
GEOMETRIC REPRESENTATION THEORY

1. Introduction

In this course we will use techniques from algebraic geometry in order to understand represen-
tations of algebraic groups.

Let us consider in this introduction the group SL2 = {
(
a b
c d

)
, ad − bc = 1}. We let B be the

upper triangular Borel. This group naturally acts on the right on the projective line P1 by the
formula

[X,Y ].

(
a b
c d

)
= [aX + cY, bX + dY ].

In fact, P1 = B\SL2. The Picard group of P1 is Z and for every n ∈ Z, we can construct a
line bundle OP1(n). For example, using the Proj construction, we have that P1 = Proj k[X,Y ]
and OP1(n) is associated to the graded module ⊕k≥0Mk where Mk = k[X,Y ]n+k is the set of
homogeneous polynomials of degree n+k. The group SL2 also acts on these modules and therefore
acts equivariantly on the sheaf. When n ≥ 0, H0(P1,OP1(n)) = ⊕p+q=nkX

pY q. This is the
irreducible n+ 1-dimensional representation of SL2. In fact, we have :

Theorem 1.0.1. For any n ≥ −1, H1(P1,OP1(n)) = 0. For any n ≤ −1, and H0(P1,OP1(n)) =
0. Moreover, we have a (non-canonical) isomorphism of SL2-representations : H0(P1,OP1(n)) =
H1(P1,OP1(2− n)).

There is a connection between the sheaves OP1(n), OP1(2 − n) and the representation Symnk2.
As we have seen, we can obtain the representation by taking cohomology. In fact it is also possible
to recover the sheaves from the representation by applying a certain localization functor.

Theorem 1.0.2. There are two sheaves of ”twisted” differential operators D−n and Dn−2 on P1

(locally, they look like the Weyl algebra k[X, ∂X ] but the gluing data is non trivial) such that

D−n ⊗U(sl2) Sym
nk2 = OP1(n)

and
Dn−2 ⊗L

U(sl2)
Symnk2 = OP1(2− n)[1]

We next want to illustrate that having a sheaf on a space, rather than just a representation
allows for many interesting constructions. We consider the stratification by B-orbits where w0 =(

0 1
−1 0

)
:

P1 = B\Bw0B
∐

B\B = A1
∐
{∞}.

Let π : SL2 → P1 be the projection. Here A1 = π(w0U) (where U is the unipotent radical in B),
and {∞} = π(1). In terms of coordinates, A1 = Spec k[Y/X], and ∞ = [0, 1]. We have an exact
triangle :

(i∞)⋆i
!
∞OP1(n)→ OP1(n)→ j⋆j

⋆OP1(n)
+1→

for i∞ : {∞} → P1 ← A1 : j. We deduce that the following complex computes the cohomology:

Cous(n) : 0→ H0(A1,OP1(n))→ H1
∞(P1,OP1(n))→ 0

If n ≥ 0, we have a short exact sequence 0 → Symnk2 → H0(A1,OP1(n)) → H1
∞(P1,OP1(n)) → 0.

If n ≤ −2, we have a short exact sequence 0→ H0(A1,OP1(n))→ H1
∞(P1,OP1(n))→ Symnk2 → 0.

1
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We claim that there is an action of sl2 on Cous(n) and the two above exact sequence are the
”famous” dual BGG and BGG resolution of Symnk2.

Let us in fact compute everything. We have an isomorphism H0(A1,OP1(n)) = Xnk[Y/X]. One
easily computes the action of T . For t = diag(t, t−1) ∈ T , we have t.Xn(X/Y )s = tn−2sXn(X/Y )s.
Therefore the weights of T on H0(A1,OP1(n)) are n, n− 2, n− 4, · · · .

We can also compute H1
∞(P1,OP1(n))). Let Ū be the opposite unipotent radical. We find that Ū

maps isomorphically via π to a neighborhood (A1)′ of {∞} ∈ P1. We have a short exact sequence:

0→ H0((A1)′,OP1(n))→ H0((A1)′ \ {∞},OP1(n))→ H1
∞(P1,OP1(n)))→ 0

Moreover, H0((A1)′,OP1(n)) = Y nk[X/Y ] and H0((A1)′ \ {∞},OP1(n)) = Y nk[X/Y, Y/X] so
that H1

∞(P1,OP1(n)) = Y nk[X/Y, Y/X]/k[X/Y ]. The weights of T are −n− 2,−n− 4, · · · .
We deduce that Cous(n) is given by the following complex:

0→ Xnk[Y/X]→ Y nk[X/Y, Y/X]/k[X/Y ]→ 0

Let us finally examine all the actions we have on this complex. We have an action of B, where(
1 t
0 1

)
.Y/X = Y/X + t.

There is no action of Ū since

(
1 0
t 1

)
.Y/X = Y/X

1+tY/X . We can however differentiate this action

to get an action of u where

(
1 0
1 1

)
= −(Y/X)2∂Y/X .

The goal of this course will be to generalize these constructions from SL2 to an arbitrary reductive
group G and prove versions of theorems 1.0.1 and 1.0.2 in this setting.

2. Recollections on schemes

2.1. Affine Schemes. Let A be a commutative ring. We define Spec A = {prime ideals of A}.
We equip Spec A with the Zariski topology. A basis of open are the {D(f)}f∈A where D(f) =
Spec A[1/f ] ↪→ Spec A.

We construct a sheaf of rings OSpec A on the topological space Spec A by putting OSpec A(D[f ]) =
A[1/f ]. That this defines a sheaf follows from the following proposition.

Proposition 2.1.1. Let f1, · · · , fn ∈ A be such that (f1, · · · , fn) = A. Then the following sequence
is exact :

0→ A→
∏
i

A[1/fi]→
∏
i,j

A[1/fifj ]

where the first map is the diagonal map a 7→ (a)i and the second map if (fi) 7→ (fi,j) where
fi,j = fi − fj.

The pair (Spec A,OSpec A) is an affine scheme. Any ring morphism f : A → B induces a map
of topological spaces f : Spec B → Spec A and a map of sheaves OSpec A → f⋆OSpec B.

2.2. Schemes.

Definition 2.2.1. A locally ringed space (X,OX) is a pair consisting of a topological space X and
a sheaf of rings OX over X with the property that for all x ∈ X, the stalk OX,x is a local ring.
A map f : (X,OX) → (Y,OY ) of locally ringed spaces is a map f : X → Y of topological spaces
together with a map of sheaves of rings :

f⋆OY → OX

such that for all x ∈ X, the map OY,f(x) → OX,x is a local ring map.

Definition 2.2.2. A scheme is a locally ringed space (X,OX) which is locally isomorphic to an
affine scheme.
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Schemes are therefore a full subcategory of the category of locally ringed spaces. Inside the
category of schemes, we have the full subcategory of affine schemes.

Proposition 2.2.3. The category of affine schemes is equivalent to the opposite category of rings
via the quasi-inverse functors (X,OX) → H0(X,OX) and A → (Spec A,OSpec A), which are
respectively left and right adjoints of the other.

Remark 2.2.4. This proposition explains why we insist on working with locally ringed spaces and
not just ringed spaces. Let k be a field and let Spec k[[T ]] be the affine scheme. This has a special
point s and a generic point η. Consider the map Spec k((T )) → Spec k[[T ]] obtained by sending
(0) = Spec k((T )) to s. This induces a map of ringed spaces, but not of locally ringed spaces. The
point is that the map k[[T ]] = OSpec k[[T ]],s → k((T )) = OSpec k((T )),0 is not a local map. The good
map Spec k((T )) → Spec k[[T ]] is the one induced by applying Spec to the map k[[T ]] → k((T ))
and it sends (0) to η.

One often fixes a base scheme S and consider the category of S-schemes Sch/S. This is the
category whose objects are given by a scheme X together with a ”structural” morphism X → S.
Maps X → Y between two objects of Sch/S is a map of schemes which respects the structural
morphisms.

Remark 2.2.5. Sch = Sch/Z.

One is often led to impose finiteness conditions. Here is a brutal list of the most common
finiteness conditions:

Finiteness conditions on a scheme :

(1) A scheme is quasi-compact if its underlying topological space is quasi compact.
(2) Quasi separated if the intersection of two quasi-compact subsets is quasi-compact.
(3) Locally noetherian : each point as an open affine neighborhood Spec R with R noetherian.
(4) Noetherian : quasi compact and locally noetherian.

Fineteness conditions on a morphism f : X → S.

(1) quasi-compact : for any quasi compact open U ↪→ S, f−1(U) is quasi-compact.
(2) quasi-separated : the diagonal X → X ×S X is quasi-compact.
(3) separated : the diagonal is a closed immersion.
(4) locally of finite type : for every point x ∈ X there are open affine x ∈ Spec R ↪→ X and

Spec A ↪→ S with f(Spec R) ⊆ Spec A and R is a finite type A-algebra.
(5) locally of finite presentation : same as before with R a finite presentation A-algebra.
(6) finite type : locally of finite type + quasi-compact.
(7) finite presentation : locally of finite presentation + quasi-compact + quasi-separated.

2.3. Sheaves. In the case of a ring A, we have the abelian category Mod(A) of A-modules and
its full subcategory Modf (A) of finite type A-modules. The category Modf (A) is abelian if A is
Noetherian. To M ∈ Mod(A), we can associate a sheaf of OSpec A-modules over Spec A, denoted

by M̃ and defined by the rule that M̃(D(f)) = M ⊗A A[1/f ]. That this defines a sheaf follows
from:

Proposition 2.3.1. Let f1, · · · , fn ∈ A be such that (f1, · · · , fn) = A. Then the following sequence
is exact :

0→M →
∏
i

M [1/fi]→
∏
i,j

M [1/fifj ]

where the first map is the diagonal map m 7→ (m)i and the second map if (mi) 7→ (mi,j) where
mi,j = mi −mj.
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Definition 2.3.2. Let X be a scheme and let F be a sheaf of OX -modules. The sheaf F is
quasi-coherent if there is a covering X = ∪Spec Ai and Ai-modules Mi such that F |Spec Ai = M̃i.
The sheaf is called coherent if theres is a covering as before such that the modules Mi are finite
Ai-modules.

We denote by QCoh(X) the category of quasi-coherent sheaves on a scheme X and Coh(X) the
category of coherent sheaves on X. This category QCoh(X) is abelian. The category Coh(X) is
also abelian if X is locally Noetherian.

Remark 2.3.3. One finds in the literature several definitions of coherent sheaves on general
schemes, which all agree in the locally Noetherian case. We have chosen the simplest one.

Proposition 2.3.4. Let Spec A be an affine scheme. The category QCoh(Spec A) is equivalent
to the category Mod(A), and the category Coh(Spec A) is equivalent to the category Modf (A) of

finite A-modules via the quasi-inverse functors : F → H0(Spec A,F ) and M → M̃ .

2.4. Functor of points. To any scheme X we attach a functor of points :

X(−) : Schopp → SETS

T 7→ X(T )

Lemma 2.4.1 (Yoneda). The functor Sch→ Func(Schopp, SETS) is fully faithful.

Definition 2.4.2. A functor F : Schopp → SETS is representable if it is in the essential image of
the Yoneda functor.

2.5. Fibre products. [Reference, [Har77], II, thm. 3.3] Let X,Y, S be schemes and f : X → S,
g : Y → S be maps. Then there is a scheme X ×S Y called the fibre product of X and Y over S.
It fits in a commutative diagram :

X ×S Y //

��

X

��

Y // S

and satisfies the following universal property:

Hom(−, X ×S Y ) = Hom(−, X)×Hom(−,S) Hom(−, Y ).

In the affine case X = Spec A, Y = Spec B,S = Spec R then X ×S Y = Spec (A⊗R B) which
is in particular affine. The general case is obtained by gluing.

2.6. Sites.

Definition 2.6.1. A site is a category C and a collection Cov(C) of families of morphisms with
fixed target (called coverings) satisfying the following axioms :

(1) An isomorphism ϕ : V → U is a covering,
(2) If {ϕi : Ui → U}I is a covering, and {ϕi,j : Ui,j → Ui}j is a covering then {ϕi ◦ ϕi,j : Ui,j →

U}i,j is a covering.
(3) If {Ui → U}i∈I is a covering and V → U is a morphism in C, then ∀i the fiber product

Ui ×U V exists in C, and {Ui ×U V → V }i∈I is a covering.

Definition 2.6.2. A presheaf F on a site C is a functor Cop → SET . A presheaf F is a sheaf if for
any covering {ϕi : Ui → U}i∈I , the diagram:

F (U)→
∏
i

F (Ui) ⇒
∏
i,j

F (Ui ×U Uj)
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is exact. If the morphism F (U)→
∏

i F (Ui) is simply injective, the presheaf is said to be separated.
A morphism of presheaves is simply a natural transformation of functors. Define Sh(C) to be the
full subcategory of Func(Cop, SET ) whose objects are sheaves.

Before giving an example of site in the theory of schemes we mention a few examples:

Example 2.6.3. (1) Let X be a topological space. Let Op(X) be the category of open subsets
of X, ordered by inclusion. Coverings are jointly surjective maps. A sheaf on Op(X) is a
sheaf in the usual sense, ie a topological sheaf.

(2) Let SETS be the category of sets. We turn it into a site by declaring that the coverings
are the jointly surjective maps.

(3) Let Top be the category of topological spaces. Coverings are open coverings.
(4) Let CompTop be the category of compact Hausdorff topological spaces. Coverings are finite

collections of maps, jointly surjective. A sheaf on CompTop for this topology is called a
“condensed set”.

2.7. The fppf topology. Recall that and R-module M is flat if the functor on Mod(R) : M⊗R−
is exact.

Definition 2.7.1. A morphism f : X → S is flat if for all x ∈ X, OX,x is flat over OS,f(x).

Proposition 2.7.2. A morphism of affine schemes X = Spec A→ S = SpecR is flat if and only
if A is R-flat.

Proof. If R→ A is flat then for all x ∈ Spec A mapping to y ∈ Spec R and any Ry-module M we
have that Ax ⊗Ry M = Ax ⊗A A ⊗R M . Thus Ax ⊗Ry − is exact. Conversely, assume that Ax is
Ry-flat for all x. Let 0→ I → R be an inclusion. Let 0→ K → I ⊗R A→ A. We see that for all
x ∈ Spec A, Kx = 0 thus K = 0. □

Definition 2.7.3. A family of morphisms {ϕi : Ui → X}i∈I is an fppf covering if each ϕi is flat
and locally of finite presentation and X = ∪iϕi(Ui).

Proposition 2.7.4. Schfppf is a site.

Proof. This follows from the fact that a composition of flat morphisms is flat and that the base
change of a flat morphism is flat. □

Theorem 2.7.5. Let X be a scheme. The functor of points X(−) is an fppf sheaf.

2.8. Differentials and smoothness.

2.8.1. The module of differentials. Let R be a ring and let A be an R-algebra. For any A-module M
an R-derivation from A to M is an R-linear map D : A→M such that D(ab) = aD(b)+ bD(a) for
all (a, b) ∈ A2. There is a universal A-module Ω1

A/R equipped with a derivation d : A→ Ω1
A/R for

which DerR(A,M) = HomA(Ω
1
A/R,M) for any A-module M . There is a construction by generators

an relations

Ω1
A/R = ⊕a∈AAda/⟨d(ra) = rda ∀(r, a) ∈ R×A, d(ab) = adb+ bda, ∀(a, b) ∈ A×A⟩.

Here is a second construction. We can also consider the exact sequence 0→ I → A⊗RA→ A→ 0
and we let Ω1

A/R = I/I2, and let d : A→ I/I2 be d(f) = 1⊗ f − f ⊗ 1. To see that d : A→ I/I2 is

universal, let M be an A-module and let D : A→M be a derivation. Consider 1⊗D : A⊗RA→M
be the linearization. One checks that 1 ⊗ D(I2) = 0 and we can consider the A-linear map
1⊗D : I/I2 →M . We recover D as the composition A→ I/I2 →M .
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2.8.2. Two exact sequences.

Lemma 2.8.1. If A→ B is a map of R-algebras, we have an exact sequence :

Ω1
A/R ⊗A B → Ω1

B/R → Ω1
B/A → 0

Proof. It suffices to check that for any B-module M , the sequence :

0→ DerA(B,M)→ DerR(B,M)→ DerR(A,M)

is exact. □

Lemma 2.8.2. If A
α→ B is a surjective map with kernel I, we have :

I/I2
d→ Ω1

A/R ⊗B → Ω1
B/R → 0

If A→ B has a splitting B → A as algebras, then

0→ I/I2
d→ Ω1

A/R ⊗B → Ω1
B/R → 0.

Proof. It suffices to check that for any B-module M , the sequence :

0→ DerR(B,M)→ DerR(A,M)→ HomA(I/I
2,M)

is exact. In case we have a splitting, we check that the map is onto. Indeed, we have A/I2 =
B⊕ I/I2. Given D ∈ HomA(I/I

2,M), we can extend it to a derivation on B⊕ I/I2 by D(b+ i) =
D(i). □

Example 2.8.3. We have that Ω1
R[T1,··· ,Tn]/R

= ⊕n
i=1R[T1, · · · , Tn]dTi. Indeed, one checks that the

map ⊕n
i=1R[T1, · · · , Tn]dTi → Ω1

R[T1,··· ,Tn]/R
is surjective using the presentation. We have the

derivation ∂Ti : R[T1, · · · , Tn] → R[T1, · · · , Tn] and they give linear maps : ∂Ti : Ω
1
R[T1,··· ,Tn]/R

→
R[T1, · · · , Tn] with the property that ∂Ti(dTj) = δi,j . We deduce that {dT1, · · · , dTn} are indeed a
basis of the differentials.

Example 2.8.4. Let A = R[T1, · · · , Tn]/(P1, · · · , Pr). Then Ω1
A/R = ⊕n

i=1AdTi/(dP1, · · · , dPr).

2.8.3. The naive cotangent complex. Let B be an R-algebra of finite presentation. This means

that we have an exact sequence 0 → I → A
α→ B → 0 where A is a polynomial algebra over

R and I is a finitely generated ideal. To any such presentation, we can associate the complex :

C(α) : I/I2
d→ Ω1

A/R ⊗B.

Lemma 2.8.5. For any two presentations α, α′, the complexes C(α) and C(α′) are homotopic.

Proof. We first prove that if we have a map of presentations :

0 //

��

I //

��

A
α //

λ
��

B

Id
��

0 // I ′ // A′ α′
// B

we get a map λ : C(α)→ C(α′).
Second we show that if λ and λ′ are two maps of presentation, λ and λ′ are homotopic from

C(α) to C(α′). The homotopy is provided by the map λ− λ′ : A→ I ′/(I ′)2 which is a derivation.
Third, we show that given any two presentations, there is a map between them. It follows that

we have maps C(α) → C(α′) and C(α′) → C(α) and both compositions are homotopic to the
identity. □
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Definition 2.8.6. A ring morphism R → B is smooth if it is of finite presentation and for any

presentation α, the complex C(α) : I/I2
d→ Ω1

A/R ⊗B is injective with projective cokernel. A ring

morphism R → B is étale if it is smooth and the Naive cotangent complex is quasi-isomorphic to
0.

Proposition 2.8.7. (1) Let R → B and B → B′ be smooth (resp. étale) morphisms. Then
R→ B′ is smooth (resp. étale).

(2) Let R→ B and R→ B′ be smooth (resp. étale) morphisms. Then R→ B⊗R B′ is smooth
(resp. étale).

Proof. Take a presentation α : R[T1, · · ·Tn]→ B with kernel I, and a presentation β : R[T1, · · · , Tn, X1, · · · , Xr]→
B′ with kernel J inducing a presentation γ : B[X1, · · · , Xr]→ B′ with kernel K.

We get a commutative diagram :

0 // ⊕iB
′dTi

// ⊕iB
′dTi ⊕⊕jB

′dXj
// ⊕jB

′dXj
// 0

I/I2 ⊗B B′ //

OO

J/J2 //

OO

K/K2 //

OO

0

From which we deduce that the middle map is injective with projective cokernel. The second point
is left to the reader.

□

2.8.4. Standard smooth morphisms.

Definition 2.8.8. AnR algebraA is called standard smooth if it has a presentationR[T1, · · · , Tn]/(f1, · · · , fc)
where the Jacobian matrix (∂Tifj)1≤i,j≤c is invertible in A.

Lemma 2.8.9. A standard smooth R-algebra A is smooth.

Proof. Indeed, we observe that df1, · · · , dfc, dTc+1, · · · , dTn is a basis of Ω1
R[T1,··· ,Tn]

⊗R A. □

Lemma 2.8.10. Let A be a standard smooth algebra. There is an étale map R[X1, · · · , Xt]→ A.

Proof. We consider a standard presentation : R[T1, · · · , Tn]/(f1, · · · , fc). We just take X1 =
Tc+1, · · · , Xt = Tn. □

Lemma 2.8.11. A smooth R-algebra A admits a Zariski cover SpecA = ∪i SpecA[1/fi] where
A[1/fi] is a standard smooth R-algebra.

Proof. Let A be a smooth R-algebra. We take a presentation 0→ I → R[T1, · · · , Tn]→ A→ 0. For

any f ∈ A, with lift f̃ , 0→ (I, Tn+1f̃ − 1)→ R[T1, · · · , Tn, Tn+1]→ A[1/f ]→ 0 is a presentation.

We also observe that (I, Tn+1f̃ − 1)/(I, Tn+1f̃ − 1) = I/I2 ⊗A A[1/f ]⊕A[1/f ](fdTn+1 − dfTn+1).
Let x ∈ Spec ¬†A. Since I/I2 is projective, there exists f ∈ A such that I/I2 ⊗A A[1/f ] is free
and f(x) ̸= 0. We can replace A by A[1/f ] and assume I/I2 is free. It has a basis (f1, · · · , fc).
Pick a lift (h1, · · · , hc) in I. By Nakayama, h ∈ I such that (1 + h)(h1, · · · , hc) ⊆ I. We see
that 0 → (h1, · · · , hc, Tn+1(1 + h) − 1) → R[T1, · · · , Tn+1] → A → 0 is a presentation. Thus we
can assume that I is generated by (f1, · · · , fc) which map to a basis of I/I2. We see that one of
the minors of size c of (∂Tifj)1≤j≤c,1≤i≤n is non-zero. Making one more localization, and possibly
reordering, we can assume that (∂Tifj)1≤i,j≤c is invertible in A. □

2.9. Smoothness and flatness.

Proposition 2.9.1. A smooth morphism R→ B is flat.

Proof. See [Sta13] TAG 00TA. Note that syntomic morphisms are flat by definition. □
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Proposition 2.9.2. (1) Let R be a field. A morphism R → B is étale if and ony if B is a
product of finitely many finite separable field extensions of R.

(2) Let R be a ring. A morphism R→ B is étale if and only if it is of finite presentation, flat,
and for all prime ideal p in R, k(p)→ B ⊗R k(p) is étale.

Proof. First, assume that R is a field and B = R[x]/P (x) with (P (x), P ′(x)) = 1. Then R→ B is

étale (the naive cotangent complex is given by B
P ′(x)→ B). In the other direction, we may assume

that R is algebraically closed. Then one needs to see that if R → B is étale, then B is finite over
R and reduced. See [Sta13] TAG 00U3. For the second point, see [Sta13] TAG 00U6. □

2.9.1. Smooth morphism. If X → S is a map of schemes, we let Ω1
X/S be the quasi-coherent

sheaf over X of relative differentials. If X/S is locally of finite type, this sheaf is coherent. One
possible definition is to consider the locally closed immersion ∆ : X → X ×S X, factor it as the
composite of a closed immersion, with ideal I and open immersion X ↪→W ↪→ X ×S X and to let
Ω1
X/S = ∆⋆I /I 2. We can also check that for R → A and f ∈ A, Ω1

A/R ⊗A Af = Ω1
Af/R

, so that

the construction of Ω1
A/R is compatible with Zariski localization.

Definition 2.9.3. A morphism f : X → S is smooth at x ∈ X is x has an affine neighboorhood
SpecB over an open Spec R of S containing f(x) and R→ B is a smooth map of rings.

Definition 2.9.4. A morphism is smooth if it is smooth at all points.

The rank of Ω1
X/S is called the relative dimension of f .

Definition 2.9.5. A morphism is étale if it is smooth of relative dimension zero.

Proposition 2.9.6. A morphism f : X → S is étale if

(1) it is locally of finite presentation,
(2) it is flat,
(3) for all s ∈ S, the fiber Xs is a disjoint union of spectra of finite separable extension of k(s).

2.10. The Tangent sheaf and the Zariski tangent space. Assume that X → S is locally of
finite type.

Definition 2.10.1. The tangent sheaf is TX/S = Hom(Ω1
X/S ,OX/S).

Proposition 2.10.2. Assume that S = Spec R. Then H0(X,TX/S) identifies with the group of
automorphisms of X ×Spec R Spec R[ε] which induce the identity on X.

Proof. Let ϕ be such automorphism. Since X ×Spec R Spec R[ε] and X have the same open
subsets, ϕ will preserve any affine cover. We can assume that X is affine, say X = Spec A. We
therefore have ϕ : A[ε] → A[ε]. We have ϕ(a) = a + εD(a). We check that D is in DerR(A,A) =
HomA(Ω

1
A/R, A). □

Assume that S = SpecR. Let X → S be a scheme and let x : S → X be an S-point. Let Ix
be the ideal sheaf of the immersion. We let V (I2x) be the first neighborhood of x. We remark that
Ix/I

2
x is supported on S and corresponds to an R-module still denoted by Ix/I

2
x. It follows that

V (I2x) = Spec(R⊕ Ix/I
2
x).

Proposition 2.10.3. Consider the map r : X(R[ε]) → X(R) induced by the map R[ε] → R,
a+ εb 7→ a. Then r−1(x) = HomR(Ix/I

2
x, R).

Proof. An element of r−1(x) corresponds to a morphism R⊕ Ix/I
2
x → R[ε]. □

We call Hom(Ix/I
2
x, R) the Zariski tangent space at x. We can spell out the connection with

TX/S .
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Lemma 2.10.4. There is a canonical map x⋆TX/S → HomR(Ix/I
2
x, R). If X/S is smooth, this

map is an isomorphism.

Proof. Let us assumeX = SpecA is affine. We have x⋆TX/S = HomA(Ω
1
A/R, A)⊗AR→ HomA(Ω

1
A/R, R) =

HomR(R⊗AΩ1
A/R, R) = HomR(Ix/I

2
x, R). In the smooth case, the first map is an isomorphism. □

2.11. Differential operators. Let X → S be a map of schemes. Let PX/S = OX ⊗f−1OS
OX and

Pn
X/S = PX/S/I

n+1 where I is the kernel of the map OX ⊗f−1OS
OX → OX . This quasi-coherent

sheaf has two structures of OX -modules given by left and right multiplication.

Lemma 2.11.1. The map X ×S X ×S X → X ×S X, (x, y, z) 7→ (x, y) induces a map δ : Pn+m
X/S →

Pn
X/S ⊗OX

Pm
X/S, given by a⊗ b 7→ a⊗ 1⊗ 1⊗ b.

Proof. We have a map δ : PX/S → PX/S ⊗OX
PX/S , given by a⊗ b 7→ a⊗ 1⊗ 1⊗ b. This map sends

the ideal I to I⊗PX/S+PX/S⊗I. It sends Im+n+1 to
∑

a+b=m+n+1(I⊗PX/S)
a(I⊗PX/S)

b = Ia⊗Ib.
We see that Ia ⊗ Ib ⊆ In+1 ⊗ PX/S + PX/S ⊗ Im+1. □

Remark 2.11.2. Geometrically, the lemma says that if (x, y) are closed to order m and (y, z) are
closed to order n, the (x, z) are closed to order m+ n.

We want to understand the structure of Pm
X/S .

Definition 2.11.3. (1) Let A be a ring. Let f1, · · · , fc be elements of A. We say that the
elements f1, · · · , fc define a regular sequence if fi is not a zero divisor in A/(f1, · · · , fi−1)
for all 0 ≤ i ≤ c.

(2) Let X be a scheme. An ideal I ⊆ OX is called regular, if for any x ∈ X, there is an
open affine U and elements f1, · · · , fc which generate I(U) and form a regular sequence in
OX(U).

(3) An immersion of schemes Z → X is called regular if there exists an open U ⊆ X such that
Z can be defined by a regular ideal I in U .

Lemma 2.11.4 ([Sta13], Tag 00LN). Let A be a ring and f1, · · · , fc be a regular sequence defining
an ideal I. The map A/I[X1, · · · , Xc] → ⊕n≥0I

n/In+1, sending
∏

Xei
i to

∏
fei
i mod In+1 is an

isomorphism.

Proposition 2.11.5. Assume that X is smooth and that X admits an étale map X → An
S. Let xi

be the coordinates on An
S and ξi = 1⊗ xi − xi ⊗ 1 ∈ PX/S. Then Pm

X/S is the free OX-module with

basis the
∏

i ξ
αi
i with

∑
αi ≤ m.

Proof. (1) The map X → X ×S X is a regular immersion (see [Sta13], Tag 067U). This implies
that ⊕kI

k/Ik+1 = Sym(I/I2).
(2) The elements ξi ∈ I map to a basis of I/I2 by our assumption.
(3) We prove by induction on m that the map ⊕αOXξα → Pm

X/S is an isomorphism.

□

Let E and F be quasi-coherent sheaves over X. Let D : E → F be an f−1(OS)-linear operator.
One can linearize it by considering 1⊗D : OX⊗f−1OS

E → F . Alternatively, we see that OX⊗f−1OS

E = PX/S ⊗OX
E .

Definition 2.11.6. We say that D is a differential operator of order ≤ n is we have a factorization:

E //

��

F

Pn
X/S ⊗ E

::
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Remark 2.11.7. D is of order 0 if and only if it is a linear map.

Lemma 2.11.8. Let D : E → E ′ and D′ : E ′ → E ′′ be differential operators of order ≤ n and ≤ m.
Then D′ ◦D is of order ≤ m+ n.

Proof. We have maps δ : PX/S → PX/S ⊗OX
PX/S , given by a ⊗ b 7→ a ⊗ 1 ⊗ b. It induces maps

Pn+m
X/S → P

m
X/S ⊗OX

Pm
X/S . We now consider the diagram :

E //

((

��

E ′ //

''

E ′′

Pn ⊗ E

��

OO

Pm ⊗ E ′

OO

Pn+m ⊗ E // Pm ⊗ Pn ⊗ E

77

The top maps are e 7→ D(e) 7→ D′D(e). The map Pn ⊗ E → E is a ⊗ b ⊗ e 7→ aD(be). The map
Pn ⊗ E → Pm ⊗ Pn ⊗ E is a ⊗ b ⊗ e 7→ 1 ⊗ a ⊗ b ⊗ e. The map Pn+m ⊗ E → Pm ⊗ Pn ⊗ E is
a′⊗ b⊗ e 7→ a′⊗ 1⊗ b⊗ e. The map Pm⊗Pn⊗E → Pm⊗E ′ is a⊗ b⊗ c⊗ e 7→ a⊗ b⊗D(ce). □

Definition 2.11.9. We let DX/S be the ring of differential operators on OX .

This is a graded ring with (DX/S)n = HomOX
(Pn

X/S ,OX) are the differential operators of order

≤ n. This is a subsheaf of Endf−1(OS)(OX).

Lemma 2.11.10. (1) (DX/S)0 = OX

(2) (DX/S)1 = OX ⊕ TX .

Proof. The first point is clear. For the second point, we observe that P1
X/S = Ω1

X/S ⊕ OX . □

Remark 2.11.11. We see that a section D of Endf−1(OS)(OX) is a differential operator of order
m if and only if D((f1⊗1−1⊗f1)....(fm⊗1−1⊗fm)) = 0 for any local sections (fi)1≤i≤m in OX .
Observe that D((f1⊗1−1⊗f1)....(fm⊗1−1⊗fm)) = [D, f1](f2⊗1−1⊗f2)....(fm⊗1−1⊗fm)).
We deduce that D is of order ≤ m if and only if [D, f ] is of order ≤ m− 1 for all f ∈ OX .

Lemma 2.11.12. If D is of order ≤ n and D′ is of order ≤ m, then [D,D′] is of order ≤ m+n−1.

Proof. We prove the lemma by induction on the order of D′ and D, using the above remark. We
have [[D,D′], f ] = [[D, f ], D′] + [D, [D′, f ]]. □

We define gr(DX/S) = ⊕(DX/S)n/(DX/S)n−1.

Corollary 2.11.13. We have that gr(DX/S) is a commutative algebra.

We now put ourselves in the setting of proposition 2.11.5. We assume that X is smooth, and that
X admits an étale map X → An

S . Let xi be the coordinates on An
S and ξi = 1⊗xi−xi⊗ 1 ∈ PX/S .

In the above situation, for any q = (q1, · · · , qn) we let ξq =
∏

i ξ
qi
i . If

∑
qi ≤ m, let Dq be the

differential operator of order ≤ m which satisfies Dq(ξ
q) = 1 and Dq(ξ

q′) = 0 for q′ ̸= q. The Dq

form a basis of DX/S .

Remark 2.11.14. In particular, for m = 1, we see that Dq corresponding to q = (0, · · · , 0, 1, 0, · · · , 0)
with 1 in i-th position is ∂xi. Indeed, ∂xi(1⊗ xi − xi ⊗ 1) = ∂xi(xi)− xi∂xi(1) = 1.

We now need to understand the composition.

Lemma 2.11.15. We have Dq ◦Dq′ =
(q+q′)!
q!q′! Dq+q′.
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Proof. We have δ(ξi) = xi ⊗ 1 ⊗ 1 − 1 ⊗ 1 ⊗ xi = ξi ⊗ 1 + 1 ⊗ ξi. We deduce that δ(ξp) =∑
i+j=p

q!
i!(p−i)!(ξ

p−i ⊗ 1)(1⊗ ξi). Applying Id⊗Dq′ first, we find 0, unless i = q′. Then apply Dq,

we see that we must have p− q′ = q otherwise we get 0. □

Proposition 2.11.16. Assume that X is smooth over S and that S is a Q-scheme. Then DX/S is
the ring generated by OX and TX/S, subject to the following relations :

(1) f1.f2 = f1f2, fi ∈ OX ,
(2) f.D = fD, f ∈ OX , D ∈ TX ,
(3) D1.D2 −D2.D1 = [D1, D2],
(4) f.D −D.f = D(f).

In particular, gr(DX/S) = Sym(TX).

Proof. The above description shows that DX/S = ⊕(i1,··· ,in)OX
∏n

l=1 ∂
il
xl

and

(DX/S)k = ⊕(i1,··· ,in),
∑

il≤kOX

n∏
l=1

∂il
xl
.

This implies that the map TX/S → gr((DX/S)) induces an isomorphism gr((DX/S)) = Sym(TX).
Let A be the algebra generated by OX and TX/S as above. We have a map A → DX/S . We can
turn A into a graded algebra by declaring that elements of TX/S have degree ≤ 1 and elements
of OX have degree ≤ 0. Now we have Sym(TX) → gr(A) → gr((DX/S)) and the composite is an
isomorphism, while the first map is onto. We deduce that gr(A)→ gr((DX/S)) is an isomorphism,
hence that A → DX/S is an isomorphism. □

We also need to understand the (left) stalks of DX/S .

Lemma 2.11.17. Assume that S = Spec k where k is a field. Let x : S → X be a section. We
have a map : x⋆DX/S → colimnHomk(OX,x/m

n
x, k). This map is an isomorphism if X → S is

smooth.

Proof. We claim that x⋆Pm
X/S = OX,x/m

m+1
x . We reduce to the affine case, X = Spec A. We have

R ⊗A (A ⊗R A) = A. The ideal R ⊗A I maps to the maximal ideal mx. Now we have x⋆DX/S =
colimnHom(Pm

X/S ,OX)⊗OX
k → colimnHomk(OX,x/m

n
x, k) where the map is an isomorphism in the

smooth case. □

Corollary 2.11.18. Assume that k is of characteristic 0 and X/S is smooth. We have that
x⋆DX/S = ⊕(i1,··· ,in)k

∏n
l=1 ∂

il
xl

where ∂xl
are a basis of the Tangent space at x. The isomorphism

takes
∏

l ∂
il
xl

to the map f 7→ (
∏

l ∂
il
xl
f)(x) where f ∈ OX,x.

2.12. Dimension. Let X be a scheme. A closed subset Z is called irreducible if it is non-empty
and whenever Z = Z1 ∪Z2 where Z1 and Z2 are closed, then Z1 = Z or Z2 = Z. Equivalently, this
means that any non-empty open subset of Z is dense.

Lemma 2.12.1. Let U be an open affine subset of X. We have a bijection between irreducible
closed subsets Z of X such that Z ∩ U ̸= ∅ and irreducible closed subsets Z of U . The maps are
given by Z 7→ Z ∩ U and Z 7→ Z.

Proof. Let Z be closed in U . We claim that Z ∩U = Z. Indeed, let x ∈ U \Z. Then we can find a
function f in the ideal defining U such that x ∈ D(f). Thus, D(f) is open in X. And Z ⊆ D(f)c,
which proves that x /∈ Z ∩ U . If Z is irreducible, then we claim that Z is irreducible. Otherwise,
Z = Z1∪Z2. Then Z ∩U = Z = Z1∩U ∪Z2∩U . So, we can assume that Z = Z1∩U and Z = Z1.
Let Z be a irreducible subset of X be such that Z ∩ U ̸= ∅. We claim that Z = Z ∩ U . Indeed,
Z = Z ∩ U ∪ U c ∩ Z and Z is irreducible. We also deduce that Z ∩ U is irreducible. Indeed, if
Z1 ∪ Z2 = Z ∩ U , then Z1 ∪ Z2 = Z so that Z1 ⊆ Z2 (or conversely) and therefore Z1 ⊆ Z2.

□
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Lemma 2.12.2. Any irreducible closed subset of X has a unique generic point.

Proof. Let Z be an irreducible closed subset. Take U affine open such that Z ∩ U ̸= ∅. Let ξ be
the generic point of Z ∩ U . Then the closure of ξ in X is Z.Let ξ and ξ′ be two points in X with
the same closure. Let U be an affine open containing ξ. If ξ′ /∈ U , we get that ξ′ ∈ X \ U , a
contradiction. So ξ, ξ′ ∈ U . But then ξ = ξ′ correspond to the same prime ideal. □

We say that X is noetherian if every open subset is quasi-compact.

Lemma 2.12.3. If X is noetherian, then any closed subset is a finite union of irreducible closed
subsets.

Proof. Let Z be a smallest closed subset which is not a finite union of irreducible closed subset
(exists by noetherian assumption). Then Z is not irreducible, hence Z = Z1 ∪ Z2 where Zi are
strictly included in Z. Then Zi are finite union of irreducible components. Thus Z is a finite union
of irreducible closed subsets. □

We let dim(X) be the maximal length of chain of irreducible closed subsets Z0 ⊊ Z1 ⊊ · · · ⊊ Zn

(this chain has length n) in X. When A is a ring we let dim(A) = dim(Spec A).

Lemma 2.12.4. Let X be a scheme. Then dim(X) = supx∈X dim(OX,x).

Proof. Let ξ0 → ξ1 → ξ2 · · · → ξn be a chain of specializations in OX,x. They define a chain of
prime ideals in any affine open containing x and thus a chain of irreducible closed subsets in X.
Therefore dim(OX,x) ≤ dim(X). Conversely let ξ1 → ξ2 · · · → ξn be a chain of specializations in
X. These define a chain of specializations in OX,x with x = ξn. □

We let codimX(x) = dim(OX,x).
We now assume that (A,m) be a noetherian local ring. A system of parameters of A is a sequence

of elements (a1, · · · , an) such that
√
(a1, · · · , an) = m.

Theorem 2.12.5 ([Sta13], Tag 00KQ). The minimal number of elements defining a system of
parameters is the dimension of A.

Corollary 2.12.6. Let A be a noetherian scheme, then dimA[X] = dimA+ 1.

Proof. Let p1 ⊆ · · · ⊆ pn be a sequence of prime ideals in A. Then p1 ⊆ · · · ⊆ pn ⊆ (pn, X) is a
sequence of lenght n + 1. Thus, dimA[X] ≥ dimA + 1. Conversely, let x ∈ Spec A[X] mapping
to y. Let (f1, · · · , fn) be a sequence of parameters of y. Observe that A[X]x/my is a localization
of k(y)[X] at a prime ideal. Thus, it is either a field, if which case (f1, · · · , fn) is a sequence of
parameters of x as well, or x defines a closed point corresponding to some irreducible polynomial

P (X) ∈ k(y)[X]. In that case, (f1, · · · , fn, P̃ ) is a sequence of parameters at x. □

Corollary 2.12.7. Let k be a field, then dim k[X1, · · · , Xn] = n. More precisely, for any closed
point x, dim k[X1, · · · , Xn]x = n.

2.12.1. Dimensions of k-schemes. Let A = k[X1, · · · , Xn]/(P1, · · · , Pr). Let x be a closed point of
Spec A.

Lemma 2.12.8. We have dimAx ≥ n− r.

Proof. If f1, · · · , fk is a system of parameters of x in Spec A, then (f̃1, · · · , f̃k, P1, · · · , Pr) is a
system of parameters of x in Spec k[X1, · · · , Xn]. Thus k + r ≥ n. □

Theorem 2.12.9 ([Sta13], Tag 02JN). If P1, · · · , Pr are a regular sequence in k[X1, · · · , Xn]x,
then dim(k[X1, · · · , Xn]/(P1, · · · , Pr))x = n− r.

Theorem 2.12.10. Assume that X → Spec k is a smooth scheme, then dim(X) = dim(OX,x) for
any closed point x is the rank of Ω1

X/k.

Proof. Locally,X is standard smooth, of the form Spec k[X1, · · · , Xn]/(P1, · · · , Pr). Then P1, · · · , Pr

is a regular sequence by [Sta13] Tag 067U. □
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2.12.2. Constructibility theorem. Let X be a qcqs scheme. A subset of X is called constructible if
it is a finite union of sets of the form U ∩ Z where U is a quasi-compact open and Z is a closed
subset with quasi-compact complement.

Theorem 2.12.11. Let f : X → Y be a morphisms where f is locally of finite presentation, and
X,Y are quasi-compact, quasi-separated. Then the image of any constructible set is constructible.

Corollary 2.12.12. Assume that X is noetherian. The image f(X) contains an open subset of its
closure.

Proof. This means that f(X) = ∪i∈IUi ∩ Zi where I is finite, Ui and Zi are quasi-compact opens
and complement of quasi-compact opens respectively. We can also suppose that Zi is irreducible
and Ui dense in Zi. We claim that f(X) contains an open subset of its closure. Let I ′ be a minimal
set such that ∪i∈I′Zi = ∪i∈IZi. Let U ′

i = Ui \ {∪j ̸=i∈I′Zj}. Then U ′
i is still dense in Zi and open

in ∪iZi. Thus, ∪i∈I′U ′
i = V is dense open in the closure of f(X) □

2.12.3. Generic flatness theorem. Let us first recall Noether’s normalization lemma.

Lemma 2.12.13 ([Sta13], Tag 07NA). Let R→ R′ be an injective map of algebras with R a domain.
There exists f ∈ R ̸= 0 and an integer d such that we have a factorization Rf → Rf [T1, · · · , Td] ↪→
R′

f with R′
f finite over Rf [T1, · · · , Td].

Theorem 2.12.14. Let S be a noetherian scheme. Let X → S be a morphism of finite type, with
S reduced. There is an open dense U ⊆ S such that X|U → U is flat.

This is a consequence of the following.

Proposition 2.12.15. Let A be a noetherian integral ring, let B be an A-algebra of finite type.
Let M be a finite B-module. There exists f ∈ A \ {0} such that Mf is free over Af .

Proof. Let K = Frac(A). The proof is by induction on the dimension of the support of M ⊗ K.
We also note that if we have an exact sequence 0→M1 →M2 →M3 → 0 and the lemma holds for
M1 and M3 it holds for M2. Suppose that M ⊗K is zero. Let m1, · · · ,mn be generators of M as
a B-module. There exists f ∈ A ̸= 0 such that fm1 = · · · = fmn = 0. Therefore M ⊗A Af = 0. In
general, we recall that M is a successive extension of modules of the form B/p where p is a prime
ideal. We reduce to the case that M = B is a domain. By Noether normalization, there exists
f ∈ A and b1, · · · , bn ∈ B such that Af → Af [b1, · · · , bn]→ Bf where Af [b1, · · · , bn] is a polynomial
algebra and Af [b1, · · · , bn] → B is finite. We let r be the generic rank of M over Af [b1, · · · , bn].
We have a map 0→ Af [b1, · · · , bn]r →M → T → 0 and the dimension of the support of T ⊗K is
less than n. □

Lemma 2.12.16. Let A be a Noetherian ring. Let M be a finite type A-module. Then M is a
finite successive extension of modules of the shape A/p where p is a prime ideal.

Proof. First, we see that M is a finite successive extension of modules of the shape A/I by induction
on the number of generators of M . So we reduce to M = A/I. Now we consider an ideal I which is
maximal among ideals with the property that A/I is not a successive extension of modules of the
shape A/p. By contradiction, assume I ̸= A. Clearly, I is not prime, so there is a, b with ab ∈ I
but a, b /∈ I. Replace A/I by A. We have 0 → A/ann(a) → A → A/a → 0. But both A/ann(a)
and A/a have the property. So does A. □

2.12.4. Generically smooth.

Proposition 2.12.17. Let X → Spec k be a finite type morphism. Assume that X is geometrically
reduced. Then X is generically smooth.
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Proof. We can suppose X = Spec A with A a domain. By Noether normalization, we have k →
k[x1, · · · , xn]→ A where k[x1, · · · , xn]→ A is injective and finite. Passing to the generic point, we
have A⊗k[x1,··· ,xn]k(x1, · · · , xn) is an étale k(x1, · · · , xn)-algebra. Indeed, A⊗k[x1,··· ,xn]k(x1, · · · , xn)
is reduced, so it must be a product of finite field extensions of k(x1, · · · , xn). Being geometricall re-
duced implies these are étale extension. We deduce that there is a map k[x1, · · · , xn, y1, · · · , yr]/[P1, · · · , Pr]→
A which induces an isomorphism over k(x1, · · · , xn). This implies that there is f ∈ k[x1, · · · , xn]
such that k[x1, · · · , xn, y1, · · · , yr]/[P1, · · · , Pr][1/f ] ≃ A[1/f ]. We look at the determinant d of the
Jacobian (∂YjPi)1≤i,j≤r. We have d ∈ k[x1, · · · , xn, y1, · · · , yr]/[P1, · · · , Pr] and V (d) is nowhere
dense (indeed, d is invertible over k(x1, · · · , xn)). We deduce that

k[x1, · · · , xn][1/f ][y1, · · · , yr, yr+1]/(P1, · · · , Pr, yr+1d− 1) = A[1/fd]

is standard étale over k[x1, · · · , xn][1/f ]. □

3. Group schemes

3.1. Group Schemes. We now work in Sch/S. A group scheme G → S is a scheme equipped
with the following additional structure : m : G ×S G → G, e : S → G, ι : G → G, satisfying
associativity, neutral element and inverse axioms. Alternatively, a group scheme is a group functor
Fun(Schop, Gr) that is representable by a scheme G. A morphism of Group schemes is a morphism
of schemes, compatible with the group structure. When G is affine we can completely describe this
extra structure in ring theoretic terms.

Definition 3.1.1. Let R be a base ring. An Hopf algebra A over R is a commutative ring equipped
with a comultiplication m⋆ : A→ A⊗R A, counit e⋆ : A→ R and coinverse ι⋆ : A→ A and satisfy
the following axioms :

(1) Co-associative

A
m⋆

//

��

m⋆

��

A⊗A

1⊗m⋆

��

A⊗A
m⋆⊗1
// A⊗A⊗A

(2) Inverse A
m⋆

→ A ⊗ A
Id⊗ι⋆→ A ⊗ A → A and A

m⋆

→ A ⊗ A
ι⋆⊗Id→ A ⊗ A → A are the identity

map.

(3) Neutral element A
m⋆

→ A⊗A
Id⊗e⋆→ A and A

m⋆

→ A⊗A
e⋆⊗Id→ A are the identity map.

Proposition 3.1.2. Hopf algebras over R are anti-equivalent to afffine group schemes over Spec R

Example 3.1.3. (1) We have Ga = Spec R[X], with m⋆(X) = 1⊗X +X ⊗ 1.
(2) We have Ga = Spec R[X,X−1], with m⋆(X) = X ⊗X.
(3) We have GLn = Spec R[Xi,j , 1 ≤ i, j ≤ n][1/det] with m⋆(Xi,j) =

∑
l Xi,l ⊗Xl,j .

3.2. Action. Let G be a group scheme and let X be a scheme. A left action of G on X is a
morphism : G×X → X such that the action is associative and the unit acts trivially. Equivalently,
for any S-scheme T , we have an action G(T )×X(T )→ X(T ), functorially in T .

3.3. Representations. Let us assume S = Spec R. Let M be an R-module. We can associate to
M the functor M on R-algebras such that M(A) = A⊗RM . A representation of G on M is a map
of functors G×M → M such that for all A ∈ Alg/R, G(A)×M(A)→ M(A) defines an A-linear
action of G(A) on M(A). Let us denote by GL(M) the group functor which sends an R-algebra
B to the group GL(M ⊗R B) of B-linear automorphisms of M ⊗R B. A representation on M is
therefore a group functor map G → GL(M). If M = An is a finite free module, a representation
on M is the same as a group scheme homomorphism G→ GLn. We let ModG(R) be the category
of representations of G on R-modules. Assume that G = Spec A is affine, with A an Hopf algebra.
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Definition 3.3.1. A co-module is an R-module M equipped with an A-linear map ∆ : M →M⊗A
which satisfies the axioms :

(1)

M
∆ //

��

∆
��

M ⊗A

∆⊗Id
��

M ⊗A
Id⊗m⋆

// M ⊗A⊗A

(2) M →M ⊗A
Id⊗e⋆→ M is the identity map.

Proposition 3.3.2. The category ModG(R) is equivalent to the category of co-modules.

Proof. Given a co-module ∆ : M → M ⊗ A, and a B and A-algebra, we produce a map G(B) →
GL(M ⊗A B) as follows. Let g ∈ G(B), corresponding to g : A → B. We have an A-linear map

M → M ⊗R A
Id⊗g→ M ⊗R B which extends to a B-linear map Θg : M ⊗A B → M ⊗A B. The

associativity axiom implies that Θg ◦Θh = Θgh. The following is commutative :

M

��

∆ // M ⊗A
Id⊗m⋆

//

Id⊗g
��

M ⊗A⊗A

Id⊗(g⊗h)
��

M ⊗R B
Θg
// M ⊗R B

Θh // M ⊗R B

In particular, Θg−1 ◦Θg = Θe = Id so Θg is an automorphism. Thus, the co-module gives a group
action on M . Conversely, assume we have a group action. Let un ∈ G(A) be the universal element
(corresponding to the identity morphism A→ A. Then we set ∆ : M →M ⊗R A be the action of
the universal element. This is the co-module structure. □

Example 3.3.3. (1) If G = Spec A is affine, we can consider the regular representation : we
take M = A itself. We claim that the map G → GL(A) is injective (as a map of group
functors).

(2) The category ModGm(R) is equivalent to the category of Z-graded modules.
(3) The category ModGa(R) is more complicated. When R is a Q-algebra, a representation of

Ga on a module M is equivalent to the data of an endomorphism E of M which is locally
nilpotent.

3.4. The Lie algebra of a group scheme. Let G → S be a group scheme. For any R-algebra
B, we let

1→ Lie(G)(B)→ G(B[ε])→ G(B)→ 1

We see that this defines a group functor Lie(G)(−) on R algebras. Let us put Lie(G) := Lie(G)(R).
Let us also put ωG = e⋆Ω1

G/S . We get a functor Gr/S → ModR, G 7→ Lie(G) := Lie(G)(R).

Remark 3.4.1. This definition of Lie algebra applies more generally to any group functor (not
necessarily representable).

Theorem 3.4.2. We have an isomorphism of groups Lie(G)(B) = HomR(ωG, B).

Proof. By proposition 2.10.3, Lie(G)(B) = HomR(ωG, B). The RHS carries a natural group law
(call it ⋆). The multiplication m : G × G on the group induces a map Lie(G)(B) ⊕ Lie(G)(B) →
Lie(G)(B) which gives a second group law ◦ compatible with ⋆. To show that these two group law
agree, we use the lemma below. □

Lemma 3.4.3. Let X be a set. We assume that X has two group structures, ⋆ and ◦ and that
(a ⋆ b) ◦ (a′ ⋆ b′) = (a ◦ a′) ⋆ (b ◦ b′). Then ⋆ = ◦ are commutative group laws.
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Proof. We first check that the units 1⋆ and 1◦ agree :

1⋆ = (1◦ ◦ 1⋆) ⋆ (1⋆ ◦ 1◦)
= (1◦ ⋆ 1⋆) ◦ (1◦ ⋆ 1◦)
= 1◦

We deduce that:

a ⋆ b = (a ◦ 1) ⋆ (1 ◦ b)
= a ◦ b

Finally, we have:

a ⋆ b = (1 ◦ a) ⋆ (b ◦ 1)
= b ◦ a

□

If x ∈ Lie(G)(B), we let eεx be its image in G(B[ε]).

Remark 3.4.4. When ωG is finite projective, then Lie(G)(B) = Lie(G)⊗R B. This is true if R is
a field, and G is of finite type. We often simply restrict to this case.

Example 3.4.5. (1) If we take M an R module, then Lie(M) = M .
(2) If M is an R-module, then End(M) = Lie(GL(M)) via the map sending N to Id + εN .

Remark that Id+ εN has inverse Id− εN .

3.5. Lie bracket. Consider a linear representation ρ of a group G on a module M . This induces
a group morphism dρ : Lie(G)→ End(M), with the property that ρ(eεx) = 1 + εdρ(x).

We now assume that Lie(G)(B) = Lie(G) ⊗R B as in remark 3.4.4. We have a linear adjoint
representation of G on Lie(G) denoted by Ad : G → GL(Lie(G)). Indeed we look at the exact
sequence :

1→ Lie(G)(B)→ G(B[ε])→ G(B)→ 1

and the group G(B) acts by conjugation on Lie(G)(B). We justify that the elements of G(B) act
B-linearly. For g ∈ G(B), we get an map g : GB → GB, h 7→ ghg−1. By functoriality, this induces
a B-linear map on the tangent space (which is the map we are considering). By derivation, we get
ad : Lie(G)→ End(Lie(G)). We define a Lie bracket by ad(x)(y) = [x, y].

Consider the ring R[ε, ε′] = R[X,X ′]/(X2, (X ′)2). It contains the subrings R[ε], R[ε′] and R[εε′].
We also have an exact sequence 0→ ε′R[ε]→ R[ε′, ε]→ R[ε]→ 0.

Lemma 3.5.1. Let x, y ∈ Lie(G). We have

eεxeε
′ye−εxe−ε′y = eεε

′[x,y].

Proof. Consider the long exact sequence :

1→ Lie(G)(R[ε′])
eε

′(−)

→ G(R[ε, ε′])→ G(R[ε])→ 1, so that eεx ∈ G(R[ε]). We have

eεxeε
′ye−εx = Ad(eεx)(eε

′y)

= (Id+ εad(x))(eε
′y)

= eε
′y+εε′[x,y]

□

Corollary 3.5.2. Let M be a finite projective R-module. The Lie bracket on End(M) is given by
[x, y] = xy − yx.

Proposition 3.5.3. For any representation ρ of G on M , the map dρ : Lie(G) → End(M) is
compatible with the Lie bracket.
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Proof. We work inR[ε, ε′]. We have eεxeε
′ye−εxe−ε′y = eεε

′[x,y]. Applying ρ we get Id+εε′ad([x, y]) =
(Id+ εad(x))(Id+ ε′ad(y))(Id− εad(x))(Id− ε′ad(y)). □

3.6. Lie algebra and derivations. If X is a scheme, we can define a group functor Aut(X) by
Aut(X)(B) = Aut(X × Spec B/ Spec B). We can in particular consider Lie(Aut)(X).

Proposition 3.6.1. Lie(Aut)(X) = Der(X).

Proof. See proposition 2.10.2. □

Let G be a group scheme acting on the right on X. Then we get a map G → Aut(X) and a
corresponding map Lie(G)→ Der(X). We can make this more explicit. Let x ∈ Lie(G). Then we
have a map eεx : X ×R R[ε]→ X ×R R[ε].

If f is a local function on X, and m ∈ X, then f(meεx) = f(m) + εDx(f)(m).

Proposition 3.6.2. The map Lie(G)→ Der(X) is compatible with Lie bracket.

Proof. We compute :

f(me−ε′y) = f(m)− ε′Dy(f)(m)

f(me−εxe−ε′y) = f(m)− ε′Dy(f)(m)− εDxf(m) + εε′DxDy(f)(m)

f(meε
′ye−εxe−ε′y) = f(m)− ε′Dy(f)(m)− εDxf(m) + εε′DxDy(f)(m) + ε′Dyf(m)− ε′εDyDxf(m)

= f(m)− εDxf(m) + εε′DxDy(f)(m)− ε′εDyDxf(m)

f(meεxeε
′ye−εxe−ε′y) = f(m)− εDxf(m) + εε′DxDy(f)(m)− ε′εDyDxf(m) + εDxf(m)

= f(m) + εε′[Dx, Dy]f(m)

□

We can consider the action of G on itself by right translation, ⋆r and by left translation ⋆l.
We have a map Gop → Aut(G), g 7→ g ⋆r (−).

Lemma 3.6.3. The map Gop → Aut(G) induces an isomorphism of Gop on the subspace of
Aut⋆lG(G), of automorphisms which commute with left translation.

Proof. We define a map Aut⋆lG(G) → G, by ϕ 7→ ϕ(e). Observe that ϕ(g) = gϕ(e) and ϕ′ ◦ ϕ 7→
ϕ(e)ϕ′(e). □

Corollary 3.6.4. The map Lie(G) → Der(G) identifies Lie(G) with the space of left invariant
derivations.

Assume G is Spec A. Then we can make explicit what are the left invariant derivation. Let
D : A→ A be a derivation. For any element g ∈ G(T ). We have a map g : A⊗ T → A⊗ T given
by left translation. Then we ask that g−1 ◦D ⊗ 1 ◦ g = D ⊗ 1.

3.7. Lie algebras : general. A Lie algebra g over a ring R is an R-module g endowed with a
braket [, ] : g× g→ g. Such that :

(1) [, ] is bilinear over R,
(2) [X,X] = 0 for all X ∈ g.
(3) (Jacobi identity) For all X,Y, Z ∈ g, [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]].

Example 3.7.1. (1) If M is an R-module, then EndR(M), endowed with the braket [X,Y ] =
XY − Y X is a Lie algebra.

(2) If A is an R-algebra, then DerR(A) is a sub-Lie algebra of EndR(A).
(3) If X is a Spec R-scheme, then Der(X) = H0(X,TX/S) is a Lie algebra.

Corollary 3.7.2. Let G be a group scheme. Then Lie(G) with its bracket [, ] is a Lie algebra.

Proof. Indeed, Lie(G) is a sub-Lie algebra of Der(G). □
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3.8. Affine algebraic groups over a field. We fix a field k. All schemes are over Spec k.

Definition 3.8.1. An algebraic group is a group scheme G which is of finite type over Spec k. An
affine algebraic group G is an affine group scheme over Spec k which is of finite type.

Concretely, this means that G = Spec A where A is a k-algebra of finite type and an Hopf
algebra.

3.8.1. Smoothness. The following result is known as Cartier’s theorem.

Theorem 3.8.2. Assume that k is of characteristic 0. Let G→ Spec k be a group scheme, locally
of finite type. Then G is smooth over Spec k.

3.8.2. Subgroups.

Lemma 3.8.3. Let U ⊆ G be a dense open subscheme. Then U × U maps surjectively onto G.

Proof. We can suppose k = k̄. It suffices to see that U.U(k̄) → G which is open in G, contains
all k-points. Let g ∈ G(k). Then U ∩ gU−1 is again dense open (indeed, U and gU−1 contain all
generic points). Thus, there are points v, w ∈ U(k̄) such that v = gw−1. □

Let G be an algebraic group and let i : H ↪→ G be an algebraic subgroup.

Lemma 3.8.4. The image of H is a closed subset of G.

Proof. We claim that the image i(H) of H in G is a closed subspace. In order to prove this, we
can assume that k = k̄. The image i(H) in G is constructible. This implies that i(H) contains a

subset V which is dense and open in i(H). Then H(k̄).i−1(V ) = H. We deduce that i(H) is open

in i(H). Note that i(H) is a closed subgroup of G. The above lemma shows that i(H) = i(H). □

We assume that the map H → G is a monomorphism of sheaves.

Lemma 3.8.5. The group H is a closed subgroup of G.

Proof. We first claim that i : H → G is injective and induces isomorphisms on residue fields.
Consider a point g ∈ G and look at the fiber Hg → g. Then Hg is a subfunctor of g. In particular
Hg ×g Hg → Hg is an isomorphism. This means that Hg has a unique point. So Hg = Spec A for
some artinian alegbra and A ⊗k(g) A = A which implies that A has dimension 1 (as a k(g)-vector
space). So A = k(g).

We next claim that there exists a dense open V of G such that i−1(V )→ V is a closed immersion.
Let h be a generic point of H mapping to h ∈ G. Consider the map OG,h 7→ OH,h. Since OH,h

is Artinian, and they have the same residue field, we deduce that OG,h → OH,h is surjective.
Let SpecA be an irreducible open subset of H mapping to SpecB open in G. We have a map
B → B/I ↪→ A. Moreover B/I and A have the same generic point ξ and (B/I)ξ = Aξ. Let
x1, · · · , xn be generators of A as a B-algebra. There exists f ∈ B with f(ξ) ̸= 0 such that fxi ∈ B.
We deduce that B[1/f ]/I → A[1/f ]/I is an isomorphism. By translation, this finally implies that
H is a closed subgroup of G. □

3.8.3. Existence of representations. Let G be an affine algebraic group and H a subgroup of G
(necessarily closed in G and affine).

Lemma 3.8.6. There exists a finite dimensional representation ρ : G→ GL(V ) with the property
that H is the stabilizer of a line L.

Proof. We let A be the algebra of G and I the ideal of H. We consider the representation of G
on A. We first claim that H is exactly the stabilizor of I. If h ∈ H(R), and f ∈ I ⊗ R, we have
h.f = f(−h). It is clear that if f vanishes on H, then so does h.f . Conversely, if g ∈ G(R) is such
that g.f = f(−g) ∈ I ⊗R for all f , then f(g) = 0 for all f . Thus g ∈ H(R).
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We now let W ⊆ A be finite dimesional k-vector space, with the property that V generates A as
an algebra and W ∩ I generates I as an ideal.

We claim that there exists W ⊆ X such that X is a finite dimensional representation of G.
Let (ai) be a k-basis of A. We have ∆(x) =

∑
i xi ⊗ ai and

∑
i∆(xi) ⊗ ai =

∑
i xi ⊗ ∆(ai) =∑

i,j xi ⊗ bij ⊗ aj . We deduce that ∆(xi) =
∑

xj ⊗ bji. Thus, we let X be the space generated by
xi’s. Let n be the dimension of X ∩ I. Then H is stabilizer of X ∩ I. We finally consider ΛnX and
ΛnX ∩ I.

□

Lemma 3.8.7. If H is normal, there exists a finite dimensional representation ρ : G → GL(V )
with the property that H is the kernel.

Proof. Let us take the representation given by the last lemma. Let us consider
⊕

g∈G(k̄) g.L.

Picking representatives, we can write this space ⊕gigiL. This is a representation of G. Moreover,
H preserves each of these lines. We can replace V by ⊕gigiL. We now consider the composition
Ad ◦ ρ : G→ GL(End(V )). Clearly, H is in the kernel. Any element in the kernel of Ad is a scalar
in GL(V ). A scalar in GL(V ) preserves L and therefore the kernel of Ad ◦ ρ consists of elements of
G which stabilize L. This is inside H. □

3.9. Quotient. Our goal is to prove the following theorems.

Theorem 3.9.1. Let G be an algebraic group acting on a scheme of finite type X. For any
x ∈ X(k), the orbit map G→ X, g 7→ gx factors through an immersion G/H → X where H is the
stabilizor of x. Moreover, if G is smooth, the orbit is smooth.

We only give the proof in characteristic 0. Therefore we know that G is smooth (hence reduced).

Proof. We let H be the pre-image of x under the orbit map. This is obviously a closed subgroup
H of G. The map orb : G→ X has constructible image. Thus there exists V ⊆ orb(G) dense open
such that V ⊆ orb(G). We deduce that orb−1(V ) ⊆ G is open. Assuming k = k̄ we deduce that

G(k)orb−1(V ) = G so that orb(G) is open in its closure. We now equip orb(G) with the reduced
scheme structure and this induces a scheme structure on orb(G). Since G is smooth, the map

G→ X factors through a map G→ orb(G)→ X. By generic flatness, there is a dense open W of
orb(G) such that orb−1(W ) → W is flat. Using group translation, we deduce that G → orb(G) is
flat. This is thus an fppf cover. Moreover, G×orb(G) G = G×H. Thus, orb(G) = G/H. Note that
orb(G) is geometrically reduded, hence generically smooth. By homogenity it is smooth. □

Theorem 3.9.2. Let G be an affine algebraic group. Let H be a closed subgroup. The fppf quotient
G/H is representable.

Proof. We pick a representation ρ : G→ GL(V ) with V finite dimensional k-vector space. We let
n be the dimension of V and we let Gr(n, 1) be the Grassmanian of lines in V . This is the functor
which sends a k-scheme T to isomorphism classes of exact sequence 0 → L → OT ⊗k V → G → 0
where L is an invertible sheaf and G is locally free of rank n−1. The group GL(V ) acts on Gr(n, 1)
and so does G. The line L in V defines a k-point. And G/H is represented by the orbit of L in
Gr(n, 1). □

Theorem 3.9.3. Let G be an affine algebraic group. Let H be a normal subgroup, then G/H is
an affine subgroup.

Proof. We consider a representation ρ : G → GL(V ) with kernel H. The image of ρ is closed, so
that G/H → ρ(G) identifies with a closed subgroup of GL(V ). Hence it is affine. □
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