
A SURVEY OF THE THEORY OF GRAPHONS AND PERMUTONS
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Abstract. The purpose of this note is to present the theory of graphons and permutons.
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1. Graphons and their topology

1.1. Graphs and morphisms. In this paper, a graph will be a finite undirected simple graph, that
is to say a pair (V,E) with V finite set of vertices, and E subset of the setP2(V ) of pairs of vertices.
Thus, E is a finite set of pairs {v1, v2} with v1, v2 ∈ V and v1 6= v2. These pairs are the edges of the
graph.
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Figure 1. A graph G with vertex set V = [[1, 6]] and edge set E =
{{1, 5}, {2, 3}, {2, 4}, {2, 6}, {3, 6}}.

A morphism (cf. [LS06]) from a graph F = (VF , EF ) to a graph G = (VG, EG) is a map φ :
VF → VG such that, if (v1, v2) ∈ EF , then (φ(v1), φ(v2)) ∈ EG. We denote hom(F,G) the set of
morphisms from F to G, and the morphism density from F to G is defined by

t(F,G) =
| hom(F,G)|
|VG||VF |

,

where |A| denotes the cardinality of a setA. This is a real number between 0 and 1, which measures
the number of copies of F inside G. One can also work with embeddings of F into G, that is
morphisms that are injective maps VF → VG. Set

t0(F,G) =
|emb(F,G)|
|VG|↓|VF |

,

where emb(F,G) is the set of embeddings of F intoG, and n↓k = n(n−1) · · · (n−k+1) denotes a
falling factorial — thus, |VG|↓|VF | is the number of injective maps from VF to VG. The two quantities
t(F,G) and t0(F,G) are close when G is sufficiently large:

Lemma 1. For any finite graphs F and G,

|t(F,G)− t0(F,G)| ≤ 1

|VG|

(
|VF |

2

)
.

Proof. We have:

t(F,G)− t0(F,G) =
| hom(F,G)|
|VG||VF |

− |emb(F,G)|
|VG|↓|VF |

≤ | hom(F,G)|
|VG||VF |

− |emb(F,G)|
|VG||VF |

≤ |number of non-injective morphisms F → G|
|VG||VF |

.

Set n = |VG| and k = |VF |. To construct a non-injective map from VF to VG, it suffices to choose a
pair {a, b} of vertices in VF that will be sent to the same image in VG (

(
k
2

)
possibilities for the pair,

and n possibilities for the image), and then to choose the k − 2 other images (nk−2 possibilities).
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So, the number of non-injective maps, and therefore the number of non-injective morphisms from
F to G is smaller than

(
k
2

)
nk−1, and

t(F,G)− t0(F,G) ≤ 1

nk

((
k

2

)
nk−1

)
=

1

n

(
k

2

)
.

Similarly,

t(F,G)− t0(F,G) =
| hom(F,G)|
|VG||VF |

− |emb(F,G)|
|VG|↓|VF |

≥ |emb(F,G)|
(

1

|VG||VF |
− 1

|VG|↓|VF |

)
= t0(F,G)

(
|VG|↓|VF |

|VG||VF |
− 1

)
≥ |VG|

↓|VF |

|VG||VF |
− 1 ≥ − 1

n

(
k

2

)
,

the last inequality coming from the same argument as before. �

Definition 2. Let (Gn)n∈N be a sequence of graphs. One says that (Gn)n∈N converges if, for any fixed
graph F , the density of morphisms t(F,Gn) admits a limit when n goes to infinity. If |VGn| → ∞, then
by the previous lemma this is equivalent to ask that t0(F,Gn) admits a limit for any fixed graph F .

We call graph parameter a family of real numbers (t(F ))F graph indexed by the countable set of
(isomorphism classes of) finite graphs, such that there exists a sequence of finite graphs Gn with

lim
n→∞

t(F,Gn) = t(F )

for any F . The theory of graphons will allow us to identify all the graph parameters.

1.2. Graph parameters and graph functions. A graph function is a function f : [0, 1]2 → [0, 1]
that is measurable and symmetric: f(x, y) = f(y, x) Lebesgue almost surely on [0, 1]2. Thus, the
graph functions form a subsetW of the space L∞([0, 1]2) of essentially bounded measurable func-
tions on the square [0, 1]. If f is a graph function, then one can associate to it a family (t(F, f))F graph
indexed by finite graphs:

t(F, f) =

∫
[0,1]k

 ∏
e=(i,j)∈EF

f(xi, xj)

 dx1 dx2 · · · dxk,

where VF is identified with [[1, k]] if k = |VF |. For instance, if F is the graph of Figure 1, then

t(F, f) =

∫
[0,1]6

f(x1, x5)f(x2, x3)f(x2, x4)f(x2, x6)f(x3, x6) dx.

Notice that if σ : [0, 1]→ [0, 1] is amap that preserves the Lebesguemeasure, then t(F, f(σ(·), σ(·))) =
t(F, f(·, ·)). Therefore, the map t(F, ·) :W → [0, 1] is invariant by the action of the Lebesgue iso-
morphisms of [0, 1]. In a moment, we shall define graphons as orbits inW under this action. We
first describe the connection between graph functions and graph parameters:

Theorem 3 (Theorem 2.2 in [LS06]). A family (t(F ))F is a graph parameter if and only if there exists
a graph function f such that t(F, f) = t(F ) for any finite graph F .

Let us first see why graph functions give rise to graph parameters. If G is a finite graph with
vertex set VG = [[1, n]], then one can associate to it a graph function g as follows: g is the function
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on the square that takes its values in {0, 1}, and is such that

g(x, y) = 1 if x ∈
[
i− 1

n
,
i

n

)
, y ∈

[
j − 1

n
,
j

n

)
and i ∼ j in G,

and 0 otherwise.

0 1
0

1

= 1

= 0

Figure 2. The graph function associated to the graph of Figure 1.

It is then easily seen that t(F,G) = t(F, g) for any finite graph F , so a finite graphG can be embed-
ded in the spaceW of graph functions in a way that is compatible with graph parameters. There is a
reciprocal to this construction, which associates to any graph functionw a model of random graphs.
Fix a graph function w, and for n ≥ 1, consider a family (X1, . . . , Xn) of independent uniform ran-
dom variables with values in [0, 1]. We denote Gn(w) the random graph with vertex set [[1, n]], and
with i connected to j with probability w(Xi, Xj). Thus, the random variables X1, . . . , Xn being
drawn, we consider new independent Bernoulli random variables Bi 6=j of parameters w(Xi, Xj),
and we connect i to j in Gn(w) if and only if Bij = 1. Again, the laws of these random graphs
Gn(w) are invariant under the action of any Lebesgue isomorphism of [0, 1] on w.
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Figure 3. Two random graphs of size n = 20 associated to the graph functions
w(x, y) = x+y

2
and w′(x, y) = xy.
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Proposition 4. If w ∈ W , then for any n ≥ 1,

E[t0(F,Gn(w))] = t(F,w);

var(t(F,Gn(w))) ≤ 3 |VF |2

n
.

Proof. Set k = |VF |, and let φ be an injective map from [[1, k]] to [[1, n]]. Conditionally to the random
variablesX1, . . . , Xn, the probability that φ is an embedding of F into the random graph Gn(w) is∏

(i,j)∈EF
w(Xφ(i), Xφ(j)). Therefore,

P[φ is an embedding] =

∫
[0,1]n

 ∏
(i,j)∈EF

w(xφ(i), xφ(j))

 dx1 · · · dxn

=

∫
[0,1]k

 ∏
(i,j)∈EF

w(xi, xj)

 dx1 · · · dxk = t(F,w).

As a consequence,

E[t0(F,Gn(w))] =
1

n↓k

∑
φ injective map

t(F,w) = t(F,w).

To compute the variance, introduce F2 = F t F , which is the disjoint union of two copies of F .
Then, hom(F2, G) = hom(F,G)×hom(F,G), and as a consequence, t(F2, G) = (t(F,G))2 for any
finite graph F . We also have t(F2, w) = (t(F,w))2 for any graph function w. So, by using Lemma
1,

E[(t(F,Gn(w)))2] = E[t(F2, Gn(w))] ≤ E[t0(F2, Gn(w))] +
1

n

(
2k

2

)
≤ t(F2, w) +

2k2

n
= (t(F,w))2 +

2k2

n
;

(E[t(F,Gn(w))])2 ≥
(
t(F,w)− k2

2n

)2

≥ (t(F,w))2 − k2

n

and var(t(F,Gn(w))) ≤ 3 k2

n
= 3 |VF |2

n
. �

Fix ε > 0, and let n be large enough so that |VF |
2

2n
< ε

2
. We then have

|E[t(F,Gn(w))]− t(F,w)| ≤ E[|t(F,Gn(w))− t0(F,Gn(w))|] ≤ ε

2
,

and a direct consequence of the previous proposition is

P[|t(F,Gn(w))− t(F,w)| ≥ ε] ≤ P
[
|t(F,Gn(w))− E[t(F,Gn(w)))| ≥ ε

2

]
≤ 4 var(t(F,Gn(w)))

ε2
≤ 12

(
|VF |
ε

)2
1

n
.

So:

Corollary 5. For any graph functionw ∈ W , the model of random graphs (Gn(w))n∈N has the property
that t(F,Gn(w)) converges in probability to t(F,w) for any finite graph F .

A classical consequence of convergence in probability is the existence of a subsequence that con-
verges almost surely (see [Bil95, Theorem 20.5]). Since the set of isomorphism classes of finite
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graphs is countable, by diagonal extraction, one can find a subsequence (Gnk
(w))k∈N such that for

any finite graph F ,
lim
k→∞

t(F,Gnk
(w)) = t(F,w) almost surely.

In particular, there exists a sequence of graphs (Gnk
)k∈N whose observables t(F,Gnk

) converge to
the observables t(F,w), so (t(F,w))F is indeed a graph parameter. This ends the proof of the first
half of Theorem 3.

1.3. The space of graphons. We now want to prove the second part of Theorem 3: if a sequence
of graphs (Gn)n∈N has all its observables t(F,Gn) that converge, then the limits of the observables
correspond to a graph function w ∈ W . This is clearly a completeness result, so it is natural to try
to detail the topology onW that is associated to the observables t(F, ·). Given w ∈ L∞([0, 1]2), we
set:

‖w‖@ = sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

w(x, y) dx dy

∣∣∣∣ .
This is a norm on the space L∞([0, 1]2), and one can show that it is equivalent to the norm of
operator ‖ · ‖L∞([0,1])→L1([0,1]) (here, L∞([0, 1]2) acts on these spaces by convolution).

Definition 6. The cut-metric on graph functions w ∈ W is defined by
d@(w,w′) = inf

σ
‖wσ − w′‖@,

where the infimum runs over Lebesgue isomorphisms σ of the interval [0, 1], and where
wσ(x, y) = w(σ(x), σ(y)).

Notice that d@(w,w′) is also the infimum infσ,τ ‖wσ − (w′)τ‖@ over pairs of Lebesgue isomor-
phisms; as a consequence, d@ satisfies the triangular inequality. We define an equivalence relation
onW by

w ∼ w′ ⇐⇒ d@(w,w′) = 0.

If ω and ω′ are the equivalence classes of the graph functions w and w′, then the quotient space
G = W/∼ is endowed with the distance δ@(ω, ω′) = d@(w,w′). We call graphon an equivalence
class of graph functions in G, and the space of graphons (G, δ@) is a metric space. Furthermore,

• the observables t(F, ·),
• and the models of random graphs (Gn(w))n∈N

are invariant by Lebesgue isomorphisms, so they are well-defined on the space of graphons. Then,
we have the following fundamental result:

Theorem 7 (Theorem 5.1 in [LS07] and Theorem 3.8 in [Bor+08]). The space of graphons (G, δ@)
is a compact metric space. A sequence of graphons (ωn)n∈N converges in this space towards ω if and only
if, for any finite finite graph F , t(F, ωn)→ t(F, ω).

Before we prove Theorem 7, let us see why it implies the second half of Theorem 3. Let (Gn)n∈N
be a sequence of graphs whose observables converge: limn→∞ t(F,Gn) = t(F ) for some graph
parameter (t(F ))F . One identifies the graphs Gn with their graph functions gn, and then with
the graphons γn that are the equivalence classes of the functions gn. By compacity of G, up to
extraction, one can assume that γn → γ for some graphon γ ∈ G. However, this convergence
in the space of graphons is equivalent to the convergence of observables, so t(F ) = t(F, γ). This
proves that the graph parameter (t(F ))F comes from a graph function inW (any graph function
in the equivalence class γ ).

The proof of the compacity part of Theorem 7 relies on several approximation lemmas in the
space of graph functions, which are variants of Szemerédi’s regularity lemma (see [Sze78] for the
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original paper by Szemerédi; [Kom+02] for a survey of the applications of this result in graph
theory; and [LS07] for the applications of the regularity lemma to the study of graphons). Let w
be a graph function. If Π is a set partition of [0, 1] in ` = `(Π) measurable parts P1, P2, . . . , P`, we
denote wΠ the graph function that is constant on each rectangle Pi×Pj , and equal on this rectangle
to the average ∫

Pi×Pj
w(x, y) dx dy∫

Pi×Pj
1 dx dy

.

Lemma 8. For any graph function w ∈ W and any ε > 0, there exists a set partition Π of [0, 1] with
at most 41/ε2 parts, such that

‖w − wΠ‖@ ≤ ε.

Proof. Fix an integer ` and a set partition Π of [0, 1] into ` measurable parts. If S and T are fixed
measurable subsets of [0, 1], let us consider the set partition Π′ that is generated by Π and by the
parts S and T . Thus, Π′ is the coarsest set partition that is finer than Π and than the two set
partitions S t ([0, 1] \ S) and T t ([0, 1] \ T ). One sees at once that Π′ has at most 4` parts. Now,
notice that among all step functions v on [0, 1]2 that are constant on the rectangles associated to the
parts of Π′, the function wΠ′ is the one that is the closest to w in L2-norm (this can be seen by
computing the derivative of v with respect to its value on a rectangle). Therefore, for any t ∈ R,

‖w − wΠ′‖2
L2 ≤ ‖w − wΠ − t 1S×T‖2

L2

≤ ‖w − wΠ‖2
L2 − 2t

∫
S×T

(w − wΠ)(x, y) dx dy + t2.

Choosing the optimal t =
∫
S×T (w − wΠ)(x, y) dx dy, we conclude that∣∣∣∣∫

S×T
(w − wΠ)(x, y) dx dy

∣∣∣∣2 ≤ ‖w − wΠ‖2
L2 − ‖w − wΠ′‖2

L2

≤ ‖wΠ′‖2
L2 − ‖wΠ‖2

L2 ;

(‖w − wΠ‖@)2 ≤ sup
Π′

(
‖wΠ′‖2

L2 − ‖wΠ‖2
L2

)
with the supremum on the last line that is taken over all set partitions Π′ of [0, 1] that have at most
4` measurable parts.

Starting from the trivial set partition Π0 = {[0, 1]} of [0, 1], suppose that for any k ≤ 1
ε2
, one

can find recursively a measurable set partition Πk+1 of [0, 1] with at most 4`(Πk) measurable parts,
and such that (

‖wΠk+1
‖2

L2 − ‖wΠk
‖2

L2

)
> ε2.

Then, for any k ≤ 1
ε2
,

‖wΠk+1
‖2

L2 ≥ (k + 1)ε2.

However, we also have ‖w‖L2 ≤ 1 for any graph function, so we obtain a contradiction by choosing
k = b 1

ε2
c. Therefore, there exists k ≤ 1

ε2
such that

sup
Π′

(
‖wΠ′‖2

L2 − ‖wΠk
‖2

L2

)
≤ ε2.

By the previous argument, ‖w − wΠk
‖@ ≤ ε, and by construction, `(Πk) ≤ 4k ≤ 41/ε2 . �

Lemma 9. Fix again w ∈ W and ε > 0. If k is an integer larger than 220/ε2 , then there exists a set
partition Π of [0, 1] in k parts of same measure 1

k
, such that

‖w − wΠ‖@ ≤ ε.
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Proof. By the previous approximation lemma, there exists a set partition Π′ into k′ ≤ 281/(8ε2)

parts, such that

‖w − wΠ′‖@ ≤
4ε

9
.

By cutting the parts of Π′ in smaller blocks, one can then find a measurable set partition Π with
exactly k parts, all of the same size, and with at most k′ parts that intersect more than one part
of Π′. Let R be the union of all these exceptional parts, and u be the step function equal to wΠ′

on ([0, 1] \ R)2, and to 0 on the complement of this set. Notice that the Lebesgue measure of R is
smaller than

k′

k
≤ 2−79/(8ε2) ≤ ε2 2−79/8.

Then, for any measurable sets S and T ,∣∣∣∣∫
S×T

(w − u)(x, y) dx dy

∣∣∣∣ ≤ ‖w − wΠ′‖@ +

∣∣∣∣∫
(S×T )∩[0,1]2\([0,1]\R)2

w′Π(x, y) dx dy

∣∣∣∣
≤ 4ε

9
+
√
λ([0, 1]2 \ ([0, 1] \R)2) =

4ε

9
+
√

1− (1− λ(R))2

≤ 4ε

9
+
√

2λ(R) ≤
(

4

9
+ 2−

71
16

)
ε ≤ ε

2
,

so ‖w − u‖@ ≤ ε
2
. By construction, u is a step function relatively to the set partition Π, hence

uΠ = u. However, for any function in L∞([0, 1]2), ‖wΠ‖@ ≤ ‖w‖@, so

‖w − wΠ‖@ ≤ ‖w − u‖@ + ‖u− wΠ‖@ ≤ ‖w − u‖@ + ‖(u− w)Π‖@ ≤ 2 ‖w − u‖@ ≤ ε. �

Corollary 10. There exists a universal sequence of integers (`j)j≥1, such that for any graph function w,
one can find a sequence of measurable set partitions (Πj)j≥1 with the following properties:

(1) For any j, Πj+1 is a refinement of Πj , `(Πj) = `j , and Πj has all its parts with the same size 1
`j
.

(2) For any j, ‖w − wΠj
‖@ ≤ 1

j
.

Proof. We can take `1 = 1 and Π1 = {[0, 1]} for any graph function. Suppose that the sequence
of integers `1, `2, . . . is determined up to rank j, and fix a graph function w and the corresponding
set partitions Π1, . . . ,Πj , that are already constructed by induction hypothesis. In the proof of the
previous lemma, we set ε = 1

j+1
, and choose Π′ such that

‖w − wΠ′‖@ ≤
4ε

9
.

One can then choose Π = Πj+1 with `j × k = `j+1 parts of the same size, that is finer than Πj ,
and such that the number of parts of Π that intersect more than one part of Πj ∧Π′ is smaller than
`j×k′, where Πj∧Π′ is the coarsest common refinement of Πj and Π′. The proof of the inequality
‖w − wΠj+1

‖@ ≤ ε = 1
j+1

is then exactly the same as before, so we have indeed found an integer
`j+1 independent of w, and then a set partition Πj+1 with the properties required. �

Proof of Theorem 7: compacity. Let (γn)n∈N be a sequence of graphons. For any n, we fix a represen-
tative gn ∈ W of the graphon γn, and then a sequence of set partitions (Πn

j )j≥1 with the properties
listed in the previous corollary. Thus,∥∥∥gn − (gn)Πn

j

∥∥∥
@
≤ 1

j
,
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and moreover, the graph functions (gn)Πn
j
have the following property of averaging: if P,Q are

parts of Πn,j , then the value of (gn)Πn
j
on P × Q is the average of the values of (gn)Πn

j′
on this

rectangle, for any j′ ≥ j. This statement is an immediate consequence of the fact that the set
partition Πn

j′ is a refinement of the set partition Πn
j . Now, as the set partitions Πn

j have parts with
the same size (`j)

−1, we can also find for any n a Lebesgue isomorphism σn that conjugates the parts
of Πn

j to the intervals of size (`j)
−1 (notice that we can choose a common Lebesgue isomorphism

σn for all the values of j; this is not very hard to see). Then, gnj = ((gn)Πn
j
)σ

n is a function that is
constant on all the squares of the grid with mesh size 1

`j
; and the corresponding graphon γnj satisfies

δ@(γn, γnj ) ≤
∥∥∥gn − (gn)Πn

j

∥∥∥
@
≤ 1

j
.

Moreover, for any n, the sequence of graph functions (gnj )j≥1 has the same averaging property
as stated before. Now, the space of graph functions that are constant on the squares of a fixed
grid is isomorphic to a finite product of intervals [0, 1], so there is an extraction such that (gnk

1 )k∈N
converges on all the squares of the grid with mesh size (`1)−1. By diagonal extraction, we can in fact
assume that gnk

2 , gnk
3 , . . . are also convergent. So, there exists an extraction (nk)k∈N, as well as limits

g1, g2, . . . that are constant functions on grids, such that limk→∞ g
nk
j = gj for any j. Moreover, the

limiting graph functions gj have the same averaging property as before.

If (X, Y ) is a uniform random variable in the square [0, 1]2, then (gj(X, Y ))j≥1 is a martingale,
because of the averaging property. It is bounded, so it admits a limit almost surely (see [Bil95,
Theorem 35.5]). It means that gj(x, y) → g(x, y) for almost any (x, y) ∈ [0, 1]2, and some graph
function g. Let γ be the graphon corresponding to g, and ε > 0. For j large enough,

δ@(γnk , γnk
j ) ≤ 1

j
≤ ε,

and we also have ‖gj−g‖@ ≤ ‖gj−g‖L1([0,1]2) ≤ ε by dominated convergence. Then, j being fixed,
for k large enough,

δ@(γnk
j , γ) ≤

∥∥gnk
j − g

∥∥
@
≤
∥∥gnk

j − gj
∥∥

@
+ ‖gj − g‖@

≤
∥∥gnk

j − gj
∥∥

@
+ ε

≤ 2ε,

so δ@(γnk , γ) ≤ 3ε for k large enough. This ends the proof of the compacity of the metric space
(G, δ@). �

1.4. Concentration of the graphonmodels. In order to prove the second part of Theorem 7, note
first that the observables t(F, ·) are continuous with respect to the distance δ@, and even Lipschitz:

Lemma 11. For any finite graph F and any graph functions w, w′,
|t(F,w)− t(F,w′)| ≤ |EF | ‖w − w′‖@.

Proof. We enumerate the edges of F as follows: EF = {e1, e2, . . . , em} with es = (is, js). Then,

|t(F,w)− t(F,w′)| =

∣∣∣∣∣
∫

[0,1]k

(
m∏
s=1

w(xis , xjs)−
m∏
s=1

w′(xis , xjs)

)
dx1 · · · dxk

∣∣∣∣∣
≤

m∑
t=1

∣∣∣∣∣
∫

[0,1]k

(
t−1∏
s=1

w′(xis , xjs)

)
(w(xit , yit)− w′(xit , yit))

(
m∏

s=t+1

w(xis , xjs)

)
dx1 · · · dxk

∣∣∣∣∣
≤ m sup

0≤f,g≤1

∣∣∣∣∫
[0,1]2

f(x)g(y) (w(x, y)− w′(x, y)) dx dy

∣∣∣∣ ,
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by integrating on the last line the variables different from xit and xjt . The supremum over pairs of
functions (f, g) is then easily seen to be equal to ‖w − w′‖@. �

As a consequence, for any graphons γ and γ′, |t(F, γ)− t(F, γ′)| ≤ |EF | δ@(γ, γ′). A converse of
this inequality is:

Proposition 12 (Theorem 3.7 in [Bor+08]). Let γ and γ′ be two graphons in G, such that |t(F, γ)−
t(F, γ′)| ≤ 3−k

2 for any simple graph F on k vertices. Then,

δ@(γ, γ′) ≤ 22√
log2 k

.

This proposition and the previous lemma ensure that convergence with respect to the metric δ@ is
equivalent to the convergence of all the observables t(F, ·), hence the second part of Theorem 7. In
turn, Proposition 12 relies on a concentration result for the model of random graphs (Gn(γ))n∈N
associated to the graphon γ, which we shall just call graphon model. Thus:

Theorem 13 (Theorem 4.7 in [Bor+08]). Let γ be any graphon in G. One has

E[δ@(γ,Gk(γ))] ≤ 5√
log2 k

,

where a (random) graph Gk(γ) is identified with the corresponding graph function and graphon.

Remark. One can show that with probability larger than 1− e
− k2

2 log2 k , the distance δ@(γ,Gk(γ)) is
smaller than 10/

√
log2 k. For our purpose, it will be sufficient to have a bound on the expectation

of the distance.

For the proof of Theorem 13, we refer again to [Bor+08]; the proof uses once more the approx-
imation Lemma 8. Let us then see why Theorem 13 implies Proposition 12.

Proof of Proposition 12. Let w and w′ be graph functions in the equivalence classes γ and γ′, and
u = 1+w

2
, u′ = 1+w′

2
. Clearly, δ@(w,w′) = 2 δ@(u, u′). We are going to construct a coupling of the

random graphs Gk(u) and Gk(u
′), such that Gk(u) = Gk(u

′) with very high probability. To this
purpose, we introduce the notion of induced subgraph of a graph: a morphism φ : F → G gives
rise to an induced subgraph if it is injective from VF to VG (embedding), and if φ(i) ∼ φ(j) in G
if and only if i ∼ j in F . The difference with embeddings is that for an embedding, one can have
φ(i) ∼ φ(j) although i 6∼ j in F . Let ind(F,G) be the set of embeddings as induced subgraphs of
F into G. Then,

|emb(F,G)| =
∑
F⊂F ′

|ind(F ′, G)|,

where the sum runs over graphs F ′ with the same vertex set as F , and with more edges. By
inclusion-exclusion,

|ind(F,G)| =
∑
F⊂F ′

(−1)|EF ′ |−|EF | |emb(F ′, G)|.

If t1(F,G) = |ind(F,G)|
|VG|↓|VF |

is the density of induced subgraphs, then we have similarly

t0(F,G) =
∑
F⊂F ′

t1(F ′, G) ; t1(F,G) =
∑
F⊂F ′

(−1)|EF ′ |−|EF | t0(F ′, G).

On the other hand, notice that given two graphs G and H with the same number k of vertices, we
have |ind(G,H)| = 0 unless G and H are isomorphic. Fix a graph F with k vertices. We have by
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Proposition 4

t(F, u) = E[t0(F,Gk(u))] =
∑

G graph on k vertices

P[Gk(u) = G] t0(F,G)

=
∑

F ′ |F⊂F ′
G graph on k vertices

P[Gk(u) = G] t1(F ′, G)

=
∑

F ′ |F⊂F ′
G isomorphic to F ′

P[Gk(u) = G]
|aut(F ′)|

k!

=
∑

F ′ |F⊂F ′
P[Gk(u) = F ′]

|aut(F ′)|2

k!
,

where aut(F ′) is the group of automorphism of the graph F ′. Therefore, by inclusion-exclusion,

P[Gk(u) = F ] =
k!

|aut(F )|2
∑

F ′ |F⊂F ′
(−1)|EF ′ |−|EF | t(F ′, u),

and as a consequence,

|P[Gk(u) = F ]− P[Gk(u
′) = F ]| ≤ k!

|aut(F )|2
∑

F ′ |F⊂F ′
|t(F ′, u)− t(F ′, u′)|

∑
F

|P[Gk(u) = F ]− P[Gk(u
′) = F ]| ≤ k!

∑
F,F ′ |F⊂F ′

|t(F ′, u)− t(F ′, u′)|.

Notice that the left-hand side of the last inequality is twice the total variation distance between
the two random graphs Gk(u) and Gk(u

′). The theory of coupling ensures that there is a way to
realise the two random graphsGk(u) andGk(u

′), in other words a common probability space such
that P[Gk(u) = Gk(u

′)] = 1 − dTV(Gk(u), Gk(u
′)) (see Section 4.12 in [GS01]). Thus, if we can

compute a good upper bound of the quantity k!
∑

F,F ′ |F⊂F ′ |t(F, u) − t(F, u′)|, then with high
probability we shall have Gk(u) = Gk(u

′), and therefore δ@(Gk(u), Gk(u
′)) = 0.

Since u = 1+w
2
, we have t(F ′, u) = 2−|EF ′ |

∑
F ′′ |F ′′⊂F ′ t(F

′′, w), and therefore

|t(F ′, u)− t(F ′, u′)| ≤ 2−|EF ′ |
∑

F ′′ |F ′′⊂F ′
3−k

2

= 3−k
2

.

So,

2 dTV(Gk(u), Gk(u
′)) ≤ k!

∑
F,F ′ |F⊂F ′

3−k
2

= k! 3
k(k−1)

2
−k2 = k! 3−

k(k+1)
2 ;

P[Gk(u) 6= Gk(u)′] ≤ 3−
k
2

by using on the last line the trivial inequality k! ≤ 3k
2/2. This implies

δ@(u, u′) ≤ E[δ@(u,Gk(u))] + E[δ@(Gk(u), Gk(u
′))] + E[δ@(Gk(u

′), u′)]

≤ 10√
log2 k

+ 3−
k
2 ≤ 11√

log2 k
. �

An important corollary of the second part of Theorem 7 is:

Corollary 14. Let γ ∈ G be any graphon, and (Gn(γ))n∈N be the corresponding graphon model. In the
space of graphons (G, δ@), Gn(γ) converges in probability towards γ.
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Proof. Indeed, we saw that therewas convergence in probability of all the observables t(F,Gn(γ))→
t(F, γ), and the convergence of observables is equivalent to the convergence for the metric. �

To conclude our presentation of the theory of graphons, let us propose a characterisation of the
graphon models. If γ ∈ G, then the graphon model (Gn(γ))n∈N has the following properties:

(1) For any permutation σ ∈ S(n), the graph (Gn(γ))σ obtained by permutation of the n
vertices of Gn(γ) has the same distribution as Gn(γ).

(2) If one removes from Gn(γ) the vertex n and all the edges coming from n, then one obtains
a random graph on n− 1 vertices with the same distribution as Gn−1(γ).

(3) For any subset S ⊂ [[1, n]], the graphs induced by Gn(γ) on S and on its complement
[[1, n]] \ S are independent.

Theorem 15 (Theorem 2.7 in [LS06]). A model of random graphs (Gn)n∈N has the three properties
above if and only if it is a graphon model.

2. Permutons and their topology

2.1. Permutations and patterns. In [Hop+13], Hoppen, Kohayakawa, Moreira, Ráth and Sam-
paio developed a theory analoguous to the theory of graphons, and that allowed them to study
sequences of (random) permutations, and their densities of patterns. Recall that a permutation of
size n is a bijection σ : [[1, n]]→ [[1, n]]. The set of all permutations of size n is the symmetric group
of order n, denoted S(n), and of cardinality n!. If τ ∈ S(k) and σ ∈ S(n) with k ≤ n, we say
that τ is a pattern in σ if there exists a part {a1 < a2 < · · · < ak} ⊂ [[1, n]] such that σ(ai) < σ(aj)
if and only if τ(i) < τ(j). This definition is better understood on a picture: if one draws the graph
of σ, then one can isolate points a1 < a2 < · · · < ak such that the restriction of the graph of σ to
these points is the graph of the permutation τ ; see Figure 4 hereafter.

1 2
a1

3 4
a2

5
a3

6

1

2

3

4

5

6

Figure 4. The permutation 213 is a pattern in σ = 245361.
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As for graphs, we can define the pattern density of τ in σ by

t(τ, σ) =
|patt(τ, σ)|(

n
k

) ,

where the numerator of this fraction is the number of parts {a1 < · · · < ak} of [[1, n]] that make
appear τ as a pattern of σ. We then have the analogue of Definition 2:

Definition 16. Let (σn)n∈N be a sequence of permutations of arbitrary order. One says that (σn)n∈N
converges if |σn| goes to infinity, and if for any fixed permutation τ , the density of patterns t(τ, σn)
admits a limit when n goes to infinity.

We also call permutation parameter a family of real numbers (t(τ))τ permutation indexed by the permu-
tations τ ∈

⊔
n∈NS(n), such that there exists a sequence of permutations (σn)n∈N with |σn| → +∞

and
lim
n→∞

t(τ, σn) = t(τ)

for any τ . Again, we shall present a theory that allows one to identify all the permutation param-
eters.

2.2. Probability measures on the square and permutons. DenoteM([0, 1]2) the set of borelian
probability measures on the square [0, 1]2. It is a topological space for the topology of weak conver-
gence of measures; and this topology is metrizable and yields a compact space, see [Bil69]. Let p1

and p2 be the two projections [0, 1]2 → [0, 1] associated to the first and second coordinates. These
are continuous maps, which yield continuous maps p1,∗ and p2,∗ fromM([0, 1]2) toM([0, 1]).

Definition 17. A permuton is a probability measure π ∈M([0, 1]2), such that p1,∗(π) = p2,∗(π) = λ
is the Lebesgue measure on [0, 1].

Since p1,∗ and p2,∗ are continuous, the space of permutons P is the reciprocal image of a point by
a continuous map, hence is closed, and a compact subspace ofM([0, 1]2) for the topology of weak
convergence.

Let (x1, y1), . . . , (xk, yk) be a family of points in the square [0, 1]2. We say that these points are
in a general configuration if all the xi’s are distinct, and if all the yi’s are also distinct. To a general
family of k points, we can associate a unique permutation τ ∈ S(k) with the following property:
if ψ1 : {x1, . . . , xk} → [[1, k]] and ψ2 : {y1, . . . , yk} → [[1, k]] are increasing bijections, then

τ(ψ1(xi)) = ψ2(yi)

for any i ∈ [[1, k]]. We then say that τ is the configuration of the set of points; and we denote
τ = conf((x1, y1), . . . , (xk, yk)). This notion allows one to define the pattern density of a permuton
π. If τ is a permutation of size k, we set

t(τ, π) =

∫
([0,1]2)k

1conf((x1,y1),...,(xk,yk))=τ π
⊗k(dx1, dy1, . . . , dxk, dyk).

One can give a probabilistic interpretation to this definition. Let (X1, Y1), . . . , (Xk, Yk) be inde-
pendent random points in [0, 1], all following the same law π. Since the marginal laws of π on [0, 1]
are the uniform laws, with probability 1, the random family of points (X1, Y1), . . . , (Xk, Yk) is in
a general configuration. Then,

t(τ, π) = P[conf((X1, Y1), . . . , (Xk, Yk)) = τ ].

Now, the analogue of Theorem 3 in the setting of permutations is:

Theorem 18 (Theorem 1.6 in [Hop+13]). A family (t(τ))τ is a permutation parameter if and only
if there exists a permuton π such that t(τ, π) = t(τ) for any permutation τ .
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Again, the easy part of Theorem 18 is the construction of permutations that converge to π for
any π ∈ P . Given an integer n and a permuton π, we denote σn(π) the random permutation of
size n that is the configuration of independent random points (X1, Y1), . . . , (Xn, Yn) in the square,
all chosen according to the probability measure π.

Proposition 19. If π ∈ P and τ ∈ S(k), then for any n ≥ 2k,

E[t(τ, σn(π))] = t(τ, π);

var(t(τ, σn(π))) ≤ k2

n
.

Proof. Notice that if ((X1, Y1), . . . , (Xn, Yn)) follows the law π⊗n, then for any part {a1 < a2 <
· · · < ak}, the family of points ((Xa1 , Ya1), . . . , (Xak , Yak)) follows the law π⊗k. Therefore,

E[t(τ, σn(π))] =
1(
n
k

) ∑
{a1<···<ak}⊂[[1,n]]

P[conf((Xa1 , Ya1), . . . , (Xak , Yak)) = τ ]

=
1(
n
k

) ∑
{a1<···<ak}⊂[[1,n]]

t(τ, π)

= t(τ, π).

To compute the variance, we introduce the random variablesCA,τ , defined as follows: ifA = {a1 <
a2 < · · · < ak}, then

CA,τ =

{
1 if conf((Xa1 , Ya1), . . . , (Xak , Yak)) = τ,

0 otherwise.

We then have to compute

E
[
(t(τ, σn(π)))2

]
=

1(
n
k

)2

∑
A,B

E[CA,τCB,τ ],

where the sum runs over pairs of subsets (A,B) of size k in [[1, n]]. Suppose first that A and B are
disjoint. Then, CA,τ and CB,τ are independent, since they involve independent families of points.
So, the part of the sum that corresponds to disjoint subsets is

1(
n
k

)2

∑
A,B |A∩B=∅

E[CA,τ ]E[CB,τ ] =
1(
n
k

)2

∑
A,B |A∩B=∅

(t(τ, π))2 =

(
n−k
k

)(
n
k

) (t(τ, π))2.

On the other hand, ifA andB are not disjoint, thenwe can still boundE[CA,τ CB,τ ] by 1. Therefore,

E[(t(τ, σn(π)))2] ≤
(
n−k
k

)(
n
k

) (t(τ, π))2 +

(
n
k

)
−
(
n−k
k

)(
n
k

)
var(t(τ, σn(π))) ≤

(
n
k

)
−
(
n−k
k

)(
n
k

) (1− (t(τ, π))2) ≤
(
n
k

)
−
(
n−k
k

)(
n
k

) = 1− (n− k)↓k

n↓k
.

The right-hand side of the last inequality is the probability that a random arrangement (a1, . . . , ak)
in [[1, n]] meets [[1, k]]. This probability is smaller than the sum of probabilities P[ai ∈ [[1, k]]] = k

n
,

hence it is smaller than k2

n
. �

Corollary 20. For any permuton π, and any permutation τ , (t(τ, σn(π)))n∈N converges in probability
to t(τ, π).
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Then, the same argument as for graphons allows one to construct a sequence of random permu-
tations whose observables t(τ, ·) converge almost surely to t(τ, π). In particular, for any π ∈ P ,
(t(τ, π))τ is a permutation parameter.

2.3. Convergence in the space of permutons. To prove the second part of Theorem 18, we shall
use the following topological result:

Theorem 21. Let (πn)n∈N be a sequence of permutons. The following are equivalent:

(1) The sequence (πn)n∈N converges weakly to π.

(2) The rectangular distance
d@(πn, π) = sup

0≤a<b≤1
0≤c<d≤1

|πn([a, b]× [c, d])− π([a, b]× [c, d])|

goes to 0.

(3) For any permutation τ , t(τ, πn) converges towards t(τ, π).

Let us first explain why this implies the second part of Theorem 18. If σ is a permutation of size n,
then one can associate to it a canonical permuton, namely, the measure πσ on [0, 1]2 with density

fσ(x, y) = n 1σ(dnxe)=dnye.

For any x, the set of y’s such that fσ(x, y) = n has measure 1
n
, so

d(p1,∗(πσ))(x)

dx
=

∫ 1

y=0

fσ(x, y) dy = 1

hence p1,∗(πσ) = λ. Similarly, p2,∗(πσ) = λ, and πσ is indeed a measure whose marginal laws are
uniform. We refer to Figure 5 for an example.

0 1
0

1

= n = 6

= 0

Figure 5. The density of the permuton πσ associated to the permutation σ = 245361.

Consider now a permutation τ of size k ≤ n.

Lemma 22. We have
|t(τ, σ)− t(τ, πσ)| ≤ 1

n

(
k

2

)
.
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Proof. Let (X1, Y1), . . . , (Xk, Yk) be independent random variables with law πσ; their configuration
is τ with probability t(τ, πσ). If ni = dnXie, then σ(ni) = dnYie by definition of the probability
distribution πσ. We introduce the two following events:

A = {conf((X1, Y1), . . . , (Xk, Yk)) = τ};
B = {∀1 ≤ i < j ≤ k, ni 6= nj}.

We then have P[A|B]− P[A] = P[A|B](1− P[B]), hence

|P[A|B]− P[A]| ≤ 1− P[B] = P[Bc] ≤
∑

1≤i<j≤k

P[ni = nj] =
1

n

(
k

2

)
since the Xi’s are uniformly distributed on [0, 1] and independent. By the previous discussion,
P[A] = t(τ, πσ). On the other hand, conditionnally to B, the random vector (n1, . . . , nk) is uni-
formly distributed on the set of arrangements of size k in [[1, n]], and then A is equivalent to the
fact that this arrangement allows one to read τ as a pattern of σ. So, P[A|B] = t(τ, σ), which ends
the proof. �

Consider now a sequence of permutations (σn)n∈N such that |σn| → ∞. Since P is a compact
set for the topology of weak convergence of probability measures, up to extraction, we can assume
that πσn → π in the sense of weak convergence, where π is some permuton. By Theorem 21, this is
equivalent to the fact that t(τ, πσn)→ t(τ, π) for any τ , and by the previous lemma, we have in fact
t(τ, σn) → t(τ, π). Hence, any permutation parameter corresponds indeed to a permuton π ∈ P ,
which ends the proof of Theorem 18. Let us now attack the proof of Theorem 21. We start with:

Proof of Theorem 21: (1)⇔ (2). Suppose that (πn)n∈N is a sequence of permutons that converges
to π with respect to the rectangular distance. We fix a continuous function f on [0, 1]2, and we
want to show that πn(f) converges to π(f). If ε > 0, then by compacity of [0, 1]2, f is uniformly
continuous and there exists a partition of [0, 1]2 in N2 small squares Si of size 1

N
, such that

∀i, sup
p,q∈Si

|f(p)− f(q)| ≤ ε.

Consequently, there exists an approximation fε of f that is constant on each of the squares Si, and
such that ‖fε − f‖∞ ≤ ε and ‖fε‖∞ ≤ ‖f‖∞. Then,

|πn(f)− π(f)| ≤ 2ε+ |πn(fε)− π(fε)|

≤ 2ε+
N2∑
i=1

|fε(Si)| |πn(Si)− π(Si)|

≤ 2ε+N2 ‖f‖∞ d@(πn, π),

so limn→∞ πn(f) = π(f). So, the convergence with respect to d@ is stronger than the weak conver-
gence of probability measures.

Conversely, suppose that (πn)n∈N converges weakly towards π. Since πn and π are permu-
tons, their marginal laws are uniform, and in particular they do not have atoms; therefore, for
any rectangle R = [a, b] × [c, d], πn(∂R) = π(∂R) = 0. Then, by Portmanteau’s theorem (cf.
[Bil69, Section 2]), limn→∞ πn(R) = π(R). Introduce the bivariate cumulative generating func-
tions Fn(x, y) = πn([0, x] × [0, y]) and F (x, y) = π([0, x] × [0, y]). The sequence of functions
(Fn)n∈N converges pointwise to F , and on the other hand, these functions are increasing in both
variables. Fix an integer N , and n0 such that for any point ( i

N
, j
N

) of the grid with mesh size 1
N
,

and any n ≥ n0, ∣∣∣∣Fn( i

N
,
j

N

)
− F

(
i

N
,
j

N

)∣∣∣∣ ≤ 1

N
.
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Then, for any (x, y) in [0, 1], if i
N
≤ x ≤ i+1

N
and j

N
≤ y ≤ j+1

N
, then

Fn(x, y)− F (x, y) ≤ Fn

(
i+ 1

N
,
j + 1

N

)
− F

(
i

N
,
j

N

)
≤ 1

N
+

(
F

(
i+ 1

N
,
j + 1

N

)
− F

(
i+ 1

N
,
j

N

))
+

(
F

(
i+ 1

N
,
j

N

)
− F

(
i

N
,
j

N

))
≤ 1

N
+ π

([
0,
i+ 1

N

]
×
[
j

N
,
j + 1

N

])
+ π

([
i

N
,
i+ 1

N

]
×
[
0,
j

N

])
≤ 1

N
+ π

(
[0, 1]×

[
j

N
,
j + 1

N

])
+ π

([
i

N
,
i+ 1

N

]
× [0, 1]

)
=

3

N
,

by using on the last line the fact that π has uniform marginal laws. Similarly, one can show that
Fn(x, y)− F (x, y) ≥ − 3

N
, so for any N , one can find n0 such that

sup
n≥n0

sup
x,y∈[0,1]

|Fn(x, y)− F (x, y)| ≤ 3

N
.

However, the rectangular distance is directly related to this quantity, because

πn([a, b]× [c, d]) = Fn(c, d)− Fn(c, b)− Fn(a, d) + Fn(a, b),

and similarly for π and F . Therefore, d@(πn, π) → 0, and the proof of the equivalence (1) ⇔ (2)
is completed. �

For the other equivalences of Theorem 21, we shall use the following lemma:

Lemma 23 (Lemma 5.1 in [Hop+13]). Let π and π′ be two permutons. If t(τ, π) = t(τ, π′) for any
permutation τ , then π = π′ in P .

Sketch of proof. Let F (x, y) be the bivariate cumulative distribution function of π. This function
determines the probabilities under π of any rectangle [a, b] × [c, d] ⊂ [0, 1]2, and therefore it de-
termines π in P ⊂ M([0, 1]2). So, it suffices to show that one can reconstruct F from the family
(t(τ, π))τ . However, if one knows t(τ, π) for any τ , then one knows the distribution of the ran-
dom permutation σn(π) for any n ∈ N. As before, F is increasing in both variables, and it has the
following regularity property:

F (x+ ε, y + ε) = π([0, x+ ε]× [0, y + ε])

≤ π([0, x]× [0, y]) + π([x, x+ ε]× [0, y + ε]) + π([0, x+ ε]× [y, y + ε])

≤ F (x, y) + π([x, x+ ε]× [0, 1]) + π([0, 1]× [y, y + ε]) = F (x, y) + 2ε.

Set

Fn(x, y) =
1

n

dnxe∑
i=1

1(σn(π))(i)≤dnye,

which is a random permutation whose distribution is entirely determined by the observables
t(τ, π). If (Xn, Yn)n∈N is a sequence of independent points of [0, 1]2 under π, denote X∗1 < X∗2 <
· · · < X∗n the increasing reordering of theXi’s, and Y ∗1 < Y ∗2 < · · · < Y ∗n the increasing reordering
of the Yi’s. Then, with k = dnxe and l = dnye,

Fn(x, y) =
1

n

n∑
i=1

1(Xi<X∗k and Yi<Y ∗l ).

By using the Hoeffding inequalities, one can show that

P
[
Fn(x, y) > F

(
k

n
,
l

n

)
+ 3n−1/4

]
≤ 3 e−2

√
n.
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For the same reasons,

P
[
Fn(x, y) < F

(
k

n
,
l

n

)
− 3n−1/4

]
≤ 3 e−2

√
n.

and by using the regularity properties of Fn and F , this implies that Fn(x, y) converges in prob-
ability to F (x, y), hence that F can be reconstructed from the observables t(τ, π). We refer to
[Hop+13, Lemma 4.2] for the proof of the concentration inequality. �

Proof of Theorem 21: (1)⇔ (3). Suppose that (πn)n∈N is a sequence of permutons that converges
weakly to π, and fix a permutation τ of size k. If ((Xn

1 , Y
n

1 ), . . . , (Xn
k , Y

n
k )) is a family of k inde-

pendent points of [0, 1] chosen according to (πn)⊗k, then we have the convergence in distribution
of this family towards the law π⊗k. Now, the set of families ((x1, y1), . . . , (xk, yk)) in ([0, 1]2)k with
configuration τ has its boundary which has a measure 0 under π⊗k. Indeed, on the boundary of
this set, xi = xj or yi = yj for some pair of indices (i, j), and this event has probability 0, because
under π⊗k, the vectors (x1, . . . , xk) and (y1, . . . , yk) follow the uniform law λk on [0, 1]k, hence
have distinct coordinates with probability 1. So, by Portmanteau’s theorem,

lim
n→∞

P[conf((Xn
1 , Y

n
1 ), . . . , (Xn

k , Y
n
k )) = τ ] = P[conf((X1, Y1), . . . , (Xk, Yk)) = τ ],

where ((X1, Y1), . . . , (Xk, Yk)) follows the law π⊗k. These probabilities can be rewritten as t(τ, πn)
and t(τ, π), so (1)⇒ (3).

Conversely, suppose that we have the convergence of observables t(τ, πn) → t(τ, π) for any
permutation τ . If (πnk

)k∈N is a subsequence of (πn)n∈N that converges weakly, then its limit π′
satisfies t(τ, π′) = t(τ, π) for any permutation τ , so by Lemma 23, π′ = π. The unicity of the limit
of any convergent subsequence, and the compacity of P imply now that πn → π in the sense of
weak convergence. �

Again, an important corollary of the previous discussion is:

Corollary 24. Let π ∈ P be any permuton, and (σn(π))n∈N be the corresponding permuton model. In
the space of permutons P , we have the convergence in probability σn(π)→ π, where σn(π) is identified
with its canonical permuton as in Figure 5.

Proof. We know that in the sense of convergence of observables, the permutations σn(π) converge
in probability towards π. By Lemma 22, the permutons associated to the permutations σn(π) also
converge in the sense of observables towards π. Finally, the convergence of observables is equivalent
to the weak convergence by Theorem 21. �

Remark. The theory of permutons is sensibly easier than the theory of graphons, for two reasons:
one does not have the problem of identifiability of graphons (one does not need to take a quotient
space G =W/∼ ), and the compacity of the space is immediately granted by standard results. On
the other hand, a small difficulty that is specific to the theory of permutons is the following: if σ
is a permutation and πσ is the associated permuton, then the observables of σ are not exactly the
same as the observables of πσ (see Lemma 22).
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