

Previously we considered roodom infinite tobleoux \$ id_ id_ id_ i... with the property of central measures: - conditionally to $\lambda_n \uparrow \lambda_{n+1} \uparrow \dots$, the low of $T = \phi \uparrow \lambda_n \uparrow \dots \uparrow \lambda_{n-1}$ $u_{n} form at ST(\lambda_n)$. <>> the measures IIn of the random partitions in solitisfy $\frac{\overline{\Pi_{n}}(\lambda)}{|ST(\lambda)|} = \frac{\overline{\Pi_{n+1}}(\Lambda)}{\Lambda \cdot \lambda \uparrow \Lambda} .$ We doin that the extremal central measures are related to Schur functions. 1. Further properties of Schur functions. O Pieri Ne: p1 · sx = ____sA . proof: With 2 sufficient number Nof variables: (N> |X|+1). $\begin{array}{c}
p_{\underline{A}}\left(x_{\underline{A}}, \dots, x_{N}\right) \xrightarrow{\partial_{\lambda}} e_{N}\left(x_{\underline{A}}, \dots, x_{N}\right) \\
= \sum_{j=1}^{N} \sum_{\sigma \in \mathcal{S}(N)} \frac{N}{j} \xrightarrow{\lambda_{j}} \lambda_{j} + N \cdot \sigma(i) \\
\xrightarrow{j=1}^{N} \sum_{\sigma \in \mathcal{S}(N)} \frac{N}{j} \xrightarrow{\lambda_{j}} \lambda_{j} + N \cdot \sigma(i)
\end{array}$ $= \sum_{j=1}^{N} \partial_{(\lambda + e_j) + e_N} (x_{\alpha_1, \dots, \alpha_N})$ O if adding a box on the j-th raw of λ does not produce on integer pathion. $= \sum_{\Lambda : \lambda \land \Lambda} \partial_{\Lambda + QN} (x_{4, \dots, N})$ Therefore, if Ψ . Sym $\longrightarrow \mathbb{R}$ is a morphism of objetures with $1 \cdot \Psi(p_1) = 1$ then $\overline{T_n}(A) = |ST(A)| \Psi$ 1. $\Psi(p_1) = 1$ then $\pi(x) = |ST(A)| \Psi(s_{\lambda})$ 2. $\Psi(s_{\lambda}) \ge 0 \quad \forall \lambda \in \mathcal{Y}$ is \supseteq central measure.

(a) Hall scalar product on Sym. The Hall scalar product is the unique <.1.> on Sym which makes $(s_{\lambda})_{\lambda}ery$ on orthonormal basis. $\frac{|e_{mmo}:}{We have} < u_{\lambda} | v_{e} > = S_{\lambda e} \quad iff \sum_{\lambda \in Y} u_{\lambda}(x) v_{\lambda}(Y) = \frac{1}{ij} \frac{1}{1 - x; y;}$ $\underbrace{exom \beta e \ \underline{A}}_{k} : \sum_{k} h_{k}(x) m_{k}(Y) = \sum_{\pm} h_{\pm}(x) Y^{\pm} = \prod_{j} \underbrace{k}_{k}(x) (y_{j})^{k}$ $= \underbrace{\prod_{j} A}_{i,j} \cdot \underbrace{k}_{j} \cdot \underbrace{k$ $\underbrace{example \mathcal{L}}_{s \ge 4} : \quad set = \frac{1}{s \ge 4} = \frac{m_s(\lambda)}{s \ge 4} m_s(\lambda).$ Then, $\sum_{\lambda} \frac{p_{\lambda}(x)p_{\lambda}(y)}{z_{\lambda}} = \sum_{\lambda} \frac{p_{\lambda}(xy)}{z_{\lambda}} = \exp\left(\sum_{k=1}^{\infty} \frac{p_{k}(xy)}{k}\right)$ $= 2 \times p \left(\sum_{i,j} \log \left(\frac{1}{1 - x_i \cdot y_j} \right) \right) = \frac{1}{i \cdot j} \frac{1}{1 - x_i \cdot y_j} \cdot$

(3) expansion of Solver functions on semistanderd toldarx :
Denote
$$x^{-}$$
 the product of vanishes x_{i} , i appearing in a cell of a semistanderd
tableau T.
Then: $s_{\lambda}(x_{i}, x_{i}, ..., x_{N}) = \sum_{x^{-}} x^{-}$.
Tresst(λ, N)
proof: The Hall scolar product illows one to define show Solver functions $s_{\lambda \setminus Y}$
with $|\lambda| \ge |y|$:
 $\forall e_{\lambda} < s_{\lambda \setminus p} | s_{e} > = < s_{\lambda} | s_{Y} s_{e} > ; deg s_{\lambda \setminus Y} = |\lambda| - |y|$ if $s_{\lambda \setminus Y} to
 $(\lambda e hole = generalisation of the Jacobi-Torder formula:
 $s_{\lambda \setminus Y} = det(h_{\lambda_{i}-i} - p_{i} + j)$
(this implies that $f \mid Y \notin \lambda_{i}$ then $s_{\lambda \setminus Y} = 0$).
We have $\sum_{\lambda} s_{\lambda \setminus Y} (X) s_{\lambda}(Y) = \sum_{\lambda \in e} < s_{\lambda \setminus Y} | s_{e} > s_{e}(X) s_{\lambda}(Y)$
 $= \sum_{k} < s_{\lambda} | s_{Y} s_{e} > s_{e}(X) s_{\lambda}(Y)$
 $= \sum_{k} s_{k \setminus Y} (X) s_{\lambda}(Y) s_{e}(Y) = C(X, Y) s_{p}(Y).$
 $= \sum_{k} s_{k \setminus Y} (X) s_{\lambda} + q_{k}(y_{1}, ..., y_{N})$
 $= \sum_{k} s_{k \setminus Y} (X) s_{\lambda} + q_{k}(y_{1}, ..., y_{N})$
 $= \sum_{k} s_{k \setminus Y} (X) s_{\lambda} + q_{k}(y_{1}, ..., y_{N})$
 $= det(h_{\lambda_{i}-i}) - (Y_{i} - j)$.
Help($C(t) = 1$ for $th = bit more work)$ det($e_{n'_{i}-i}(x_{i})'_{i}-j$).$$

In particular, if
$$Y = \{x_i\}_i$$
 then $s_{Aij}(x_i) = 4_{Aij}$ is an horizontal ship $(x_i)^{p+1}$
This implies the expansion, because $s_{A}(X+Y) = \sum s_{Aij}(X) s_{V}(Y)$.
 $prof: s_{A}(X+Y) = \sum s_{A}(Z)] \sum_{A} s_{A}(X+Y) s_{A}(Z)$
 $= \sum s_{A}(Z)] (C(X+Y,Z))$
 $= \sum s_{A}(Z)] (C(X,Z)] (C(X+Y,Z))$
 $= \sum s_{A}(Z)] (C(X,Z)] (C(X,Z)] (C(X,Z))$
 $= \sum s_{A}(Z)] (C(X,Z)] (C(X,Z)] (C(X,Z))$
 $= \sum s_{A}(Z)] (C(X,Z)] (C(X,Z$

e)
$$f : X = \alpha = (\alpha_{d}, \alpha_{d}, ...)$$
 is \Rightarrow summble sequence with
positive antipotents, then $\beta_{kz_{1}}(\alpha) = \sum_{i=1}^{\infty} (\alpha_{i})^{k}$ is solve pathie,
because we then have $s_{k}(\alpha) = \sum_{i=1}^{\infty} (\alpha_{i})^{k} = S_{k}(\alpha)^{k}$
 $\Rightarrow \alpha \in S_{k}(\alpha) = \sum_{i=1}^{\infty} (\alpha_{i})^{k} = 0$.
 $\exists i i f | X = \beta_{i} \Rightarrow summable sequence with pashive and fluctures
 $f \mid k_{21} \in \beta_{2} = 0$.
 $\exists restriction s_{k}(\beta) = (-1)^{k+1} \sum_{i=1}^{\infty} (\beta_{i})^{k}$
then $s_{k}(\beta) = 0 \forall \lambda \in \mathcal{F}$.
Toback by statility by sum, it suffices to treat the case of
 $\beta = (\beta_{k}) = (\beta_{k}, 0, -)$.
 $s_{\lambda}(\overline{\beta}) = \sum_{k}(Z)] (\sum_{i=1}^{\infty} (\beta_{i}) s_{\lambda}(\overline{z}))$
 $= \sum_{k}(Z)] (\sum_{k=0}^{\infty} \beta_{k} e_{k}(Z))$
 $= \sum_{k}(Z)] (\sum_{k=0}^{\infty} \beta_{k} e_{k}(Z))$
However: $h_{k}(Z) = s_{(k)}(Z)$ (clear by Jacobi Trudy)
 $e_{k}(Z) = s_{(k)}(Z)$ (clear by Jacobi Trudy)
 $e_{k}(Z) = s_{(k)}(Z)$
 $s_{k}(\beta) = 1_{(\lambda = 1^{k})} \beta_{k}^{k} \ge 0$.
 $s_{k}(\beta) = 1_{(\lambda = 1^{k})} \beta_{k}^{k} \ge 0$.
 $s_{k}(\beta) = 0$.
So $s_{k}(\beta) = 1_{(\lambda = 1^{k})} \beta_{k}^{k} \ge 0$.
 $s_{k}(E) = 0$.
Solver pashive : $s_{k}(E) = \frac{|ST(A)|}{\alpha_{k}!}$ by using the first rule .$

$$\begin{split} & \leq \text{Syppose that } P \text{ is multiplicitive. We decompose } P \text{ as an integral are the set of extremal paints: Chaquet theorem } \\ & \Psi = \int_{-\infty}^{\infty} \Phi \ \text{BCd} P \text{. (This decomposition is not unique)}_{\text{in general}} \\ & \text{Fer } \lambda \in \Psi \ \text{set } X_{\lambda} = \Phi(s_{\lambda}) \text{ under } P. We have $E[X_{\lambda}] = \Psi(s_{\lambda})$. We have $\sum (X_{\lambda})^2 = \Psi(s_{\lambda})^2$. We have $\sum (X_{\lambda})^2 = \Psi(s_{\lambda})^2 = E[X_{\lambda}]^2$. We have $\sum (X_{\lambda})^2 = E[X_{\lambda}]^2$. The integration of the promotion on the print, and Ψ is extremed for the promotion of $\sum (x_{\lambda})^2 = E[X_{\lambda}]^2$. The integration of the promotions of and \mathbb{P} is cancentriked on one print, and Ψ is extremed for the promotion performing the integration of the promotions of and \mathbb{P} is uncertained on the print. The sequence of random performs $(X_{\lambda}) = 0$ is an extension of a performance of perform$$

probability measure on
$$Y = \bigcup_{n \in N} Y_n$$
 given by
 $IE_{X,Y} = \frac{g_n(X) g_n(Y)}{C(X,Y)}$.
example: Fix 0>0, and ansider the control measure associated to a parameter
 $W = (a', \beta) \in \Omega$.
 $T_n(A) = 1ST(A)[g_n(a', \beta)]$.
Let $P_{0,w}$ be the Paissoniaed version of the measures T_n .
 $P_{0,w} [A] = Paisson (D) [n] T_n [A]
 $= e^{-0} \frac{0}{n!} 1ST(A)[g_n(w)]$.
This is the Schur measure associated to the parameters $X = 0E$ and $Y = w$.
example: To particular, the Paissoniaed flanchere) measure.
 $PP_0 [A] = e^{-0} \frac{0^n}{n!} \frac{1ST(A)!}{n!}^2$ is $S_{0E_1E} = S_{VOE_1, VOE}$.
We associate to a partition $\lambda \in Y$ its descent set $D(A) = (\lambda - i + \frac{1}{2})_{i \ge 1}$.
This is a subset of $Z' = Z + \frac{1}{2}$ with the property.
 $|Z'_{+} \cap D(A)! = |Z'_{-} \setminus Z' \cap D(A)! < +\infty$.
The random set of descents $D(A)$ forms a determinion bill point process on Z'_{+} recoving thd.$

 $\forall j_{x_1, \dots, x_n} \notin \subset \mathbb{Z}'_{j_1}$ $\nabla [x_1, ..., x_n] \subset \mathbb{Z}$ $\mathbb{P} [x_{2}, ..., x_n] \subset \mathbb{D}] = \det (K_{\chi, Y} (x_i, x_j))_{1 \le i, j \le n}$ The konel $K_{\chi, Y}$ has an explicit generating function : $\mathcal{D}(z,\omega) = \underbrace{\sum_{k,y\in \mathbb{Z}'}}_{k,y\in \mathbb{Z}'} \underbrace{k_{x,y}(x,y)z^{k}\omega^{-y}}_{|z| > |w|} = \underbrace{\sqrt{z\omega}}_{\mathbb{Z}-\omega} \exp\left(\underbrace{\sum_{k=1}^{\omega}}_{\mathbb{Z}-\omega}\frac{pk(x)}{k}(z^{k}-\omega^{k})\right) - \underbrace{\sum_{k=1}^{\omega}}_{\mathbb{Z}-\omega}\frac{pk(y)(z^{-k}-w^{k})}{(z^{-\omega})}\right)$ example: For the Poissonised Alancherel measure PPl_{O_1} X = Y = VOE $\mathcal{Y}(z,\omega) = \sqrt{z\omega} \exp(\sqrt{O((z-\omega) - (z^{-1} - \omega^{-1}))}).$