|
Pierre Humbert
Département de Mathématiques
Bâtiment 307
Faculté des Sciences d'Orsay
Université Paris-Saclay
91405 Orsay Cedex
France
Courrier électronique : prenom.nom at universite-paris-saclay.fr
Bureau : 2F3
Téléphone : (+33) 1 69 15 60 28
|
|
|
Since September 2021, I am a postdoc in the probability and statistics team of the
Laboratoire de Mathématiques d'Orsay (LMO) with
Sylvain Arlot. I am also a member of the
INRIA Celeste team.
Before that, I completed a PhD at ENS Paris-Saclay entitled ``Multivariate analysis with tensors and graphs - application to neuroscience'', under the supervision of
Nicolas Vayatis,
Laurent Oudre, and
Julien Audiffren.
Main research interests
- Statistical learning, non-parametric statistics
- Cross-validation, resampling, bootstrap
- Robust statistics
- Signal processing
- Graph and tensor learning
- Applications to neuroscience
Publications
- (2022) P. Humbert*, B. Le Bars*, L. Minvielle*.
Robust kernel density estimation with median-of-means principle
In Proceedings of the 39th International Conference on Machine Learning (ICML), 2022.
[soon]
- (2021) P. Humbert*, B. Le Bars*, L. Oudre, A. Kalogeratos, N. Vayatis.
Learning Laplacian matrix from graph signals with sparse spectral representation
Journal of Machine Learning Research (JMLR), 22(195):1-47, 2021.
[journal]
[pdf]
[code]
- (2021) P. Humbert, L. Oudre, N. Vayatis, J. Audiffren.
Tensor convolutional dictionary learning with CP low-rank activations
IEEE Transactions on Signal Processing (TSP), 2021.
[journal]
[pdf]
[code]
- (2021) P. Humbert, L. Oudre, C. Dubost.
Learning spatial filters from EEG signals with graph signal processing methods
In Proceedings of the International Conference of the IEEE Engineering in Medecine and Biology Society (EMBC), 2021.
[pdf]
- (2021) T. Gnassounou, P. Humbert, L. Oudre.
Adaptive subsampling of multidomain signals with graph products
In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2021.
[conference]
[pdf]
[code]
- (2020) B. Le Bars, P. Humbert, A. Kalogeratos, N. Vayatis.
Learning the piece-wise constant graph structure of a varying Ising model
In Proceedings of the 37th International Conference on Machine Learning (ICML), 2020.
[conference]
[pdf]
[code]
- (2020) P. Humbert, J. Audiffren, L. Oudre, N. Vayatis.
Low rank activations for tensor-based convolutional sparse coding
In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020.
[conference]
[pdf]
[code]
- (2019) P. Humbert, C. Dubost, J. Audiffren, L. Oudre.
Apprenticeship learning for a predictive state representation of anesthesia
IEEE Transactions on Biomedical Engineering (TBME), 67(7):2052-2063, 2020.
[journal]
[pdf]
- (2019) P. Humbert, L. Oudre, N. Vayatis.
Subsampling of multivariate time-vertex graph signals
In Proceedings of the European Signal Processing Conference (EUSIPCO), 2019.
[conference]
- (2019) B. Le Bars*, P. Humbert*, L. Oudre, A. Kalogeratos.
Learning Laplacian matrix from bandlimited graph signals
In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019.
[conference]
[pdf]
[code]