4 to get the following.

Corollary 15 Conjecture D holds for 𝐻-rational Lagrangians.

Likewise, we get a rigidity result for sequences of Hamiltonian or symplectic

diffeomorphisms from Theorem 6 and Corollary 8.

Corollary 16 Let {𝜓𝑖} be a sequence of symplectomorphisms with (weak) 𝐶0 limit
𝜓 ∈ 𝐶0(𝑀,𝑀), and let 𝐿 ∈ ℒ(𝜏). If 𝜓(𝐿) is a smooth 𝑛-submanifold, then 𝜓(𝐿) ∈
ℒ(𝜏).

If, furthermore, the NLC holds on 𝑇∗𝐿 and

(a) if {𝜓𝑖} ⊆ Ham(𝑀), then 𝜓(𝐿) ∈ ℒHam(𝐿);
(b) if {𝜓𝑖} ⊆ Symp

0
(𝑀), then 𝜓(𝐿) ∈ ℒSymp

0
(𝐿).

Note that a similar result about the continuity of the area spectrum under

𝐶0
limits was shown by Membrez and Opshtein [MO21].

Local contractibility of ℒHam(𝐿) Even though we need the NLC in all

cases where we can prove Conjecture A, its implication that ℒHam(𝐿) is locally

path connected turns out to be easier to prove. More precisely, we get the

following.

Corollary 17 Suppose that 𝐿 is 𝐻-rational and respects the hypotheses of Theorem 3.
Then ℒHam(𝐿) is locally contractible in the Hausdorff metric.

Note that this is not quite the type of results we mentioned earlier in the

introduction. Indeed, we do not claim that the Hausdorff-continuous path from

𝐿′ to 𝐿 in a small neighbourhood of 𝐿 is generated by an actual Hamiltonian

isotopy, simply that it stays at all time in ℒHam(𝐿).

Proof. Note that it suffices to prove this statement at 𝐿. Fix a Weinstein neigh-

bourhood Ψ : 𝐷∗
𝑟𝐿 → 𝒲(𝐿) as given by the conclusions of Theorems 3 and 4.

Then, every 𝐿′ ∈ ℒHam(𝐿) which is in 𝒲(𝐿) is exact in that neighbourhood.

We can thus take

(𝐿′, 𝑡) ↦→ Ψ(𝑡Ψ−1(𝐿′))

to be the contraction. Indeed, exactness in 𝒲(𝐿) ensures that this is a Hamil-

tonian isotopy for all 𝑡 > 0. But exactness also implies that the projection

Ψ−1(𝐿′) → 𝑇∗𝐿 → 𝐿 is a homotopy equivalence [AK18]. In particular, that

projection must be surjective, otherwise 𝐻𝑛(𝐿′) → 𝐻𝑛(𝐿) ≠ 0 would be zero.

Therefore, 𝐿′ being close to 𝐿 implies that 𝐿 is close to 𝐿′. This mean that the

Hausdorff limit ofΨ(𝑡Ψ−1(𝐿′)) as 𝑡 → 0 is precisely 𝐿, i.e. the above contraction

is indeed continuous. □
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Spaces of Lagrangians with fixed 𝐻-rationality constant We now turn

our attention to the space ℒ(𝐿, 𝜏) of all Lagrangians of 𝑀 with the diffeomor-

phism type of 𝐿 and 𝐻-rationality constant 𝜏.

From Theorems 3 and 4, we get the following.

Corollary 18 Let 𝐿 be a 𝐻-rational Lagrangian in a tame symplectic manifold, and
denote by 𝜏 its 𝐻-rationality constant. Then, ℒSymp

0
(𝐿) is open in ℒ(𝐿, 𝜏) in the

𝐶1 topology. If moreover 𝐿 respects the hypotheses of Theorem 3 or 𝐻1(𝐿;R) = 0 and
the NLC holds on 𝑇∗𝐿, then the same holds in the Hausdorff topology.

Proof. Note that it suffices to prove that there is an open neighbourhood of

𝐿 in ℒ(𝐿, 𝜏) which is fully in ℒSymp
0
(𝐿). Let thus Ψ : 𝐷∗

𝑟𝐿 → 𝒲𝑟(𝐿) be

the Weinstein neighbourhood given by Proposition 7. Then, every graph in

𝒲(𝐿) must be, up to a global symplectic isotopy, exact. Since exact graphs

are Hamiltonian isotopic to the zero-section, such a graph must thus be in

ℒSymp
0
(𝐿). This proves the 𝐶1

case.

For the Hausdorff case, suppose that 𝑟 is also small enough so that The-

orem 3 and Proposition 7 hold in 𝒲𝑟(𝐿). Then, any 𝐿′ ∈ ℒ(𝐿, 𝜏) such that

𝐿′ ⊆ 𝒲(𝐿) must be, up to some global symplectic isotopy, exact in 𝒲(𝐿) —

we still denote by 𝐿′ its image under the isotopy. As in the proof of Corol-

lary 17, we note that the path 𝑡 ↦→ Ψ(𝑡Ψ−1(𝐿′)), 𝑡 ∈ [0, 1], is continuous in the

Hausdorff metric. Furthermore, it is a Hamiltonian isotopy for all 𝑡 > 0. In

particular, 𝐿 must be in the Hausdorff closure of ℒHam(𝐿′) ⊆ ℒSymp
0
(𝐿′).

But ℒSymp
0
(𝐿′) is Hausdorff closed by Corollary 8 and the hypotheses on 𝐿.

Therefore, 𝐿′ ∈ ℒSymp
0
(𝐿). □

Putting this result with the Lagrangian flux conjecture, we get the following

result.

Corollary 19 Let 𝐿 and 𝜏 be as above. The (path) connected components of ℒ(𝐿, 𝜏)
in the 𝐶1 topology are precisely the orbits of Symp

0
(𝑀). In particular, the quotient

ℒ(𝐿, 𝜏)/Symp
0
(𝑀) is discrete in the induced topology. If moreover 𝐿 respects the

hypotheses of Theorem 3 or 𝐻1(𝐿;R) = 0 and the NLC holds on 𝑇∗𝐿, then the same
holds in the Hausdorff metric.

For example, this means that a 𝜌-monotone Clifford torus can never be

reached from a Chekanov torus (or any monotone special torus) by a 𝐶1
-

continuous path in ℒ(T2 , 2𝜌). Contrast this with the fact that all these tori are

Lagrangian isotopic [RGI16].

Proof. Combining Corollaries 9 and 18, we get that for all 𝐿 ∈ ℒ(𝐿, 𝜏), the orbit

ℒSymp
0
(𝐿) is both closed and open in ℒ(𝐿, 𝜏) with the 𝐶1

topology. Therefore,

ℒSymp
0
(𝐿) must be a union of connected components of 𝐿 ∈ ℒ(𝐿, 𝜏) by point-

set topology. Since ℒSymp
0
(𝐿) is obviously path connected, it must be both

a connected component and a path connected component of 𝐿 ∈ ℒ(𝐿, 𝜏). The

proof in the Hausdorff setting is completely analogous. □

Note that, when 𝐻1(𝐿;R) → 𝐻1(𝑀;R) is zero, the role of ℒSymp
0
(𝐿) in

the above proof can be replaced by ℒHam(𝐿). In particular, both ℒSymp
0
(𝐿)

and ℒHam(𝐿) are the connected component of ℒ(𝜏) containing 𝐿 in the 𝐶1

topology, so they must be equal. This can be seen as a generalization that

Symp
0
(𝑀) = Ham(𝑀) for closed manifolds with 𝐻1(𝑀;R) = 0.
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Corollary 20 Let 𝐿 be 𝐻-rational and such that 𝐻1(𝐿;R) → 𝐻1(𝑀;R) is zero.
There is a symplectic isotopy {𝜓𝑡} of 𝑀 such that 𝜓1(𝐿) = 𝐿′ if and only if there is
a Hamiltonian isotopy {𝜑𝑡} such that 𝜑1(𝐿) = 𝐿′. In other words, ℒSymp

0
(𝐿) =

ℒHam(𝐿).

We also have the following.

Corollary 21 The space ∪𝜏≥0ℒ(𝐿, 𝜏)/Symp
0
(𝑀) is Hausdorff in the topology in-

duced by the 𝐶1 topology. In particular, the quotient ℒLag(𝐿)/Symp
0
(𝑀) can only

be non-Hausdorff at orbits corresponding to𝐻-irrational Lagrangians. The same holds
for Symp

0
(𝑀) replaced by Ham(𝑀).

The part on Symp
0
(𝑀) follows directly from Corollary 19. The part with

Ham(𝑀) is a finer result that also makes use of the local description of 𝐿 in

ℒ(𝐿, 𝜏) given by Corollary 43 below.

It has been proven by Ono [Ono08] and Solomon [Sol13] that the quotient

ℒLag(𝐿)/Ham(𝑀) is Hausdorff in the 𝐶1
topology in different settings. Most

notably, they both ask that 𝐻1(𝐿;R) → 𝐻1(𝑀;R) be injective, which makes

𝐿 automatically 𝐻-exact. Corollary 21 shows the difficulty of relaxing the

condition that 𝐻1(𝐿;R) → 𝐻1(𝑀;R) be injective: 𝐻-irrational Lagrangians can

create non-Hausdorff points in the quotient. In fact, Theorem 1 shows that in

dimension 2𝑛 ≥ 6, this always happens. That this is a problem was already

mentioned by Ono in his work on the subject.

Quantitative symplectic topology When Theorem 3 holds, it allows for

a new measurement associated with a Lagrangian embedding 𝑄 ↩→ 𝑀 with

image 𝐿 and a Riemannian metric 𝑔 on 𝑄:

𝑐𝑒(𝑀,𝐿)(𝑄, 𝑔) := sup

{
𝑟 ≥ 0

��
all 𝐿′ ∈ ℒHam(𝐿) in 𝑊

𝑔
𝑟 (𝐿) are exact

}
.

By writing 𝒲 𝑔
𝑟 (𝐿), we want to underline that it is the image of a Weinstein

neighbourhood Ψ : 𝐷∗
𝑟𝑄 → 𝒲𝑟(𝐿), where the radius 𝑟 of the codisk bundle

is computed using 𝑔. We write 𝑐𝑒(𝑀,𝐿)(𝑄, 𝑔) = 0 if 𝐿 has no neighbourhood of

local exactness, e.g. for the example given by Theorem 1.

Note that 𝑐𝑒(𝑀,𝐿)(𝑄, 𝑔) is invariant under symplectomorphisms, so it is truly

a symplectic quantity. Furthermore, 𝑐𝑒(𝑀,𝐿)(𝑄, 𝑔) is bounded from above by

the size of the largest Weinstein neighbourhood of 𝐿 in 𝑀, i.e. by the relative

capacity

𝑐𝒲(𝑀,𝐿)(𝑄, 𝑔) := sup

{
𝑟 > 0

�� 𝐿 admits a neighbourhood 𝒲 𝑔
𝑟 (𝐿)

}
.

This can in turn be bounded in terms of Poisson bracket invariants of 𝐿 in

𝑀 [MO21].

Going through the proof of Proposition 2 (see Appendix A for details) gives

the following quantitative counterpart.

Corollary 22 Let 𝐿 be a closed curve in a surface 𝑀. If 𝐿 bounds an embedded disk,
let 𝐴 be the smallest area of such a disk. If there are no such disks, we set 𝐴 = +∞. We
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have that

𝑐𝑒(𝑀,𝐿)(𝑆
1 , 𝑔0) = min

{
𝐴

2

, 𝑐𝒲(𝑀,𝐿)(𝑆
1 , 𝑔0)

}
,

where 𝑔0 is the flat metric so that 𝑆1 has length 1.

Note that
𝐴
2

is precisely half the radius of the largest Weinstein neigh-

bourhood of the circle 𝑇(𝐴) enclosing area 𝐴 in C, i.e. 𝑐𝑒(C,𝑆1(𝐴))(𝑆
1 , 𝑔0) =

1

2
𝑐𝒲(C,𝑆1(𝐴))(𝑆

1 , 𝑔0).
In general, however, it is hard to get an estimate on 𝑐𝑒(𝑀,𝐿)(𝑄, 𝑔), as it is hard

to get one on the neighbourhood for which Theorem 3 holds. One exception

to this is when 𝑄 = 𝐾 is the Klein bottle: in this case, the theorem holds on

every Weinstein neighbourhood (see Theorem 39 below). Therefore, the bound

comes only from the proof of Theorem 4 — more precisely, from Lemma 40

and Proposition 41. In particular, we have the following bound.

Corollary 23 Let 𝐿 be a 𝐻-rational Lagrangian Klein bottle with 𝐻-rationality con-
stant 𝜏. We have that

𝑐𝑒(𝑀,𝐿)(𝐾, 𝑔) ≥ min

{
𝜏

ℓmin

𝑔 (𝛽)
, 𝑐𝒲(𝑀,𝐿)(𝐾, 𝑔)

}
,

where ℓmin

𝑔 (𝛽) denotes the minimal length in 𝑔 of a curve representing the generator 𝛽
of the free factor of 𝐻1(𝐾;Z) = Z ⊕ Z2.

Remarks 4. There are of course many variations of 𝑐𝑒(𝑀,𝐿)(𝑄, 𝑔) that one could take.
For example, one could be interested in 𝑐𝐴(𝑀,𝐿)(𝑄, 𝑔) or 𝑐𝐵(𝑀,𝐿)(𝑄, 𝑔), the largest neigh-
bourhood on which Conjecture A or Conjecture B, respectively, holds. However, if one
believes in the NLC, then we should always have 𝑐𝐴 = 𝑐𝑒 . Moreover, we have not found
an example where 𝑐𝐵 ≠ 𝑐𝒲 . Therefore, 𝑐𝑒 seems to be the more fruitful version of the
relative capacity.
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2 An example to counter them all (but one)
We now explain the construction of the Lagrangian tori from Theorem 1. These

tori support the fact that we need in general to require some type of rationality
condition on our Lagrangians for Conjectures A, B or C to hold.
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We start with the case when 𝑀 = C3
. Consider the product torus 𝐿 =

𝑇(1, 2, 1 + 𝛼) := 𝑇(1) × 𝑇(2) × 𝑇(1 + 𝛼), where 𝛼 > 0 is an irrational number

and 𝑇(𝐴) ⊆ C denotes the round circle enclosing area 𝐴 > 0. By work of

Chekanov [Che96], another product torus 𝑇(𝑎, 𝑏 + 𝑎, 𝑐 + 𝑎) with 𝑎, 𝑏, 𝑐 > 0

is Hamiltonian isotopic to 𝐿 in C3
if and only if 𝑎 = 1 and spanZ{𝑏, 𝑐} =

spanZ{1, 𝛼} =: 𝐺.

Since 𝛼 is irrational, Dirichlet’s approximation theorem ensures that there

exist relatively prime integers 𝑝 and 𝑞 such that |𝑝+ 𝑞𝛼| < 𝜀 for any 𝜀 > 0. This

shows that spanZ{1, 𝛼} is dense in R. We now want to show that we may take

𝑏 and 𝑐 arbitrarily small and still have them generate 𝐺. Fix 𝜀 > 0, and take

𝑏 = 𝑝 + 𝑞𝛼 as above.

Note that 𝑐 = 𝑟 + 𝑠𝛼 will be such that spanZ{𝑏, 𝑐} = 𝐺 if and only if the

matrix (
𝑝 𝑟
𝑞 𝑠

)
has determinant ±1. Pick 𝑟0 and 𝑠0 such that the corresponding matrix has

determinant ±1 — it exists since 𝑝 and 𝑞 are relatively prime. Without loss of

generality, we may suppose that 𝑝 + 𝑞𝛼 and 𝑟0 + 𝑠0𝛼 are positive. Note that if

𝑟 and 𝑠 are of the form 𝑟 = 𝑟0 − 𝑖𝑝 and 𝑠 = 𝑠0 − 𝑖𝑞 for some 𝑖 ∈ Z, then the

corresponding matrix also has determinant ±1. But we have that

|𝑟 + 𝑠𝛼| = (𝑟0 + 𝑠0𝛼) − 𝑖(𝑝 + 𝑞𝛼) ∀𝑖 ≤ 𝑟0 + 𝑠0𝛼
𝑝 + 𝑞𝛼 .

Therefore, if we take 𝑖 = ⌊ 𝑟0+𝑠0𝛼
𝑝+𝑞𝛼 ⌋, then we have that

|𝑐| ≤ (𝑝 + 𝑞𝛼) < 𝜀,

which proves that 𝑏 and 𝑐 may be taken arbitrarily small and still generate 𝐺.

This means that we can take 𝑇(1, 1 + 𝑏, 1 + 𝑐) which are all in the Hamil-

tonian orbit of 𝐿 but are arbitrarily 𝐶1
-close to the monotone torus 𝑇(1, 1, 1).

Therefore, without the 𝐻-rational hypothesis on 𝐿, not even the Lagrangian 𝐶1

flux conjecture is true in C3
.

Note that a similar argument as above actually implies that the set of 𝑏, 𝑐 > 0

such that 𝑇(1, 1 + 𝑏, 1 + 𝑐) is Hamiltonian isotopic to 𝐿 is dense in R2

>0
. This

means that any neighbourhood 𝑈 of such a torus 𝑇(1, 1 + 𝑏, 1 + 𝑐) contains

infinitely many 𝑇(1, 1 + 𝑏′, 1 + 𝑐′) in the same Hamiltonian orbit. But 𝑇(1, 1 +
𝑏, 1 + 𝑐) ∩ 𝑇(1, 1 + 𝑏′, 1 + 𝑐′) = ∅ if 𝑏 ≠ 𝑏′ or 𝑐 ≠ 𝑐′. Therefore, without the

𝐻-rational hypothesis on 𝐿, not even Conjecture B is true in C3
.

We now explain how to generalize the result to any manifold of dimension

2𝑛 ≥ 6. First note that by taking a product with 𝑇(1)𝑛−3
, we get a coun-

terexample to our conjectures in C𝑛 whenever 𝑛 ≥ 3. Furthermore, by Theo-

rem 1.1(ii) of [CS16], the Hamiltonian isotopy from 𝑇(1, . . . , 1, 1 + 𝑏, 1 + 𝑐) to

𝑇(1, . . . , 1, 1 + 𝑏′, 1 + 𝑐′) can be taken to be fully supported in the ball 𝐵2𝑛(𝐴) of

capacity𝐴 = 𝑛+1+max{𝑏+𝑐, 𝑏′+𝑐′}, i.e. of radius

√
𝐴
𝜋 . In particular, for 𝑏, 𝑏′, 𝑐,

and 𝑐′ small enough, it can be supported in the ball of capacity 𝑛+2. Therefore,

we get a counterexample in 𝑀 = 𝐵2𝑛(𝑛 + 2) But then, by simply rescaling the
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ball, we get a counterexample in the ball 𝐵2𝑛(𝐴) for any 𝐴 > 0. By the Darboux

theorem, any symplectic manifold 𝑀2𝑛
admits a symplectic embedding of the

ball 𝐵2𝑛(𝐴) for 𝐴 small enough, which gives the counterexample for every 𝑀
with dim𝑀 ≥ 6.

Remarks 5. Interestingly enough, the above counterexample does not work in dimension
4. Indeed, Chekanov’s classification of product tori implies that every product torus
𝐿 in C2 has a 𝐶1 neighbourhood 𝑈 such that ℒHam(𝐿) ∩ 𝑈 = {𝐿}. In particular,
the 𝐶1 version of Conjecture A holds for 𝐿, and if its Hamiltonian orbit is not closed,
then the limit cannot be a product or a Chekanov torus. By Theorem 1.3 of [CS16], the
same holds for product tori in small enough Darboux balls in subtame symplectically
aspherical symplectic 4-manifolds.

However, we can use Theorem 1.5 of [CS16] to construct — in a similar fashion as
above — a counterexample to Conjecture B in any (spherically) irrational symplectic
4-fold.

3 Relations between homological rationality and
exactness and their standard counterparts
In this section, we discuss relations between standard rationality/exactness

and 𝐻-rationality/𝐻-exactness. In Section 3.1, we prove the general following

fact: for a closed Lagrangian of the cotangent bundle, being 𝐻-exact is equiv-

alent to being isotopic to an exact Lagrangian. In Section 3.2, we first explain

some specific situations in which 𝐻-rationality reduces to rationality. We then

however give an example which illustrates why we generally work with the

𝐻-rationality condition rather than the standard rationality one.

3.1 The central lemma
The following lemma will prove to be quite useful in order to prove the main

results of this work.

Lemma 24 Let 𝐿 be a closed Lagrangian in 𝑇∗𝑄, the following are equivalent:

(i) 𝐿 is isotopic to an exact Lagrangian via Lagrangian submanifolds;
(ii) 𝐿 is symplectically isotopic to an exact Lagrangian;
(iii) 𝐿 is 𝐻-exact;
(iv) the composition 𝐿→ 𝑇∗𝑄 → 𝑄 is a homotopy equivalence.

Proof. Let 𝑖∗ : 𝐻1(𝑇∗𝑄;R) → 𝐻1(𝐿;R) be induced by the inclusion 𝑖 : 𝐿→ 𝑇∗𝑄.

𝐻-exactness of 𝐿 ensures that the form 𝑖∗𝜆 is closed so that it defines a class

[𝑖∗𝜆] ∈ 𝐻1(𝐿;R). Because the canonical projection 𝜋 : 𝑇∗𝑄 → 𝑄 is a homotopy

equivalence, there exists a closed 1-form 𝜎 ∈ Ω1(𝑄) such that [𝑖∗𝜆] = [𝑖∗(𝜋∗𝜎)].
Now, 𝜎 induces a fibrewise symplectomorphism 𝜓𝜎 of 𝑇∗𝑄 which satisfies

[𝜓∗
𝜎(𝑖∗𝜆)] = 0 so that 𝜓𝜎 maps 𝐿 to an exact Lagrangian. This shows that (iii)

yields (ii), which obviously yields (i).
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Note also that (i) implies that the inclusion 𝐿 ↩→ 𝑇∗𝑄 is homotopic to

the inclusion of an exact Lagrangian. But, when 𝐿 is exact, the composition

𝐿→ 𝑇∗𝑄 → 𝑄 is a (simple) homotopy equivalence [AK18], i.e. (iv) holds.

Finally, if (iv) holds, then 𝐻2(𝑇∗𝑄, 𝐿) = 0, and we have (iii). □

3.2 From rationality to 𝐻-rationality
Obviously, 𝐻-rationality implies usual rationality, i.e. 𝜔(𝐻2(𝑀, 𝐿)) being dis-

crete implies that 𝜔(𝜋2(𝑀, 𝐿)) also is. Furthermore, in many cases, these con-

ditions are equivalent. This is the case, for example, when 𝜋1(𝑀) = 0. Indeed,

in this case, the relative Hurewicz morphism 𝜋2(𝑀, 𝐿) → 𝐻2(𝑀, 𝐿;Z) can be

shown to be surjective. Expanding on this idea, we get the following.

Lemma 25 Suppose that [𝜋1(𝑀),𝜋1(𝑀)] is finite. Then, we have that

𝑁𝜔(𝐻2(𝑀, 𝐿;Z)) ⊆ 𝜔(𝜋2(𝑀, 𝐿)) + 𝜔(𝐻2(𝑀;Z)),

where 𝑁 is the order of [𝜋1(𝑀),𝜋1(𝑀)]. In particular, if 𝜋1(𝑀) is abelian, then we
have equality.

Proof. We consider the following commutative diagram.

𝜋2(𝑀) 𝜋2(𝑀, 𝐿) 𝜋1(𝐿) 𝜋1(𝑀)

𝐻2(𝑀) 𝐻2(𝑀, 𝐿) 𝐻1(𝐿) 𝐻1(𝑀)

𝑗

ℎ2

𝜕

ℎ′′
2

𝑖

ℎ′
1

ℎ1

𝑗 𝜕 𝑖

Here, the rows are the long exact sequences of the pair (𝑀, 𝐿) in homotopy

and homology with integer coefficients, respectively, and the columns are the

various Hurewicz morphisms; it commutes by naturality of the Hurewicz map.

We make the abuse of notation of using the same symbols for morphisms in

homotopy and homology, since it will be clear from the context which one we

are using when.

The proof follows from a straightforward diagram chasing argument, but

we still give the details. Let 𝐴 ∈ 𝐻2(𝑀, 𝐿). Since ℎ′
1

is surjective — the

Hurewicz morphism in first degree is simply the abelianization morphism —

there is some 𝑎 ∈ 𝜋1(𝐿) such that 𝜕(𝐴) = ℎ′
1
(𝑎). But note that

ℎ1𝑖(𝑎) = 𝑖ℎ′
1
(𝑎) = 𝑖𝜕(𝐴) = 0

by exactness at 𝐻1(𝐿). Therefore, 𝑖(𝑎) ∈ Ker ℎ1 = [𝜋1(𝑀),𝜋1(𝑀)]. By hypothe-

sis, the order 𝑁 of [𝜋1(𝑀),𝜋1(𝑀)] is finite, so that 𝑖(𝑁𝑎) = 0. Therefore, there

is some 𝑢 ∈ 𝜋2(𝑀, 𝐿) such that 𝜕(𝑢) = 𝑁𝑎. But note that

𝜕(𝑁𝐴 − ℎ′′
2
(𝑢)) = ℎ′

1
(𝑁𝑎) − ℎ′

1
(𝜕𝑢) = 0.

By exactness at 𝐻2(𝑀, 𝐿), there is thus some 𝐵 ∈ 𝐻2(𝑀) such that 𝑁𝐴 = 𝑗(𝐵) +
ℎ′′

2
(𝑢). To conclude, we only note that 𝜔(𝑗(𝐵)) = 𝜔(𝐵) and 𝜔(ℎ′′

2
(𝑢)) = 𝜔(𝑢). □

From the above lemma, we directly get the following result.
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Corollary 26 If [𝜋1(𝑀),𝜋1(𝑀)] is finite and 𝜔(𝐻2(𝑀;Z)) ⊆ 𝜔(𝜋2(𝑀)), then every
rational Lagrangian with rationality constant 𝜏 is𝐻-rational with rationality constant
𝑘
𝑁 𝜏 for some 𝑘 ∈ N. Moreover, if 𝜋1(𝑀) is abelian, we have 𝑘 = 𝑁 = 1. In particular,
in all those cases, every weakly exact Lagrangian is 𝐻-exact.

Note that this corollary recovers the statement at the start of the subsection

that𝐻-rationality and rationality are the same when𝜋1(𝑀) = 0. However, what

is perhaps most interesting is the case 𝑀 = 𝐷∗
𝑟𝐿. In that case, the condition on

𝜔(𝐻2(𝑀;Z)) is automatically satisfied, since 𝜔 is exact, and the condition on

the commutator subgroup of 𝜋1(𝑀) becomes that [𝜋1(𝐿),𝜋1(𝐿)] be finite. We

thus get a new version of Theorem 4.

Corollary 27 Let 𝐿 be a rational Lagrangian submanifold of (𝑀, 𝜔) such that
[𝜋1(𝐿),𝜋1(𝐿)] is finite, and let 𝐿′ ∈ ℒHam(𝐿) be a Lagrangian included in a Wein-
stein neighbourhood 𝒲𝑟(𝐿) of size 𝑟 > 0 such that 𝐿′ is weakly exact in 𝒲𝑟(𝐿). Then,
for a maybe smaller 𝑟, 𝐿′ is exact in 𝒲𝑟(𝐿).

Since 𝐻-exactness implies weak exactness, Theorem 3 also gives a neigh-

bourhood of weak exactness. However, one could also work directly with

rationality (see Remark 6 below). Furthermore, there is also a version of Theo-

rem 6 in terms of usual rationality. Therefore, we also have a rational version

of the weak Lagrangian 𝐶0
flux conjecture.

Corollary 28 Let 𝐿 be a rational Lagrangian in a symplectic manifold 𝑀 such that
[𝜋1(𝐿),𝜋1(𝐿)] is finite. Suppose that

(i) 𝐿 satisfies the hypotheses of Theorem 3 or 𝐻1(𝐿;R) = 0,
(ii) and the nearby Lagrangian conjecture holds in 𝑇∗𝐿.

Then, ℒHam(𝐿) and ℒSymp
0
(𝐿) is Hausdorff-closed in SMan(𝐿).

We end this subsection with an example which showcases the need for

[𝜋1(𝐿),𝜋1(𝐿)] to be finite. This also exemplifies why we are working with

𝐻-rational Lagrangians and not just rational Lagrangians.

Example. In [Pol93], Polterovich constructs for any vector 𝑣 ∈ R𝑛 and any flat
manifold 𝑄 a Lagrangian torus 𝐿𝑣 in 𝑇∗𝑄. This torus has the property that

(i) for a contractible open𝑈 ⊆ 𝑄, 𝐿𝑣 ∩ 𝑇∗𝑄|𝑈 = 𝑈 × {𝑣} ⊆ 𝑈 ×R𝑛;
(ii) the map 𝐿𝑣 → 𝑄 given by restriction of 𝜋 : 𝑇∗𝑄 → 𝑄 is a covering.

We concentrate our efforts on the simplest case: 𝑛 = 2 and 𝑄 = 𝐾 is the Klein bottle.
In that case, 𝐿𝑣 → 𝐾 is the 2:1 cover.

First note that 𝐿𝑣 is weakly exact in 𝑇∗𝐾. To see this, denote by 𝑝 : T2 → 𝐾 the
2:1 cover and take �̃� : 𝑇∗T2 → 𝑇∗𝐾 to be its lift using the flat metrics on T2 and
𝐾. Point (i) gives that �̃�−1(𝐿𝑣) = T2 × {𝑣} ⊆ 𝑇∗T2 = T2 × R2. But any disk 𝑢
with boundary along 𝐿𝑣 admits a lift �̃� in 𝑇∗T2 with boundary along T2 × {𝑣}. Since
T2 × {𝑣} ↩→ 𝑇∗T2 is a homotopy equivalence, 𝜋2(𝑇∗T2 ,T2 × {𝑣}) = 0, and the lift �̃�
is contractible. But then, so must be 𝑢, and we have that 𝜋2(𝑇∗𝐾, 𝐿𝑣) = 0.

On the other hand, 𝐿𝑣 is not 𝐻-exact. Indeed, let 𝛾 : 𝑆1 → 𝐾 be a loop admitting
a lift to 𝐿𝑣 , that is, [𝛾] ∈ 𝑝∗(𝜋1(T2)). Since 𝐿𝑣 → 𝐾 is a 2:1 cover, there are two
lifts �̃�1 and �̃�2 of 𝛾. Furthermore, each lift �̃�𝑖 defines a cylinder 𝐶𝑖 in 𝑇∗𝐾 by taking
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𝐶𝑖(𝑠, 𝑡) = 𝑡 �̃�𝑖(𝑠), (𝑠, 𝑡) ∈ 𝑆1 × [0, 1]. Note that 𝜕𝐶𝑖 = �̃�𝑖 ⊔−𝛾, where the minus sign
denotes the reversal of orientation. Therefore, 𝐶 := 𝐶1 ∪𝛾 −𝐶2 is a cylinder in 𝑇∗𝐾
with boundary along 𝐿𝑣 . Furthermore, it has area

𝜔0(𝐶) = 𝜆0(�̃�1) − 𝜆0(−�̃�2) = 2

∫
𝑆1

⟨𝑣, ¤𝛾(𝑠)⟩𝑑𝑠,

where ⟨·, ·⟩ denotes the Euclidean scalar product. In particular, if we take 𝛾 to be a
simple loop corresponding to a straight line in the fundamental domain of R2 defining
𝐾 = R2/𝜋1(𝐾) and 𝑣 to be positively proportional to ¤𝛾, then 𝜔0(𝐶) = 2|𝑣| > 0.
Therefore, such an 𝐿𝑣 is indeed not 𝐻-exact.

Finally, note that, as 𝑣 → 0, 𝐿𝑣 → 𝐾 in the Hausdorff metric. Therefore, however
small we take a neighbourhood of the zero-section of 𝑇∗𝐾, there is a weakly exact
Lagrangian in that neighbourhood which is not exact. Therefore, unlike in Theorem 4,
there is not an equivalent to Corollary 27 with ℒHam(𝐿) replaced by the space of all 𝜏-
rational Lagrangians if [𝜋1(𝐿),𝜋1(𝐿)] is not finite. In particular, most applications in
the introduction do not have equivalents in spaces of 𝜏-rational Lagrangians. That being
said, it is entirely possible that Corollary 27 holds in ℒHam(𝐿) without the hypothesis
on [𝜋1(𝐿),𝜋1(𝐿)] — it is however beyond the scope of the techniques presented in this
paper. In other words, with the present techniques, it is unclear whether Conjecture B
is true for rational Lagrangians in general, even if we restrict to those diffeomorphism
types covered by Theorem 3.

4 Proof of Theorem 3

We now turn our attention to Theorem 3. To obtain a proof, we introduce

some capacities inspired by work of Cieliebak and Mohnke [CM18] (Section 4.1

below), and we explain how their finiteness implies the theorem (Section 4.2).

We conclude by an explicit proof of Theorem 3 in the case of Klein bottles

which gives a better estimate in that case (Section 4.3). Note that the methods

developed here will also be central to the proof of Theorem 6.

4.1 Some capacities à la Cieliebak–Mohnke

In [CM18], Cieliebak and Mohnke introduce — and compute in some cases —

a capacity which measures, in a given domain, the largest possible area of a

minimal disk with boundary along a Lagrangian torus. We start by introducing

a small tweak in their definition, which will turn out to be quite useful in our

setting.

Let𝑄 be a closed connected 𝑛-manifold. For any 2𝑛-dimensional symplectic

manifold (𝑋, 𝜔), we define two classes of Lagrangians:

ℒ𝑄(𝑋) := {𝐿 = Im( 𝑓 : 𝑄 ↩→ 𝑋) | 𝑓 ∗𝜔 = 0, 𝜔(𝐻2(𝑋, 𝐿;Z)) ≠ 0}
ℒ

0

𝑄(𝑋) := {𝐿 = 𝑓 (𝑄) ∈ ℒ𝑄(𝑋) | 𝐻1( 𝑓 ) ⊗ R = 0},

where 𝐻1( 𝑓 ) ⊗ R is the map induced by 𝑓 on first homology with real coeffi-
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cients. In turn, this defines two capacities:

𝑐𝑄(𝑋) := sup{𝐴𝐻
min

(𝐿, 𝑋) | 𝐿 ∈ ℒ𝑄(𝑋)} ∈ [0,+∞] and

𝑐0

𝑄(𝑋) := sup{𝐴𝐻
min

(𝐿, 𝑋) | 𝐿 ∈ ℒ
0

𝑄(𝑋)} ∈ [0,+∞],

where

𝐴𝐻
min

(𝐿, 𝑋) := inf{𝜔(𝑢) | 𝑢 ∈ 𝐻2(𝑋, 𝐿;Z), 𝜔(𝑢) > 0}.

We take the convention that 𝑐𝑄(𝑋) = 0 (respectively 𝑐0

𝑄
(𝑋) = 0) if ℒ𝑄(𝑋) = ∅

(respectively ℒ
0

𝑄
(𝑋) = ∅). Obviously, we have that 𝑐0

𝑄
≤ 𝑐𝑄 . Finally, we set

𝑐all(𝑋) := sup 𝑐𝑄(𝑋) and

𝑐0

all
(𝑋) := sup 𝑐0

𝑄(𝑋),

where the supremum runs over all closed connected 𝑛-dimensional manifolds.

Remarks 6. The main differences between our definition and Cieliebak–Mohnke’s are
that we work with homology instead of homotopy, we allow any𝑄 and not only tori, and
we only look at Lagrangians which do bound some homology class with nonvanishing
area. The latter is central to our argument, as we will mainly be interested in the case
𝑋 = 𝐷∗𝑄, but such a manifold obviously admits an exact Lagrangian 𝑄. Therefore,
without this restriction, 𝑐𝑄(𝐷∗𝑄) would be infinite for trivial reasons, which runs
counter to our purpose here.

However, we could develop an entirely analogous theory using homotopy. With it,
we would get a version of Theorem 3 for rational Lagrangians, i.e. a neighbourhood
of weak exactness. However, this is in general not enough to get a neighbourhood of
exactness as in Theorem 4 — see Section 3.2 for a discussion as to when that is the case.

The following properties follow directly from the definition of the capacities.

Lemma 29 Let 𝑐 denote 𝑐𝑄 , 𝑐0

𝑄
, 𝑐all, or 𝑐0

all
. We have the two following properties.

(i) For all 𝛼 ≠ 0, we have that 𝑐(𝑋, 𝛼𝜔) = |𝛼|𝑐(𝑋, 𝜔).
(ii) If there is a 0-codimensional symplectic embedding 𝜄 : 𝑋 ↩→ 𝑋′ such that

𝐻2(𝑋′, 𝜄(𝑋);R) = 0, then 𝑐(𝑋) ≤ 𝑐(𝑋′).

The problem with the monotonicity property (ii) when 𝐻2(𝑋′, 𝜄(𝑋);R) ≠ 0

is that there could then be homology classes in 𝑋′
with smaller area than those

in 𝑋 — thus inverting the expected direction of the inequality. However, the

capacity 𝑐0

𝑄
partially goes around that issue.

Lemma 30 If there exists a 0-codimensional symplectic embedding 𝜄 : 𝑋 ↩→ 𝑋′ and
𝑋′ is exact, then 𝑐0

𝑄
(𝑋) ≤ 𝐵𝑐0

𝑄
(𝑋′), where 𝐵 ≥ 1 only depends on the torsion part of

𝐻1(𝑋;Z).

Proof. Let 𝜆′
be a primitive of the symplectic form of 𝜔′

on 𝑋′
. Then, 𝜆 = 𝜄∗𝜆′

is a primitive of 𝜔 on 𝑋. Fix 𝐿 = 𝑓 (𝑄) ∈ ℒ
0

𝑄
(𝑋). Since 𝐻1( 𝑓 ) ⊗ R = 0, we must
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have that 𝑓∗(𝐻1(𝑄;Z)) is a torsion subgroup of𝐻1(𝑋;Z). Take 𝐵 to be the order

of the torsion of 𝐻1(𝑋;Z) if it is nonzero, i.e. if

𝐻1(𝑋;Z) = Z𝑏 ⊕ Z
𝑝
𝑘
1

1

⊕ · · · ⊕ Z
𝑝
𝑘ℓ
ℓ

,

then 𝐵 = 𝑝
𝑘1

1
. . . 𝑝

𝑘ℓ
ℓ

. If 𝐻1(𝑋;Z) has no torsion, then we simply set 𝐵 = 1. We

thus have 𝐵 · 𝑓∗(𝐻1(𝑄;Z)) = 0. By the homology long exact sequence of the pair

(𝑋, 𝐿), this is equivalent to saying that 𝜕𝐻2(𝑋, 𝐿;Z) ⊇ 𝐵 · 𝐻1(𝐿;Z). Therefore,

we have that

𝐴𝐻
min

(𝐿, 𝑋) = inf

𝑢∈𝐻2(𝑋,𝐿;Z)
𝜔(𝑢)>0

𝜔(𝑢)

= inf

𝑎∈𝜕𝐻2(𝑋,𝐿;Z)
𝜆(𝑎)>0

𝜆(𝑎)

≤ inf

𝑎∈𝐵·𝐻1(𝐿;Z)
𝜆(𝑎)>0

𝜆(𝑎)

= 𝐵 · inf

𝑎∈𝐻1(𝐿;Z)
𝜆(𝑎)>0

𝜆(𝑎)

= 𝐵 · inf

𝑎′∈𝐻1(𝜄(𝐿);Z)
𝜆′(𝑎′)>0

𝜆′(𝑎′)

≤ 𝐵 · inf

𝑎′∈𝜕𝐻2(𝑋′ ,𝜄(𝐿);Z)
𝜆′(𝑎′)>0

𝜆′(𝑎′)

= 𝐵 · 𝐴𝐻
min

(𝜄(𝐿), 𝑋′).

Since 𝜄(ℒ0

𝑄
(𝑋)) ⊆ ℒ

0

𝑄
(𝑋′), this gives the desired inequality. □

We note that 𝑐𝑄(𝑋) and 𝑐0

𝑄
(𝑋) are equal whenever 𝐻1(𝑋;R) = 0. However,

there is another important case where they also coincide.

Lemma 31 If dim𝐻1(𝑄;R) = 1 and 𝑋 is exact, we have that 𝑐𝑄(𝑋) = 𝑐0

𝑄
(𝑋).

Proof. We fix 𝑄 and 𝑋 as above. We can assume that there is a Lagrangian

embedding 𝑓 : 𝑄 ↩→ 𝑋; otherwise both capacities are equal to 0. Since

dim𝐻1(𝑄;R) = 1, 𝐻1( 𝑓 ) ⊗R is either 0 or injective. Suppose that it is injective.

By the long exact sequence in homology, we then get that the boundary map

𝜕 : 𝐻2(𝑋, 𝐿;R) → 𝐻1(𝐿;R) is zero, where 𝐿 = 𝑓 (𝑄). Since 𝜔(𝐻2(𝑋, 𝐿;R)) =
𝜆(𝜕(𝐻2(𝑀, 𝐿;R))) whenever 𝜔 = 𝑑𝜆, we then conclude that 𝐿 is 𝐻-exact. In

particular, 𝐿 ∉ ℒ𝑄(𝑋). Therefore, we have that ℒ𝑄(𝑋) = ℒ
0

𝑄
(𝑋), which implies

the result. □

We end this short list of properties of our capacities by proving that they

behave relatively well under products.

Lemma 32 Suppose that 𝑄′ admits a 𝐻-exact Lagrangian embedding in 𝑋′. Then,
𝑐𝑄(𝑋) ≤ 𝑐𝑄×𝑄′(𝑋 × 𝑋′). In particular, 𝑐all(𝑋) ≤ 𝑐all(𝑋 × 𝑋′) as soon as 𝑋′ admits
a 𝐻-exact Lagrangian.
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If 𝑄′ admits any Lagrangian embedding in an exact 𝑋′ and 𝐻1(𝑄′
;R) = 0, then

we have that 𝑐0

𝑄
(𝑋) ≤ 𝑐0

𝑄×𝑄′(𝑋 × 𝑋′). In particular, 𝑐0

all
(𝑋) ≤ 𝑐0

all
(𝑋 × 𝑋′) as soon

as 𝑋′ admits a Lagrangian with vanishing first Betti number.

Proof. Let 𝐿 be the image of a Lagrangian embedding of 𝑄 in 𝑋, and let

𝐿′ be the image of a 𝐻-exact Lagrangian embedding in 𝑋′
. Note that we

can suppose that 𝐿 bounds some homology class, otherwise the inequality is

trivial. Let thus 𝑣 : (Σ, 𝜕Σ) → (𝑋 ×𝑋′, 𝐿× 𝐿′) for some compact surface Σ with

boundary. Projecting on each component gives maps 𝑢 : (Σ, 𝜕Σ) → (𝑋, 𝐿) and

𝑢′ : (Σ, 𝜕Σ) → (𝑋′, 𝐿′). Furthermore, if 𝜔 is the symplectic form of 𝑋 and 𝜔′
of

𝑋′
, we then have that

(𝜔 ⊕ 𝜔′)(𝑣) = 𝜔(𝑢) + 𝜔(𝑢′) = 𝜔(𝑢),

since 𝐿′ is 𝐻-exact. Taking infima over all 𝑣, we thus get

𝑐𝑄×𝑄′(𝑋 × 𝑋′) ≥ 𝐴𝐻
min

(𝐿 × 𝐿′, 𝑋 × 𝑋′) = inf
𝑢=𝑝𝑟1◦𝑣
𝜔(𝑢)>0

𝜔(𝑢) ≥ 𝐴𝐻
min

(𝐿, 𝑋).

We then get the inequality by taking the supremum over all possible 𝐿’s.

The case𝐻1(𝑄′
;R) = 0 is proven in much the same way. Indeed, exactness of

𝑋′
along with 𝐻1(𝑄′

;R) = 0 ensures that we also have (𝜔⊕𝜔′)(𝑣) = 𝜔(𝑢). Fur-

thermore, the vanishing of the first Betti number ensures that 𝐻1(𝑄 ×𝑄′
;R) →

𝐻1(𝑋 × 𝑋′
;R) vanishes if and only if 𝐻1(𝑄;R) → 𝐻1(𝑋;R) does. □

4.2 Finiteness of the capacities
Having enunciated the main properties of our capacities, we now explain how

one can get Theorem 3 from their finiteness. To do this, we first formulate a

meta result.

Proposition 33 Let 𝐿 be a Lagrangian in a symplectic manifold 𝑀. Suppose that
𝑐𝑄(𝐷∗

𝑅
𝐿) is finite for some 𝑅 > 0. For every 𝜏 ≥ 0, there exists a Weinstein neigh-

bourhood 𝒲(𝐿) of 𝐿 in 𝑀, such that all 𝐿′ ∈ ℒ(𝑄, 𝜏) included in 𝒲(𝐿) is 𝐻-exact
in 𝒲(𝐿).

If 𝑐all(𝐷∗
𝑅
𝐿) is finite for some 𝑅 > 0, then the same holds for all 𝐿′ ∈ ℒ(𝜏).

We recall that ℒ(𝜏) denotes the space of 𝜏-𝐻-rational Lagrangians of 𝑀;

ℒ(𝑄, 𝜏) is the subspace of those Lagrangians which have the diffeomorphism

type of 𝑄.

Proof. We only prove the case 𝑐𝑄(𝐷∗
𝑅
𝐿) < ∞, as the case 𝑐all(𝐷∗

𝑅
𝐿) < ∞ is

completely analogous. To do so, we make the following two observations.

(1) If 𝑐𝑄(𝐷∗
𝑅
𝐿) < ∞, then lim

𝑟→0

𝑐𝑄(𝐷∗
𝑟𝐿) = 0.

(2) If 𝐿′ ∈ ℒ(𝑄, 𝜏) and 𝐿′ ⊆ 𝒲𝑟(𝐿), then 𝑐𝑄(𝐷∗
𝑟𝐿) ≥ 𝜏 whenever we have that

𝜔(𝐻2(𝒲𝑟(𝐿), 𝐿′)) ≠ 0.

Obviously, the theorem follows directly from these two observations.
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The first observation follows directly from Property (i) of Lemma 29. In-

deed, we have that

lim

𝑟→0

𝑐𝑄(𝐷∗
𝑟𝐿) = lim

𝑟→0

𝑟

𝑅
𝑐𝑄(𝐷∗

𝑅𝐿) = 0.

Here, we have made use of the fact that (𝐷∗
𝑟𝐿, 𝜔0) is symplectomorphic to

(𝐷∗
𝑟/𝑎𝐿, 𝑎𝜔0) via the map (𝑞, 𝑝) ↦→ (𝑞, 𝑎𝑝). Note that Property (ii) of Lemma 29

implies that our capacity is invariant under symplectomorphisms.

For the second observation, take 𝐿′ ∈ ℒ(𝑄, 𝜏) such that 𝐿′ ⊆ 𝒲𝑟(𝐿), and

suppose there is some class 𝑢 ∈ 𝐻2(𝒲𝑟(𝐿), 𝐿′) such that 𝜔(𝑢) ≠ 0. Without loss

of generality, we may suppose that 𝜔(𝑢) > 0. By definition of 𝐻-rationality,

there is some 𝑘 ∈ Z such that 𝜔(𝐴) = 𝑘𝜏. Since 𝜔(𝑢) > 0, 𝑘 ≥ 1. Therefore,

𝜔(𝑢) ≥ 𝜏. Taking the infimum over all possible 𝑢’s, we get

𝜏 ≤ 𝐴𝐻
min

(𝐿′,𝒲𝑟(𝐿)) ≤ 𝑐𝑄(𝒲𝑟(𝐿)) = 𝑐𝑄(𝐷∗
𝑟𝐿).

Again, we have made use of the fact that 𝑐𝑄 is invariant under symplectomor-

phisms. □

Therefore, proving Theorem 3 reduces to proving finiteness of some capac-

ity in cotangent bundles. In general, this turns out to be nontrivial, since even

𝑐T𝑛 (𝑋) — the best-behaved version of our capacities — is only well understood

when 𝑋 is a convex or concave toric domain, which is far from the case we

need. We will explore this further down, but we already note some interesting

cases where finiteness is achievable.

Proposition 34 If 𝑐𝑄×𝑄′(𝐷∗
𝑅
(𝑄 × 𝑄′)) < ∞, then we have that 𝑐𝑄(𝐷∗

𝑅
𝑄) < ∞ and

𝑐𝑄′(𝐷∗
𝑅
𝑄′) < ∞.

Proof. It follows from Lemma 32 that

𝑐𝑄(𝐷∗
𝑅𝑄) ≤ 𝑐𝑄×𝑄′(𝐷∗

𝑅𝑄 × 𝐷∗
𝑅𝑄

′).
But𝐷∗

𝑅
𝑄×𝐷∗

𝑅
𝑄′

embeds symplectically in𝐷∗
2𝑅
(𝑄×𝑄′) and that embedding is a

homotopy equivalence. The proposition then follows directly from Property (ii)

of Lemma 29, since finiteness for some 𝑅 > 0 implies finiteness for every 𝑅 > 0

by Property (i) of that lemma. □

Note that if 𝐿 is a displaceable Lagrangian in a tame symplectic manifold,

𝐴𝐻
min

(𝐿) is a lower bound for its displacement energy — this follows from

Chekanov’s famous estimate [Che98]. In particular, 𝑐all(𝐵2𝑛) is bounded by the

displacement energy of 𝐵2𝑛
, and thus it is finite. Zhou [Zho20] proved a broad

generalization of this result using a truncated version of Viterbo’s transfer map.

Theorem 35 ([Zho20]) Let 𝑋 be a Liouville domain with 𝑆𝐻(𝑋) = 0. We have that
𝑐all(𝑋) < ∞.

Note that 𝑆𝐻(𝐷∗
𝑅
𝐿) ≠ 0 because of Viterbo’s isomorphism [Vit99]. There-

fore, Zhou’s theorem never directly implies Theorem 3. However, in some

cases, we still manage to compare 𝑐𝑄(𝐷∗𝐿) to 𝑐all(𝑋) as we shall see below.

Remarks 7. Zhou actually works with homotopy — not homology like us — and allows
for the possibility of weakly exact Lagrangians. He also allows some nonexact Liouville
domains, but it will not be needed here. Therefore, his result is actually more general
than what is cited here.
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Case dim𝐻1(𝑄;R) = 1. We now turn our attention to the capacity 𝑐0

𝑄
.

Recall that from Lemma 31, 𝑐0

𝑄
(𝑋) = 𝑐𝑄(𝑋) whenever dim𝐻1(𝑄;R) = 1 and 𝑋

is exact. However, studying directly 𝑐0

𝑄
allows us to show the following general

result.

Theorem 36 Let 𝐿 be a Lagrangian submanifold of 𝑀. Suppose that, as an abstract
manifold, 𝐿 admits a Lagrangian embedding in a Liouville domain𝑊 with 𝑆𝐻(𝑊) = 0.
For every 𝜏 ≥ 0, there exists a Weinstein neighbourhood 𝒲(𝐿) of 𝐿 in 𝑀, such that if
𝐿′ ∈ ℒ(𝜏) is included in 𝒲(𝐿), then the map

𝐻1(𝐿′;R) 𝐻1(𝐿;R)𝜋∗

induced by the projection 𝜋 : 𝐿′ → 𝐿 is nonzero.

In turn, this follows from a variant of Proposition 33 and a proof of the

finiteness of 𝑐0

all
(𝐷∗

𝑅
𝐿) for 𝐿 as in the theorem. More precisely, we need the

following two results.

Proposition 37 Let 𝐿 be a Lagrangian in a symplectic manifold 𝑀. Suppose that
𝑐0

𝑄
(𝐷∗

𝑅
𝐿) is finite for some 𝑅 > 0. For every 𝜏 ≥ 0, there exists a Weinstein neighbour-

hood 𝒲(𝐿) of 𝐿 in 𝑀, such that all 𝐿′ ∈ ℒ(𝑄, 𝜏) included in 𝒲(𝐿) has nontrivial
morphism 𝜋∗ : 𝐻1(𝐿′;R) → 𝐻1(𝐿;R) if 𝐻1(𝐿;R) ≠ 0.

If 𝑐0

all
(𝐷∗

𝑅
𝐿) is finite for some 𝑅 > 0, then the same holds for all 𝐿′ ∈ ℒ(𝜏).

Proof. The proof is essentially that of Proposition 33, except that Observa-

tion (2) is replaced with the following.

(2’) If 𝐿′ ∈ ℒ(𝑄, 𝜏), 𝐿′ ⊆ 𝒲𝑟(𝐿), and 𝐻1(𝐿′;R) → 𝐻1(𝒲(𝐿);R) is zero, then

𝑐0

𝑄
(𝐷∗

𝑟𝐿) ≥ 𝜏 whenever we have that 𝜔(𝐻2(𝒲𝑟(𝐿), 𝐿′)) ≠ 0.

Therefore, for 𝑟 small enough, all 𝐿′ ∈ ℒ(𝑄, 𝜏) such that 𝐿′ ⊆ 𝒲𝑟(𝐿) must be

either 𝐻-exact or induce a nonzero map 𝐻1(𝐿′;R) → 𝐻1(𝒲𝑟(𝐿);R).
By the central lemma 24, 𝐻-exactness in 𝒲𝑟(𝐿) implies that the projection

𝜋 : 𝐿′ → 𝐿 is a homotopy equivalence. Therefore, it also implies that the map

𝐻1(𝐿′;R) → 𝐻1(𝒲𝑟(𝐿);R) is nonzero whenever 𝐻1(𝒲𝑟(𝐿);R) ≠ 0. Since the

projection 𝒲𝑟(𝐿) → 𝐿 is a homotopy equivalence, this implies the result. □

Lemma 38 Let 𝐿 be a manifold which admits a Lagrangian embedding in 𝑊 with
𝑆𝐻(𝑊) = 0. Then,

𝑐0

all
(𝐷∗

𝑅𝐿) < ∞

for some 𝑅 > 0.

Proof. By the Weinstein neighbourhood theorem, there is some 𝑅 > 0 such

that 𝐷∗
𝑅
𝐿 embeds symplectically in𝑊 . Therefore, we have that

𝑐0

all
(𝐷∗

𝑅𝐿) ≤ 𝐵𝑐0

all
(𝑊) < ∞

where 𝐵 = 𝐵(𝐿) is the constant of Lemma 30. The latter finiteness is that of

Theorem 35 above. □
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We now get pretty directly proofs of Theorems 36 and 3, Case (a).

Proof of Theorem 36. Combining Proposition 37 and Lemma 38 gives the exis-

tence of a neighbourhood 𝒲(𝐿) such that whenever 𝐿′ ∈ ℒ(𝜏) is in 𝒲(𝐿), then

𝐻1(𝐿′;R) → 𝐻1(𝐿;R) is nonzero if 𝐻1(𝐿;R) ≠ 0. But by the Viterbo transfer

morphism, 𝐻1(𝐿;R) ≠ 0 since it embeds as a Lagrangian in a Liouville domain

with 𝑆𝐻(𝑊) = 0 (see [Rit13]). □

Proof of Theorem 3, Case (a). Whenever dim𝐻1(𝑄;R) = 1 and 𝐿 admits a La-

grangian embedding in𝑊 with 𝑆𝐻(𝑊) = 0, then

𝑐𝑄(𝐷∗
𝑅𝐿) = 𝑐0

𝑄(𝐷
∗
𝑅𝐿) ≤ 𝑐0

all
(𝐷∗

𝑅𝐿) < ∞,

where the first equality is Lemma 31 and the last inequality is Lemma 38.

Case (a) of Theorem 3 then follows from Proposition 33. □

Remarks 8. In view of Lemma 32, it actually suffices to prove finiteness of 𝑐0 for𝑄×𝑄′

admitting an embedding in 𝑊 with 𝑆𝐻(𝑊) = 0, where 𝐻1(𝑄′
;R) = 0. However, we

cannot find an example of a 𝑄 with 𝐻1(𝑄;R) = R such that 𝑄 × 𝑄′ admits such an
embedding but not 𝑄 by itself.

4.3 Lagrangian Klein bottles in cotangent bundles
We now focus our efforts on proving Case (c) of Theorem 3, i.e. the case of

the Klein bottle 𝐾. The proof is fairly different from previous cases, as it relies

on the classification of Lagrangian Klein bottles in 𝑇∗𝐾, which turns out to be

doable by a direct computation. It does however rely on the deep fact that there

is no Lagrangian Klein bottle in C2
[She09].

Theorem 39 Every Lagrangian Klein bottle in 𝑇∗𝐾 is 𝐻-exact. In other words,
𝑐𝐾(𝑇∗𝐾) = 0.

Proof. Let 𝐿 be a Lagrangian Klein bottle in 𝑇∗𝐾. We equip 𝐾 and the 2-torus

T2
with the flat metric, so that the covering 𝑝 : T2 → 𝐾 is a local isometry.

By rescaling if necessary, we can suppose that 𝐿 ⊆ 𝐷∗
𝑟𝐾 for 𝑟 arbitrarily small.

In particular, we may choose 𝑟 small enough so that there exists a Weinstein

neighbourhood Ψ : 𝐷∗
𝑟T

2 → C2
of the standard Clifford torus 𝑆1 × 𝑆1

.

Using the flat metric on T2
and 𝐾, the 2:1 covering 𝑝 : T2 → 𝐾 lifts

to another 2:1 covering �̃� : 𝑇∗T2 → 𝑇∗𝐾 which is also a local isometry and

symplectomorphism. Therefore, 𝐿 := �̃�−1(𝐿) must be a (possibly disconnected)

Lagrangian submanifold of𝐷∗
𝑟T

2
. Since �̃�|

𝐿
is also a 2:1 covering, 𝐿must either

be two disconnected copies of a Klein bottle or a 2-torus. However, if the former

was the case, then each connected component of Ψ(𝐿) would be a Lagrangian

Klein bottle in C2
, which does not exist [She09]. Therefore, 𝐿must be a 2-torus.

In other words, the composition

T2 𝐿 𝑇∗𝐾2:1 𝑖

admits a lift to 𝑇∗T2
, but the composition
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𝐾 𝐿 𝑇∗𝐾∼ 𝑖

does not.

We now interpret these statements in algebraic terms. To do so, we first look

at the fundamental groups𝜋1(𝑇∗𝐾) = ⟨𝑎, 𝑏|𝑎𝑏 = 𝑏−1𝑎⟩ and𝜋1(𝐿) = ⟨𝑎′, 𝑏′|𝑎′𝑏′ =
(𝑏′)−1𝑎′⟩. With these presentations, the subgroups associated to the coverings

𝑇∗T2 → 𝑇∗𝐾 and T2 → 𝐿 are those generated by {𝑎2 , 𝑏} and {(𝑎′)2 , 𝑏′}, respec-

tively. Denote 𝑖∗(𝑎′) = 𝑎𝑘𝑏ℓ and 𝑖∗(𝑏′) = 𝑎𝑚𝑏𝑛 . Here, we have made use of the

presentation above to conclude that any element of 𝜋1(𝑇∗𝐾) can be written in

that way. Given the lifting criterion for coverings, the fact that the composition

T2 → 𝐿 → 𝑇∗𝐾 admits a lift is equivalent to 𝑚 being even. Indeed, we have

that

𝑖∗
(
(𝑎′)2

)
= (𝑖∗(𝑎′))2 = 𝑎2𝑘𝑏(1+(−1)𝑘 )ℓ ,

so that this element always admits a lift to 𝑇∗T2
. In turn, this forces 𝑘 to

be odd, since the composition 𝐾 → 𝐿 → 𝑇∗𝐾 does not admit a lift. In

particular, 𝑘 is nonzero. But 𝑎 generates the free factor and 𝑏 the torsion

factor of 𝐻1(𝑇∗𝐾;Z) = Z ⊕ Z2 under the Hurewicz morphism (and anal-

ogously for 𝑎′ and 𝑏′ in 𝐻1(𝐿;Z)). Therefore, 𝑖 induces a monomorphism

𝑖∗ : 𝐻1(𝐿;Z)free → 𝐻1(𝑇∗𝐾;Z)free
between the free part of the homologies. But

then 𝑖∗ : 𝐻1(𝐿;R) → 𝐻1(𝑇∗𝐾;R) is also injective. By the long exact sequence in

homology, this implies that the boundary map 𝜕 : 𝐻2(𝑇∗𝐾, 𝐿;R) → 𝐻1(𝐿;R) is

zero. Since 𝜔0(𝐻2(𝑇∗𝐾, 𝐿)) = 𝜆0(𝜕(𝐻2(𝑇∗𝐾, 𝐿))), 𝐿 must be 𝐻-exact. □

5 Theorem 4 and the 𝐶0 Lagrangian flux conjecture
In this section, we first prove Theorem 4 (Section 5.1). We then give a short

proof of Theorem 6 (Section 5.2), which follows almost directly from the proof

of Theorem 4. Finally, we prove a refined version of Proposition 7 and use it to

properly show Corollary 8 (Section 5.3).

5.1 Proof of Theorem 4
We consider a 𝐻-rational Lagrangian submanifold 𝐿 of (𝑀, 𝜔) of rationality

constant 𝜏 ≥ 0. We fix a Riemannian metric 𝑔 on 𝐿 and a Weinstein neigh-

bourhood 𝒲𝑟(𝐿) in 𝑀 of size 𝑟 > 0. Let 𝐿′ ∈ ℒ(𝜏) be a Lagrangian entirely

contained and 𝐻-exact in 𝒲𝑟(𝐿).
We want to prove that there exists 𝑟′ > 0, such that 𝐿′ is exact in 𝒲𝑟′(𝐿)

whenever one of the following conditions hold:

(a) 𝐿′ ∈ ℒHam(𝐿), or

(b) the map 𝐻1(𝑖) ⊗ R induced by the inclusion 𝑖 : 𝐿′ ↩→ 𝑀 vanishes.

To do so, we first claim that under any of these assumptions, the rationality

constant of 𝐿′ in 𝒲𝑟(𝐿), seen as a subset of 𝑇∗𝐿, is a fraction of that of 𝐿′ in 𝑀.

Lemma 40 Let 𝐿 and 𝐿′ be as above, and denote by Ψ : 𝐷∗
𝑟𝐿 → 𝒲𝑟(𝐿) a Weinstein

neighbourhood of 𝐿. There exists an integer 𝑘 = 𝑘(𝑀, 𝐿) such that𝜆0(𝐻1(Ψ−1(𝐿′))) ⊆
𝜏
𝑘Z.
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This lemma, whose proof we postpone to § 5.1.2 below, directly shows that,

when 𝜏 = 0, 𝐻-exactness yields exactness.

When 𝜏 > 0, we conclude by using the following additional estimate.

Proposition 41 Let 𝐿 ↩→ (𝐷∗
𝑟𝐿, 𝑑𝜆0) be a Lagrangian embedding whose image 𝐿′ is

𝐻-exact. We have that

∀𝛽′ ∈ 𝐻1(𝐿′), |𝜆0(𝛽′)| ≤ 𝑟ℓmin

𝑔 (𝜋∗𝛽
′)

where ℓmin

𝑔 (𝛽) denotes the length of the shortest geodesic loop for 𝑔 in 𝐿 representing
the class 𝛽.

Indeed, we choose a basis {𝛽′
1
, . . . 𝛽′𝑚} of 𝐻1(𝐿′) and we fix 𝑟′ < 𝜏

𝑘ℓ where

ℓ = max{ℓmin

𝑔 (𝜋∗𝛽
′
𝑖) | 1 ≤ 𝑖 ≤ 𝑚} .

The proposition above gives that, for all 𝑖, |𝜆0(𝛽′𝑖)| ≤ 𝑟′ℓ < 𝜏
𝑘 . Because of Lemma

40, we then get that 𝜆0 vanishes on 𝐻1(𝐿′), which proves the exactness of 𝐿′.

It only remains to prove the lemma and proposition above to conclude the
proof of Theorem 4.

5.1.1 Proof of Proposition 41

We start with the proposition. First, let us remark that when 𝐿 = T𝑛 , the

estimate follows directly from Eliashberg’s result on the shape of subsets of

𝑇∗T𝑛 [Eli91]. With the additional hypothesis that 𝐿 is also contained in a We-

instein neighbourhood of 𝐿′, this is a result of Membrez and Opshtein [MO21].

However, as they themselves point out, there should be a proof of this result

without their additional constraint using the theory of graph selectors — they

even sketch out a proof, which we mostly follow here.

Proof of Proposition 41. In Theorem 6.1 of [PPS03], Paternain, Polterovich, and

Siburg show that, for every Lagrangian submanifold 𝐿′ ⊆ 𝑇∗𝐿 Lagrangian

isotopic to the zero-section and every fiberwise-convex neighbourhood 𝑊 of

𝐿′, there is a closed 1-form 𝜎 of 𝐿 such that graph(𝜎) ⊆ 𝑊 and [𝜎] = [𝜆0|𝐿′].
However, inspecting the proof of that statement, we see that all that is truly

required is the existence of a symplectic isotopy preserving fibres sending 𝐿′

to an exact Lagrangian submanifold admitting a graph selector — we refer to

that paper for the definition of a graph selector. On the one hand, we have

shown in Lemma 24 that 𝐻-exact Lagrangians in 𝑇∗𝐿 indeed have associated

symplectic isotopies preserving fibres which send them to exact ones. On the

other hand, it is now known that every exact Lagrangian submanifold of 𝑇∗𝐿
admits a graph selector. This was proven using Floer theory by Amorim, Oh,

and Dos Santos [AOS18] and using microlocal sheaves by Guillermou [Gui23].

Therefore, the result applies as is in our case.

But it follows from this that{
[𝜄∗𝜆0]

�� 𝜄 : 𝐿 ↩→ 𝐷∗
𝑟𝐿 is 𝐻-exact

}
=

{
[𝜎] ∈ 𝐻1(𝐿;R)

�� |𝜎| < 𝑟
}
.
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In particular, for every 𝐻-exact Lagrangian embedding 𝜄 : 𝐿 ↩→ 𝐷∗
𝑟𝐿 and every

loop 𝛾 : 𝑆1 → 𝐿, we have that

|𝜆0(𝜄 ◦ 𝛾)| < 𝑟ℓ𝑔(𝛾),

where ℓ𝑔 denotes the length in the metric 𝑔. By taking the infimum over all

loops representing a class 𝛽 = 𝜋∗𝛽′, we get the desired inequality. □

5.1.2 Proof of Lemma 40

Recall that 𝐿 is a 𝐻-rational Lagrangian with rationality constant 𝜏 ≥ 0, that

Ψ : 𝐷∗
𝑟𝐿 → 𝒲𝑟(𝐿) is a Weinstein neighbourhood of 𝐿 in 𝑀 of size 𝑟 > 0, and

that 𝐿′ ∈ ℒ(𝜏) is a Lagrangian entirely contained and 𝐻-exact in 𝒲𝑟(𝐿). The

lemma states that, under one of the following conditions,

(a) 𝐿′ ∈ ℒHam(𝐿), or

(b) the map 𝐻1(𝑖) ⊗ R induced by the inclusion 𝑖 : 𝐿′ ↩→ 𝑀 vanishes

there exists an integer 𝑘 = 𝑘(𝑀, 𝐿) such that 𝜆0(𝐻1(Ψ−1(𝐿′))) ⊆ 𝜏
𝑘Z.

For convenience, we denote by 𝑋 the object in 𝑇∗𝐿 corresponding to 𝑋 via

Ψ−1
, e.g. Ψ−1(𝐿) = 𝐿.

Proof of Lemma 40. Fix a representative 𝛽 : 𝑆1 → 𝐿 of a class in 𝐻1(𝐿). Since 𝐿′

is 𝐻-exact in 𝐷∗
𝑟𝐿, the projection 𝐿′ ↩→ 𝑇∗𝐿 → 𝐿 is a homotopy equivalence by

Lemma 24. Therefore, there exist a loop 𝛽′ in 𝐿′ and a cylinder 𝐶 in 𝐷∗
𝑟𝐿 such

that 𝜋∗(𝛽′) = 𝛽 and 𝜕𝐶 = 𝛽′ ⊔ (−𝛽). By Stokes Theorem and exactness of the

0-section 𝐿 in 𝑇∗𝐿, we thus have that

𝜔(𝐶) = 𝑑𝜆0(𝐶) = 𝜆0(𝛽′) − 𝜆0(𝛽) = 𝜆0(𝛽′) .

In case (a), take a Hamiltonian isotopy {𝜑𝑡}𝑡∈[0,1] starting at identity and

such that 𝜑1(𝐿) = 𝐿′. Then 𝐶′(𝑠, 𝑡) := 𝜑−1

𝑡 (𝛽′(𝑠)) defines a cylinder in 𝑀 and

𝐶′′
:= 𝐶 ∪𝛽′ 𝐶

′
represents a class in 𝐻2(𝑀, 𝐿). In particular, 𝜔(𝐶) + 𝜔(𝐶′) =

𝜔(𝐶′′) ∈ 𝜏Z. But note that, since {𝜑−1

𝑡 } is Hamiltonian,

𝜔(𝐶′) = Flux({𝜑−1

𝑡 })(𝛽′) = 0 .

Therefore, 𝜔(𝐶) = 𝜆0(𝛽′) ∈ 𝜏Z, and we can take 𝑘 = 1.

In case (b), note that 𝐻1(𝐿;R) → 𝐻1(𝑀;R) being zero is equivalent to

𝐻1(𝐿) → 𝐻1(𝑀) being finite, since 𝐻1( · ;R) = 𝐻1( · ) ⊗ R. By the long exact

sequence of the pair (𝑀, 𝐿), this is in turn equivalent to 𝐻2(𝑀, 𝐿) → 𝐻1(𝐿)
having finite cokernel, whose size we denote by 𝑘. Then, 𝑘𝛽 bounds some

𝑢 ∈ 𝐻2(𝑀, 𝐿), and we have that

𝑘𝜆0(𝛽′) = 𝑘𝜔(𝐶) = 𝜔(𝑢#𝑘𝐶) − 𝜔(𝑢) ∈ 𝜏Z,

because 𝑢#𝑘𝐶 ∈ 𝐻2(𝑀, 𝐿′), and 𝐿 and 𝐿′ belong to ℒ(𝜏). Therefore, 𝜆0|𝐿′ must

take values in
𝜏
𝑘Z. □
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5.2 Proof of Theorem 6
We now turn our attention to Theorem 6 on limits of 𝐻-rational Lagrangians.

As we shall see, the theorem follows pretty directly from the techniques that

we developed to prove Theorem 3 and 4.

Proof of Theorem 6. We start with the first part of the statement: if 𝐿𝑖 converges

to 𝐿 with 𝐿 smooth and 𝑛-dimensional and 𝐿𝑖 ∈ ℒ(𝜏𝑖) with inf 𝜏𝑖 > 0, then 𝐿 is

Lagrangian. This follows pretty directly from Laudenbach and Sikorav’s result

on displacement of non-Lagrangians [LS94].

Indeed, suppose 𝐿 is not Lagrangian. Then, 𝐿 × 𝑆1 ⊆ 𝑀 × 𝑇∗𝑆1
is also

not Lagrangian and its normal bundle admits a nowhere vanishing section.

Therefore, it follows from [LS94] that, for every 𝜀 > 0, there is a Hamiltonian

diffeomorphism 𝜑 of 𝑀 ×𝑇∗𝑆1
such that 𝜑(𝐿×𝑆1)∩𝐿×𝑆1 = ∅ and with Hofer

norm ||𝜑||𝐻 < 𝜀. But then, there is a neighbourhood 𝑈 of 𝐿 × 𝑆1
such that

𝜑(𝑈) ∩ 𝑈 = ∅. In particular, for 𝑖 large enough, 𝜑(𝐿𝑖 × 𝑆1) ∩ (𝐿𝑖 × 𝑆1) = ∅.

Therefore, if 𝑒(𝐿𝑖 × 𝑆1) is the displacement energy of 𝐿𝑖 × 𝑆1
, we have that

𝜀 ≥ lim sup 𝑒(𝐿𝑖 × 𝑆1) ≥ lim sup 𝜏𝑖 ≥ inf 𝜏𝑖 > 0,

where the second inequality follows from Chekanov’s estimate on displace-

ment energy [Che98]. We get a contradiction by taking the limit 𝜀 → 0.

The second part — that is, for when we know that the 𝐿𝑖 ’s are 𝐻-exact in

𝒲(𝐿) for 𝑖 large — follows from the proof of Theorem 4. Indeed, the proof of

Lemma 40 gives that 𝜆0|𝐿𝑖 takes values in 𝜏𝑖Z on the image of the boundary

morphism 𝜕𝑖 : 𝐻2(𝑀, 𝐿𝑖) → 𝐻1(𝐿𝑖). Here, we identify 𝐿𝑖 with its preimage in

𝑇∗𝐿 under a Weinstein neighbourhood of 𝐿. Just like in Theorem 4, we can thus

use Proposition 41 to conclude that 𝜆0(𝜕𝑖(𝐻2(𝑀, 𝐿𝑖))) = 0 if 𝐿𝑖 ⊆ 𝒲𝑟(𝐿) for 𝑟
small enough, i.e. for 𝑖 large enough. Note that 𝑟 may be taken independently

of 𝑖 since inf 𝜏𝑖 > 0. But then, this means that, for all 𝐴 ∈ 𝐻2(𝑀, 𝐿𝑖),

𝜔(𝐴) = 𝜔(𝐴#𝐶) − 𝜔(𝐶) = 𝜔(𝐴#𝐶) − 𝜆0(𝜕𝐶) = 𝜔(𝐴#𝐶) ∈ 𝜔(𝐻2(𝑀, 𝐿)),

where 𝐶 is the usual (union of) cylinder in 𝑇∗𝐿 from 𝜕𝐴 to 𝜋(𝜕𝐴) and 𝜋 :

𝑇∗𝐿 → 𝐿 the canonical projection. Therefore, we have that 𝜔(𝐻2(𝑀, 𝐿𝑖)) ⊆
𝜔(𝐻2(𝑀, 𝐿)). But 𝐻-exactness implies that 𝐿𝑖 → 𝑇∗𝐿 → 𝐿 is a homotopy

equivalence by Lemma 24. Therefore, for every 𝐴 ∈ 𝐻2(𝑀, 𝐿), 𝜕𝐴 admits a lift

𝑎 ∈ 𝐻1(𝐿𝑖). We can then again create a cylinder 𝐶 from 𝜕𝐴 to 𝑎 and run the

above argument to get 𝜔(𝐻2(𝑀, 𝐿)) ⊆ 𝜔(𝐻2(𝑀, 𝐿𝑖)) for 𝑖 large. Therefore, we

have that

𝜔(𝐻2(𝑀, 𝐿)) = 𝜔(𝐻2(𝑀, 𝐿𝑖)) = 𝜏𝑖Z

for large 𝑖. This is only possible if 𝜏𝑖 is independent of 𝑖 for 𝑖 large. □

5.3 Proof of Proposition 7
We now turn to the proof of Proposition 7, i.e. the partial result one gets instead

of Theorem 4 when one does not know that 𝐻1(𝐿;R) → 𝐻1(𝑀;R) is zero. In

fact, we prove the following stronger statement.
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Proposition 42 Let 𝐿 be a𝐻-rational Lagrangian submanifold of𝑀with𝐻-rationality
constant 𝜏. There is some 𝑟0 > 0 and some 𝐶 > 0 with the following property. Assume
that 𝐿′ ∈ ℒ(𝜏) is a Lagrangian included in a Weinstein neighbourhood 𝒲𝑟(𝐿) of size
𝑟 ∈ (0, 𝑟0] such that 𝐿′ is 𝐻-exact in 𝒲𝑟(𝐿). Then, there is a symplectic isotopy
{𝜓𝑡}𝑡∈[0,1] of 𝑀 with |Flux({𝜓𝑡(𝐿′)})| ≤ 𝐶𝑟 such that 𝜓1(𝐿′) is exact in 𝒲𝑟(𝐿).

By Flux({𝐿𝑡}) ∈ 𝐻1(𝐿;R), we mean the Lagrangian flux of the Lagrangian

isotopy {𝐿𝑡}; it is defined as follow. Take 𝐹 : 𝐿 × [0, 1] → 𝑀 such that 𝐹(𝐿, 𝑡) =
𝐿𝑡 . Then, 𝐹∗𝜔 = 𝛼𝑡 ∧ 𝑑𝑡 for some time-dependent 1-form 𝛼𝑡 on 𝐿, and we

set Flux({𝐿𝑡})(𝛾) :=
∫

1

0

𝛼𝑡(𝛾)𝑑𝑡 for any loop 𝛾 : 𝑆1 → 𝐿. This is precisely the

area swept by 𝛾 through the isotopy — in particular, it is independent of the

parametrization 𝐹 of {𝐿𝑡}.

Proof. Denote by𝑉 the image of the boundary map𝐻2(𝑀, 𝐿′;R) → 𝐻1(𝐿′;R).
Pick a complement 𝑊 of 𝑉 in 𝐻1(𝐿′;R), and take loops {𝛾1 , . . . , 𝛾𝑘} which

induce a basis of 𝑊 . Similarly to Section 5.2 above, the proof of Theorem 4

still implies that 𝜆0|𝐿′(𝑉) = 0 for 𝑟 small enough. Therefore, we can take 𝑟0 to

ensure this is true for all 𝑟 ≤ 𝑟0.

We divide our isotopy in two parts. First, we consider the Lagrangian

isotopy 𝐹 : 𝑡 ↦→ [(𝛼 − 1)𝑡 + 1] · 𝐿′ induced by the multiplication along the fibers

of𝑇∗𝐿, where 𝛼 ∈ [0, 1]. A direct computation gives that 𝐹∗𝜔 = (𝛼−1)𝜆0|𝐿′∧𝑑𝑡,
so that the flux associated to the isotopy is (𝛼−1)[𝜆0|𝐿′]. Note that, by the above

paragraph, this cohomology class is in the annihilator 𝑉0
of 𝑉 , which we can

identify with the dual𝑊 ∗
of𝑊 in 𝐻1(𝐿′;R) = Hom(𝐻1(𝐿′;R),R).

Second, take a closed 1-form 𝜎 on 𝐿 such that 𝜎(𝑉) = 0 and 𝜎(𝜋◦𝛾𝑖) = 𝜆0(𝛾𝑖)
for all 𝑖. It exists, since the projection 𝐿′ → 𝐿 is a homotopy equivalence by

Lemma 24. Consider the symplectic isotopy {𝜓′
𝑡} of 𝑇∗𝐿 generated by 𝑋 such

that 𝜄𝑋𝜔0 = −𝜋∗𝜎, where 𝜋 : 𝑇∗𝐿 → 𝐿 is the canonical projection. It is easy to

check that

(i) 𝜓′
1
(𝐿′) is exact in 𝑇∗𝐿,

(ii) if 𝐿′ ⊆ 𝐷∗
𝑟𝐿, then 𝜓′

𝑡(𝐿′) ⊆ 𝐷∗
𝑟+|𝜎|𝐿 for all 𝑡 ∈ [0, 1],

(iii) Flux({𝜓′
𝑡(𝐿′)}) = (𝜄′)∗Flux({𝜓′

𝑡}) = −(𝜄′)∗𝜋∗[𝜎] = −[𝜆0|𝐿′].

We have made here the slight abuse of notation of identifying 𝐿′ with its

preimage in 𝑇∗𝐿 via the Weinstein neighbourhood. Again, (iii) implies that the

flux of the isotopy is in𝑊 ∗
.

The Lagrangian isotopy {𝐿′𝑡} from 𝐿′ to an exact Lagrangian 𝐿′′ that we are

interested in is the (smoothing of the) concatenation of Lagrangian isotopies as

above. More precisely, start with 𝐿′ ⊆ 𝐷∗
𝑟𝐿 and 𝜎 as above. Then, the first half of

the isotopy is given by the scaling from 𝐿′ to 𝛼𝐿′ for 𝛼 = 𝑟
𝑟+|𝜎| . Note that then, 𝛼𝜎

is a closed 1-form on 𝐿 having the same properties as above for the Lagrangian

𝛼𝐿′. We thus get from it a symplectic isotopy {𝜓′
𝑡} with properties (i)–(iii) for

𝛼𝐿′. In particular, 𝜓′
𝑡(𝛼𝐿′) ⊆ 𝐷∗

𝛼𝑟+|𝛼𝜎|𝐿 = 𝐷∗
𝑟𝐿 and Flux({𝜓′

𝑡(𝐿′)}) = −𝛼[𝜆0|𝐿′].
Therefore,

Flux({𝐿′𝑡}) = (𝛼 − 1)[𝜆0|𝐿′] − 𝛼[𝜆0|𝐿′] = −[𝜆0|𝐿′] ∈𝑊 ∗ ,
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where we have made use of the additivity of the flux under concatenation.

Furthermore, Proposition 41 then implies that |Flux({𝐿′𝑡})| ≤ 𝑟max𝑖 ℓ
min

𝑔 (𝛾𝑖),
and it suffices to take 𝐶 := max𝑖 ℓ

min

𝑔 (𝛾𝑖).
We now show how {𝐿′𝑡} comes from a symplectic isotopy of 𝑀 — this is es-

sentially Lemma 6.6 of [Sol13]. Note that in the splitting𝐻1(𝐿′;R) = 𝑉∗⊕𝑊 ∗
,𝑊 ∗

corresponds to the image of the restriction homomorphism Ψ∗
: 𝐻1(𝑀;R) →

𝐻1(𝒲𝑟(𝐿);R) under the restriction isomorphism 𝐻1(𝒲𝑟(𝐿);R) → 𝐻1(𝐿′;R).
Here, we make use of the fact that 𝐿′ is isotopic to an exact Lagrangian of 𝑇∗𝐿,

so that the inclusion 𝐿′ → 𝒲(𝐿) induces an isomorphism on cohomology. In

particular, since [𝜆0|𝐿′] belongs to 𝑊 ∗
, there is a closed 1-form 𝜃′

of 𝑀 such

that 𝜃′|𝐿′ = 𝜆0|𝐿′ + 𝑑𝐹 for some function 𝐹 : 𝐿′ → R. We then pick an extension

𝐹′ : 𝑀 → R of 𝐹 and set 𝜃 := 𝜃′ − 𝑑𝐹′. Taking {𝜓𝑡} generated by 𝜃 gives the

desired symplectic isotopy in 𝑀. □

Corollary 43 By taking 𝑟0 smaller if necessary, we have the following. If we have that
Flux({𝜓𝑡(𝐿′)}) ≠ 0, then 𝐿′ and 𝜓1(𝐿′) are in different Hamiltonian isotopy class in
𝑀.

Moreover, if the NLC holds on 𝑇∗𝐿, then 𝐿′, 𝐿′′ ∈ ℒ(𝜏) with 𝐿′, 𝐿′′ ⊆ 𝒲𝑟(𝐿),
𝑟 ≤ 𝑟0, are Hamitlonian isotopic in 𝑀 if and only if their associated isotopy to an exact
Lagrangian has the same flux.

Proof. Suppose that there is a Hamiltonian isotopy {𝜑𝑡} of 𝑀 sending 𝐿′ to

𝜓1(𝐿′). Then, the concatenation {𝐿′′𝑡 } of {𝜓𝑡(𝐿′)} and {𝜑−1

𝑡 (𝜓1(𝐿′))} is a loop,

so that Flux({𝐿′′𝑡 }) ∈ 𝐻1(𝐿′; 𝜏Z). Indeed, for every loop 𝛾 of 𝐿′, Flux({𝐿′′𝑡 })(𝛾) ∈
𝜏Z, since it is the area of a cylinder with boundary in 𝐿′. If we take 𝑟0 < 𝜏

𝐶 , then

this is only possible if Flux({𝐿′′𝑡 }) = 0. Since the flux of a Hamiltonian isotopy

is zero, this implies the first result.

If the NLC holds on𝑇∗𝐿, we get an extension {𝜓𝑡}𝑡∈[0,2] of {𝜓𝑡}𝑡∈[0,1] to a sym-

plectic isotopy with𝜓2(𝐿′) = 𝐿 and same flux. Let {𝜓′
𝑡}𝑡∈[0,2] be the correspond-

ing isotopy for 𝐿′′. If 𝐿′ and 𝐿′′ are Hamiltonian isotopic, we can construct a loop

similarly to above using that Hamiltonian isotopy, {𝜓𝑡} and {𝜓′
𝑡}. We then again

get that the flux of this loop is zero, so that Flux({𝜓𝑡(𝐿′)}) = Flux({𝜓′
𝑡(𝐿′′)}).

If the fluxes are the same, then extension and concatenation as above give a

symplectic isotopy in 𝑇∗𝐿 from 𝐿′ to 𝐿′′ with zero flux. By Proposition 2.3

of [Ono08] or Lemma 6.7 of [Sol13], that isotopy must be Hamiltonian. □

We now give a proper proof of the Lagrangian 𝐶0
flux conjecture, i.e.

Corollary 8.

Proof. The closedness of ℒSymp
0
(𝐿) follows directly from Proposition 42 to-

gether with Theorems 3 and 6. For the closedness ofℒHam(𝐿), take a sequence

{𝐿𝑖} in that space with limit 𝐿0 ∈ SMan(𝐿). By Theorem 6, 𝐿0 is a 𝐻-rational

Lagrangian with same rationality constant as the 𝐿𝑖 ’s — the 𝐿𝑖 ’s respect the

hypotheses of Theorem 3, so that they are 𝐻-exact in 𝒲(𝐿0) for 𝑖 large. Since

all the 𝐿𝑖 ’s are Hamiltonian isotopic to each other, their associated symplectic

isotopy from Proposition 42 must all have the same flux by Corollary 43. But

by that proposition, that flux must tend to 0 as 𝐿𝑖 → 𝐿0. Therefore, for 𝑖 large,

there is a symplectic isotopy in 𝑇∗𝐿0 sending 𝐿𝑖 to 𝐿0 with zero flux; again, we

suppose that the NLC holds here. By Proposition 2.3 of [Ono08] or Lemma 6.7

of [Sol13], that isotopy must be Hamiltonian, and we have closure. □
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Remarks 9. If NLC holds for 𝑇∗𝐿, Corollary 43 actually allows us to identify a Haus-
dorff neighbourhood of 𝐿 in ℒ(𝜏) with a neighbourhood of (𝐿, 0) in ℒHam(𝐿) ×
𝑊 ∗, where we recall that 𝑊 is a complement of the image of the boundary map
𝐻2(𝑀, 𝐿;R) → 𝐻1(𝐿;R). We do not know how much this extends to a global homeo-
morphism.

A Closed embedded loops satisfy Conjecture A
Let 𝐿 be a closed embedded loop in a symplectic surface and define

𝜏 := inf{𝜔(𝑢) > 0 | 𝑢 ∈ 𝐻2(𝑀, 𝐿;Z)} ∈ [0,+∞],

where we set 𝜏 = +∞ if 𝜔(𝐻2(𝑀, 𝐿;Z)) = 0.

Remarks 10. Note that 𝐿 is 𝐻-rational but not 𝐻-exact if and only if 𝜏 ∈ (0,+∞)
and that, in this case, 𝜏 as defined above coincides with its 𝐻-rationality constant.
However, 𝐿 is 𝐻-exact when 𝜏 = +∞, and non-𝐻-rational when 𝜏 = 0. In particular,
𝜏 ∈ (0,+∞] ensures that 𝜔(𝐻2(𝑀, 𝐿;Z)) is discrete, and that it is generated by 𝜏
whenever 𝜏 is finite.

We fix a metric on 𝐿 and a Weinstein neighbourhood Ψ : 𝐷∗
𝑟𝑆

1 → 𝒲𝑟(𝐿) of

𝐿. Let 𝐿′ = 𝜑(𝐿) ⊆ 𝒲𝑟(𝐿) for some Hamiltonian diffeomorphism 𝜑 of 𝑀.

We start with the case 𝜏 ∈ (0,+∞]. In this case, we prove that 𝐿′ is necessarily

exact in 𝒲𝑟(𝐿) for a small enough 𝑟 > 0 thanks to the two steps below. The

conclusion then follows from the nearby Lagrangian conjecture.

Step 1: 𝐻-exactness. Fix 𝑟 > 0 such that Area(𝒲𝑟(𝐿)) < 𝜏, and suppose that

𝐿′ bounds a surface 𝑢 whose image is contained in 𝒲𝑟(𝐿). Since 𝒲𝑟(𝐿) is a

cylinder, 𝑢 must be a disk. Without loss of generality, the boundary of 𝑢 is

mapped with degree 1 to 𝐿′. Since 𝒲𝑟(𝐿) is exact, we necessarily have that

𝜔(𝑢) = |𝜆0(𝐿′)|, which is precisely the area of the contractible region bounded

by 𝐿′ in 𝒲𝑟(𝐿). Hence, 𝜔(𝑢) ≤ Area(𝒲𝑟(𝐿)) < 𝜏. Because 𝜑 preserves the

area, we get that 𝜔(𝑢) = 0 by definition of 𝜏. Hence, 𝐿′ is 𝐻-exact in 𝒲𝑟(𝐿).
Step 2: exactness. Now, 𝐿′ being 𝐻-exact in 𝒲𝑟(𝐿) ensures that the projection

𝐿′ → 𝒲𝑟(𝐿) → 𝐿 is a homotopy equivalence. Therefore, there is a cylinder

𝐶 in 𝒲𝑟(𝐿) such that 𝜕𝐶 = 𝐿 ⊔ 𝐿′ and |𝜔(𝐶)| < Area(𝒲𝑟(𝐿)). But if {𝜑𝑡} is

a Hamiltonian isotopy sending 𝐿′ to 𝐿, 𝐶′ = ∪𝑡𝜑𝑡(𝐿′) defines a cylinder with

boundary 𝜕𝐶′ = 𝐿′ ⊔ 𝐿. On the one hand, we have that 𝜔(𝐶 ∪𝐿′ 𝐶′) ∈ 𝜏Z,

where we make the abuse of notation that +∞Z = 0. But on the other hand,

𝜔(𝐶′) = Flux(𝜑𝑡)([𝐿′]) = 0, since {𝜑𝑡} is Hamiltonian, and 𝜔(𝐶) = 𝜆0(𝐿′) −
𝜆0(𝐿) = 𝜆0(𝐿′). Therefore, we have that |𝜆0(𝐿′)| < 𝜏 and 𝜆0(𝐿′) ∈ 𝜏Z, i.e. 𝐿′ is

exact in 𝒲𝑟(𝐿).
For the non-𝐻-rational case 𝜏 = 0, note that 𝑀 is necessarily closed, since

𝐻2(𝑀;Z) = 0 for open 𝑀, and thus 𝜏 > 0. Likewise, we can suppose that 𝐿
separates 𝑀, since we have 𝜏 = +∞ otherwise. Then, the two regions 𝐴 and 𝐵
of 𝑀 \𝐿 generates𝐻2(𝑀, 𝐿;Z). Therefore, the result follows as above by taking

Area(𝒲𝑟(𝐿)) < min{𝜔(𝐴), 𝜔(𝐵)}.
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B The case of Lagrangian 2-tori

B.1 Displaceable Lagrangian 2-tori satisfy Conjecture B
Theorem 44 Let 𝐿 be a displaceable rational Lagrangian torus in a 4-dimensional
symplectic manifold (𝑀, 𝜔) without boundary. Suppose that 𝐿 is included in a simply
connected Darboux chart𝑈 .

If 𝐿′ ∈ ℒSymp(𝐿) is contained in a small enough Weinstein neighbourhood of 𝐿,
then 𝐿 ∩ 𝐿′ ≠ ∅. Moreover, if 𝐿 and 𝐿′ intersect transversely, then #(𝐿 ∩ 𝐿′) ≥ 4.

The structure of the proof may be divided into four steps.

(1) We first construct an exact symplectomorphism Ψ from an open 𝑉 of

C2
to a neighborhood 𝑊 of 𝐿 in 𝑈 sending the standard product torus

𝑆1(𝑟1) × 𝑆1(𝑟2) to 𝐿 for some 𝑟1 , 𝑟2 > 0.

(2) Using the hypotheses on 𝑈 , we show that whenever 𝐿′ is Hamiltonian

isotopic to 𝐿 and contained in 𝑊 , we may take 𝑟1 = 𝑟2 = 𝑟 and the

symplectic action class [𝜆0] of Ψ−1(𝐿′) then takes values 𝜋𝑟2Z.

(3) We use a result of Dimitroglou Rizell [Riz21] to conclude that Ψ−1(𝐿)
and Ψ−1(𝐿′) are Hamiltonian isotopic with an isotopy supported in an

appropriate Euclidean ball.

(4) Finally, we make use of the fact that a large monotone product torus is not

displaceable in the Euclidean ball to conclude that Ψ−1(𝐿′) must intersect

Ψ−1(𝐿) = 𝑆1(𝑟) × 𝑆1(𝑟).
We now begin with the proof of Theorem 44. The first step consists of

proving the following lemma.

Lemma 45 Let 𝐿 be a Lagrangian torus of a 4-manifold 𝑀 without boundary, and
let 𝑈 be an open neighbourhood of 𝐿 such that 𝜔|𝑈 = 𝑑𝜆. Take a basis {𝑏1 , 𝑏2} of
𝜋1(𝐿) = Z2 and 𝑟1 , 𝑟2 > 0 such that 𝜆(𝑏𝑖) = 𝜋𝑟2

𝑖
, and consider the product torus

𝑆1(𝑟1) × 𝑆1(𝑟2) :=
{
(𝑧1 , 𝑧2) ∈ C2

�� |𝑧𝑖| = 𝑟𝑖
}
.

There exist open neighborhoods 𝑉 of 𝑆1(𝑟1) × 𝑆1(𝑟2) in C2 and 𝑊 of 𝐿 in 𝑈 ,
a symplectomorphism Ψ : 𝑉 → 𝑊 sending 𝑆1(𝑟1) × 𝑆1(𝑟2) to 𝐿, and a function
𝐹 : 𝑉 → R such that

Ψ∗𝜆 = 𝜆0 + 𝑑𝐹,

where 𝜆0 is the standard Liouville form of C2.

Proof. Take Weinstein neighborhoods Ψ0 : 𝐷∗
𝜌0

T2 → C2
and Ψ1 : 𝐷∗

𝜌1

T2 → 𝑈

of 𝑆1(𝑟1) × 𝑆1(𝑟2) and 𝐿, respectively. We then get a symplectomorphism Ψ′
:=

Ψ1◦Ψ−1

0
: 𝑉 ′ →𝑊 ′

from some open neighborhood𝑉 ′
of 𝑆1(𝑟1)×𝑆1(𝑟2) to some

open neighborhood 𝑊 ′
of 𝐿. Recall that every diffeomorphism of T2

lifts to a

symplectomorphism of 𝑇∗T2
. Therefore, by precomposing Ψ1 by such a lift if

necessary, we may suppose that Ψ′
sends 𝑆1(𝑟1) × {1} to 𝑏1 and {1} × 𝑆1(𝑟2) to

𝑏2. It then follows directly that (Ψ′)∗[𝜆] = [𝜆0] in 𝐻1(T2
;R).
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Therefore, there is a function 𝑓 : 𝑆1(𝑟1) × 𝑆1(𝑟2) → R which satisfies

(Ψ′)∗𝜆|𝑆1(𝑟1)×𝑆1(𝑟2) = 𝜆0|𝑆1(𝑟1)×𝑆1(𝑟2) + 𝑑𝑓 . We now wish to extend 𝑓 to a func-

tion �̃� : C2 → R so that this equality stands on 𝑇𝑈|𝑆1(𝑟1)×𝑆1(𝑟2). To do so, take

an orthonormal frame (𝑋1 , 𝑋2) of 𝑇(𝑆1(𝑟1) × 𝑆1(𝑟2)) which exists because the

tangent bundle of the torus is trivial. Then, (𝑌1 = 𝐽0𝑋1 , 𝑌2 = 𝐽0𝑋2) is an or-

thonormal frame of the normal bundle of 𝑆1(𝑟1) × 𝑆1(𝑟2) in C2
. We take on a

small enough tubular neighborhood of 𝑆1(𝑟1) × 𝑆1(𝑟2)

�̃�

(
𝑥 +

2∑
𝑖=1

𝑦𝑖𝑌𝑖

)
:= 𝑓 (𝑥) +

2∑
𝑖=1

𝑦𝑖 ((Ψ′)∗𝜆 − 𝜆0) (𝑌𝑖(𝑥))

and extend �̃� to C2
. In is then easy to see that �̃� extends 𝑓 and has the right

differential along 𝑆1(𝑟1) × 𝑆1(𝑟2).
We then conclude using Moser’s trick. More precisely, take {𝜑𝑡} to be the

flow of the vector field 𝑋 on 𝑉 ′
defined via 𝜄𝑋𝜔0 = 𝜆0 − (Ψ′)∗𝜆 + 𝑑�̃�. Note that

𝑋 = 0 along 𝑆1(𝑟1) × 𝑆1(𝑟2) by construction, so that 𝜑𝑡 is the identity on that

torus for all 𝑡 and is well defined up to time 𝑡 = 1 on some neighborhood 𝑉 of

it. By making 𝑉 smaller if necessary, we may suppose that 𝜑𝑡(𝑉) ⊆ 𝑉 ′
for all

𝑡 ∈ [0, 1]. If we set 𝛼𝑡 := 𝑡(Ψ′)∗𝜆 + (1 − 𝑡)𝜆0, we get that

𝑑

𝑑𝑡
𝜑∗
𝑡𝛼𝑡 = 𝜑∗

𝑡𝑑𝜄𝑋𝛼𝑡 + 𝑑�̃�.

Therefore, integrating from 0 to 1, we get

𝜑∗
1
(Ψ′)∗𝜆 − 𝜆0 = 𝑑

(∫
1

0

𝜑∗
𝑡(𝜄𝑋𝛼𝑡)𝑑𝑡 + �̃�

)
,

i.e. the proposition holds for Ψ := Ψ′ ◦ 𝜑1 and 𝐹 :=
∫

1

0

𝜑∗
𝑡(𝜄𝑋𝛼𝑡)𝑑𝑡 + �̃�. □

We start with the second step. We begin by showing that if 𝐿 is rational and

𝜑 : 𝑈 → 𝑀 is as in Theorem 44, then there exists a basis {𝑏1 , 𝑏2} of 𝜋(𝐿) such

that 𝜆(𝑏1) = 𝜆(𝑏2) > 0, where 𝜆 := 𝜑∗𝜆0. To do so, first consider the homotopy

long exact sequence of the pair (𝜑(𝑈), 𝐿):

· · · 𝜋2(𝜑(𝑈)) 𝜋2(𝜑(𝑈), 𝐿) 𝜋1(𝐿) 𝜋1(𝜑(𝑈)) · · ·𝜕 𝜄

(1)

Since𝑈 is simply connected and 𝜑 is an embedding, 𝜋1(𝜑(𝑈)) = 0. Therefore,

the boundary operator 𝜋2(𝜑(𝑈), 𝐿) → 𝜋1(𝐿) is surjective. Since 𝜔(𝑢) = 𝜆(𝜕𝑢)
for all disks 𝑢 in 𝜑(𝑈) and 𝐿 is rational, this implies that 𝜆(𝜋1(𝐿)) ⊆ 𝜏Z, where

𝜏 is the rationality constant of 𝐿. Because every subgroup of a cyclic group

is itself cyclic, either 𝐿 is 𝜆-exact or there exists a positive integer 𝑛 such that

𝜆(𝜋1(𝐿)) = 𝑛𝜏Z. However, 𝐿 cannot be exact, otherwise 𝜑−1(𝐿) would be an

exact Lagrangian torus in C2
, which does not exist [Gro85].

Now fix an identification 𝜋1(𝐿) = Z2
, and take 𝑏1 = (𝑏11 , 𝑏12) to be any

element such that 𝜆(𝑏1) = 𝑛𝜏. Note that 𝑔𝑐𝑑(𝑏11 , 𝑏12) = 1. Otherwise, there

would be some integer 𝑘 ≥ 2 such that
1

𝑘 𝑏1 ∈ Z2
and 0 < 𝜆( 1

𝑘 𝑏1) < 𝑛𝜏, which

is of course not possible. Therefore, there exists integers 𝑚1 and 𝑚2 such that
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𝑚1𝑏11 + 𝑚2𝑏12 = 1. In particular, {𝑏1 , (𝑚1 , 𝑚2)} is a basis of Z2
. Let 𝑚 be such

that 𝜆(𝑚1 , 𝑚2) = 𝑚𝑛𝜏, and take 𝑏2 := (𝑚1 , 𝑚2) + (1 − 𝑚)𝑏1.

We now fix 𝑟 > 0 such that 𝑛𝜏 = 𝜋𝑟2
and take Ψ given by the basis {𝑏1 , 𝑏2}

through Lemma 45. We also suppose that the Lagrangian submanifold 𝐿′ is in

𝑊 and fix a symplectomorphism 𝜓 of 𝑀 sending 𝐿 to 𝐿′.
It is now time to show that [𝜆0] ∈ 𝐻1(Ψ−1(𝐿′);R) takes value in the cyclic

group 𝜋𝑟2Z. To see this, note that if 𝑏1, 𝑏2, 𝑢1, and 𝑢2 are as above, then we

have that

𝜆(𝜓∗𝑏𝑖) = 𝜔(𝜓∗𝑢𝑖) = 𝜔(𝑢𝑖) = 𝜆(𝑏𝑖) = 𝜋𝑟2.

Here, we have made use of the fact that 𝜓 preserves 𝜔 and that 𝜕 and 𝜓∗ com-

mute, so that 𝜕𝜓∗𝑢𝑖 = 𝜓∗𝑏𝑖 . However, 𝜓∗ : 𝜋1(𝐿) → 𝜋1(𝐿′) is an isomorphism.

Therefore, {𝜓∗𝑏1 ,𝜓∗𝑏2} is a basis of 𝜋1(𝐿′). In particular, it follows that [𝜆|𝐿′]
takes values 𝜋𝑟2Z. However, [𝜆|𝐿′] and [𝜆0|Ψ−1(𝐿′)] take the same values by

Lemma 45. This completes the second step.

For the third step, we first recall the precise theorem of Dimitroglou Rizell

we will need — we only rephrase it for a Euclidean ball of arbitrary radius.

Theorem (Theorem 1.1(1) of [Riz21]) Let 𝐿′ ⊆ 𝐵4(𝑅) be a Lagrangian torus inside
the open Euclidean ball of radius 𝑅 whose symplectic action class takes the values𝜋𝑟2Z

on 𝐻1(𝐿), where 𝑅 ≤
√

3𝑟. There exists a Hamiltonian isotopy inside the ball which
takes 𝐿 to the standard monotone product torus 𝑆1(𝑟)×𝑆1(𝑟) if and only if it is disjoint

from the interior of some symplectic embedding of the closed 4-ball𝐷4(
√

2

3
𝑅) in 𝐵4(𝑅).

But note that if we pick𝑅 ∈ (
√

2𝑟,
√

3𝑟), thenΨ−1(𝐿) = 𝑆1(𝑟)×𝑆1(𝑟) is disjoint

from the closed Euclidean ball 𝐷4(
√

2

3
𝑅), because |𝑧1|2 + |𝑧2|2 = 2𝑟2 > 2

3
𝑅2

for

all (𝑧1 , 𝑧2) ∈ 𝑆1(𝑟)×𝑆1(𝑟). Furthermore, by making the open𝑊 of Lemma 45 —

and thus also the open 𝑉 — smaller if necessary, we can assume that Ψ−1(𝐿′)
is also disjoint from that closed ball. Therefore, by Rizell’s theorem, Ψ−1(𝐿′) is

Hamiltonian isotopic to 𝑆1(𝑟) × 𝑆1(𝑟) in 𝐵4(𝑅).
To conclude the proof, just note that 𝑆1(𝑟)×𝑆1(𝑟) is not displaceable in 𝐵4(𝑅)

if 𝑟 ≥ 𝑅√
3

. This follows from the result of Biran–Entov–Polterovich [BEP04] that

𝑆1( 1√
3

)×𝑆1( 1√
3

) is not displaceable in 𝐵4(1)— and thus a fortiori not displaceable

in 𝐵4(𝑠) for 𝑠 ≤ 1 — by rescaling.

Likewise, the estimate on the number of intersection points between 𝐿 and

𝐿′ follows from the fact that Ψ−1(𝐿′) is Hamiltonian isotopic to 𝑆1(𝑟) × 𝑆1(𝑟) in

𝐵4(𝑅) and from the computation of the Floer cohomology of 𝑆1 × 𝑆1
in C𝑃2

by

Cho [Cho04].

Remarks 11. We only have made use of the fact that 𝑈 ′ = 𝜑(𝑈) is symplectomorphic
to an open of C2 to make sure that 𝐿 is not exact in𝑈 ′. In fact, a bit more work allows
us to conclude that Theorem 44 holds for any rational Lagrangian tori 𝐿 in a 𝑈 ′ such
that

(i) 𝜔|𝑈 ′ = 𝑑𝜆;
(ii) 𝐿 ⊆ 𝑈 ′ is not 𝜆-exact;
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(iii) 𝜋1(𝑈 ′) is finite.
Likewise, if 𝑀 is itself exact and 𝜓 is Hamiltonian, then the second step follows

quite directly. Since it is the only place where we make use of the fact that 𝐿 is in a nice
Darboux chart, it follows that the theorem also holds in this case.

In particular, Conjecture B holds for displaceable rational Lagrangian tori for
slightly more general𝑈 or in exact symplectic 4-manifolds.

B.2 Non-displaceable Lagrangian 2-tori satisfy Conjecture A
Proposition 46 Let 𝐿 be a Lagrangian 2-torus with [𝐿] ≠ 0 ∈ 𝐻2(𝑀;Z). Suppose
furthermore that

(a) either 𝐿 is nondisplaceable;
(b) 𝐿 is 𝐻-rational.

Then, Conjecture A holds for 𝐿.

Remarks 12. It has been proven by Albers [Alb05, Alb10] for K = Z2 and by Entov
and Polterovich [EP09] for K = C that [𝐿] = 0 ∈ 𝐻2(𝑀;K) when 𝐿 is monotone
and displaceable. Therefore, in a lot of examples — probably all — nondisplaceability
follows from [𝐿] ≠ 0.

Proof. The result follows Dimitroglou Rizell’s version of the nearby Lagrangian

conjecture [Riz19]. Indeed, if 𝐿′ = 𝜑(𝐿) ⊆ 𝒲𝑟(𝐿) for some Hamiltonian dif-

feomorphism, we then have that [𝐿′] = 𝜑∗[𝐿] ≠ 0. Therefore, that 𝐿′ must

represent a nonzero homology class in 𝐷∗
𝑟𝐿. From the above-mentioned ver-

sion of the nearby Lagrangian conjecture, there is thus a Hamiltonian isotopy

supported in 𝐷∗
𝑟𝐿 from 𝐿′ to the graph of a 1-form 𝜎.

To conclude in Case (a), note that we could suppose that 𝜎 had no zeroes

if it were not exact. But then, we would have displaced 𝐿 from itself, which

would be in contradiction with the nondisplaceability hypothesis. Therefore,

𝜎 must be exact, and we have a Hamiltonian isotopy supported in 𝒲(𝐿) from

𝐿′ to 𝐿.

In Case (b), note that being isotopic to the graph of a 1-form ensures that

𝐿′ is 𝐻-exact in 𝒲(𝐿). Therefore, it suffices to take 𝑟 small enough so that

Theorem 4 applies. Then, one concludes using the NLC [RGI16, Riz19] □
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