

We want to study the Plancherel measure
$$P_{h}(\lambda) = \frac{|ST(\lambda)|^2}{n!}$$

1. Central measures on the Young graph.
Gonsider the Young graph. Y.
 $\lambda \uparrow \Lambda$ if Λ can be obtained from λ by folding
one cell at the top-right backer.
A standard tableau with stape λ corresponds to a sequence $\oint \uparrow \lambda_{\pm} \Lambda \dots \uparrow \lambda_{a} = \lambda$.
recurrence relation:
 $|ST(\Lambda)| = \sum_{i > T(\Lambda)|} |ST(\Lambda)|$
We can therefore define a transition kernels $p_{n-1}^{n+2}, \dots, p_{a}$ allow one to choose σ uniform
standard tableau in ST(λ).
Definition: A central measures is a family of probability measures (Th_{n+2})
 $real the levels $Y(n)$ of the Yang graph such that:
 $\forall n_{i}, \neg T_{n+1}, p_{n+1}^{n+1} = T_{n}$.
Proposition: the Plancherel measures form a central measure.
Proof: We have to establish:
 $Pl_{n}(\Lambda) = \sum_{i > T} Plan.(\Lambda) \frac{|ST(\Lambda)|}{|ST(\Lambda)|}$
 $\sim \frac{|ST(\Lambda)|}{\Lambda \cdot \lambda \uparrow \Lambda} = \sum_{i > T} \frac{|ST(\Lambda)|}{\Lambda \cdot \lambda \uparrow \Lambda}$$

Given on integer pattion
$$\lambda$$
, we denote λ' the conjugate patition given by the sizes of
the advance of λ .
ex: $(5, 4, 2)' = (3, 3, 2, 2, 4)$.
We also that both sides of the equation are equal to the number of permittations
 $\sigma \in S(n+4)$ s.t.
indeed, if σ is such a permittion, then:
 $\sigma(\sigma) = \sigma(n+1)$ can be any integer in II 4, $n+4$]. ($n+4$ possibilities).
 $-\sigma(n+1)$ can be any integer in II 4, $n+4$]. ($n+4$ possibilities).
 $-\sigma(n+1)$ can be any integer in II 4, $n+4$]. ($n+4$ possibilities).
 $-\sigma(n+1)$ can be any integer in II 4, $n+4$]. ($n+4$ possibilities).
 $-\rho(\sigma, -\sigma,)$ is the semistandard tableau units deale is knowing
 $\sigma(n+1)$, there are $|ST(A)|$ possibilities
 $-Q(\sigma)$ is one of the standard tableau obtained by adding $n+4$ of the tapiful
boundary of Q so one possibility for each Λ with $\lambda \uparrow \Lambda$.
 $-\rho(\sigma)$ is arbitrary in $ST(\Lambda)$, knowing Λ .
 $-\rho(\sigma)$ is arbitrary in $ST(\Lambda)$, knowing Λ .
 $Given a central measure $(T_n)_{n\in\Lambda}$, one can use the Kalmorarou extension theorem
in order to define a condom infinite tableau T_{-} of T_{Λ} formed by the integers \in II 4, n Thes with defeau of T
formed by the integers \in II 4, n Thes withedleau of $T$$

The degree of a monomial is its number of terms. deg $(x^{\pm}) = |\pm| = \sum_{s=1}^{i_s}$. A polynomial is a formal linear combination $\sum_{T} c_{\pm} x^{\pm}$ of monomials which is bounded in degree : $c_{\pm} = 0$ for all monomials with deg (x^{\pm}) > some deal. $\underline{ex}: \quad \mathcal{Q} \times \underline{\mathbf{x}}_{1}^{2} \times \underline{\mathbf{x}}_{3} - \underline{\mathbf{x}}_{2}^{5}, \quad \underline{\mathbf{x}}_{4} + \underline{\mathbf{x}}_{2} + \dots + \underline{\mathbf{x}}_{n} + \dots \quad (not necessarily finite sums!).$ We denote R[X] the red vector space of polynomials. It is graded by $deg(\Sigma C_{I} \times^{T}) = max(III, C_{I} \neq 0)$ (- ∞ by convention for the O polynomial). The rule $x^{\pm} x^{\pm} = x^{\pm \pm}$ can be extended by linearity to moke RCX] into a graded real algebra. deg PQ = deg P + deg Q. $R[X] = \bigoplus_{n=0} K_n[X]$ homogeneous polynomial with degree n. remark: For any NZO, we have a specialisation morphism <u>Definition</u> A polynomial PEREX) is a symmetric function if for any permutation $\sigma \in S(\infty) = (\int_{-\infty}^{\infty} i S(n)),$ $\begin{array}{rcl} & P(x_{\sigma(2)}, x_{\sigma(2)}, \dots) &=& P(x_{n}, x_{2}, \dots) \\ & \longleftrightarrow & \forall N_{1} & \varphi_{N} (P) \in \mathbb{R}[x_{1}, \dots, x_{N}] & (N) \\ & & & \\ & &$

example 1:
$$4k \ge 1$$
, $pk(X) = \sum_{i=1}^{\infty} (x_i)^k$ kith power sim.
For $\lambda \in \Omega = \bigcup_{n \in \mathbb{N}} S(n)$, we set $p_\lambda(X) = p_\lambda(X) p_\lambda(X) - p_\lambda(X)$.
 p_λ is a symmetric function with degree $|\lambda|$.
Example 2: $4k \ge 1$, $e_k(X) = \sum_{i=1}^{k} x_i x_i \dots x_k$ with elementary symmetric $\frac{1}{2} \le \frac{1}{2} \le \frac{1}{2$

(3). If
$$x^{=} = x_{0}^{n} \dots x_{e}^{ne}$$
, bende $\lambda = t(x^{\mp})$ the type $f(x^{\mp})$, which is the integer pathting
abboined by reactioning the integers $m_{1} \dots m_{e}$.
 $P \in Sym = The coefficient of x^{\mp} only depends of $f(x^{\pm})$.
Therefore, p linest basis of Sym consists in the monomial functions
 $m_{\lambda}(x) = \sum_{x^{\pm}} x^{\pm}$.
 $(x) = \sum_{x^{\pm}} x^{\pm} x^{\pm}$.
 $m_{e,1}(x) = \sum_{x^{\pm}} x^{\pm} x^{\pm} x^{\pm}$.
 $m_{e,1}(x) = \sum_{x^{\pm}} x^{\pm} x^{\pm} x^{\pm}$.
Denote $\lambda < p$ if p can be obtained from λ by adding cartain parts, and northour
 $e_{x} \in (5,3,3,4) < (6,5,4)$.
Then \cdots the $p_{\lambda}(x) = (\frac{1}{p_{\lambda}} m_{e}(\lambda)!) m_{\lambda}(x) + \sum_{y^{\pm} \lambda} m_{p}(x)$.
 $p_{\lambda}(x) = \sum_{i=j+1}^{n} x_{i} x^{i} x^{i} x^{i}$.
 $e_{xom} f(k) = p_{5,3,2,4} = \sum_{i=j+1}^{n} x_{i} x^{i} x^{j} x^{k} x^{k}$.
 $e_{xom} f(k) = p_{5,3,2,4} = \sum_{i=j+1}^{n} x_{i} x^{j} x^{k} x^{k}$.
 $k = m_{5,4,3} + m_{6,3,3} + m_{6,5,4} + m_{6,5,4} + m_{6,5,4} + m_{6,6} + 2m_{5,4,3} + m_{6,5,4} + 2m_{5,4,3} + m_{6,5,4} + 2m_{5,4,3} + m_{6,5,4} + 2m_{5,4,5} + m_{4,5} + m_{4,5,5} + m_{4$$

new stitement of the Thema / Kerrer Vershik theorem
$$\sum_{i=1}^{\infty} \sum_{\alpha_i \in \mathcal{A}_i} p_i : \alpha_i \in \mathcal{A}_i \in \mathcal{A}_i$$

 $-\Omega = \int (\alpha_i \in \mathcal{A}) : \alpha_i \in \mathcal{A}$ and pieze $(\alpha_i \in \mathcal{A}) = \sum_{i=1}^{\infty} \alpha_i \stackrel{k}{\leftarrow} + (-\alpha) \stackrel{k}{\leftarrow} \stackrel{k}{\leftrightarrow} :$
Set $p_a(\alpha_i \in \mathcal{A}) = \Delta$ and $pieze (\alpha_i \in \mathcal{A}) = \sum_{i=1}^{\infty} \alpha_i \stackrel{k}{\leftarrow} + (-\alpha) \stackrel{k}{\leftarrow} \stackrel{k}{\leftrightarrow} :$
As $\sum_{m=1}^{\infty} \mathbb{R}[p_a, p_i, ...]$, this defines a morphism of ellekrae $\sum_{j=1}^{\infty} \sum_{\alpha_i \in \mathcal{A}_j} p_i = \mathcal{A}$.
A. $\forall \lambda \in \mathcal{Y}_i \subseteq \mathcal{A}(\alpha_i \in \mathcal{A}) \ge \mathcal{O}$.
a. $\forall \pi \in \mathcal{A} := |ST(\alpha_i)| \le_i (\alpha_i \in \mathcal{A}) = \mathcal{O}$.
a. $\forall \pi \in \mathcal{A} := |ST(\alpha_i)| \le_i (\alpha_i \in \mathcal{A}) = \mathcal{O}$.
b. $\forall \lambda \in \mathcal{Y}_i \subseteq \mathcal{A}(\alpha_i \in \mathcal{A}) \ge \mathcal{O}$.
a. $\forall \pi \in \mathcal{A} := |ST(\alpha_i)| \le_i (\alpha_i \in \mathcal{A}) = \mathcal{O}$.
b. $\forall \lambda \in \mathcal{A} := |ST(\alpha_i)| \le_i (\alpha_i \in \mathcal{A}) = \mathcal{O}$.
b. $\forall \lambda \in \mathcal{A} := |ST(\alpha_i)| \le_i (\alpha_i \in \mathcal{A}) = \mathcal{O}$.
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
c. $\exists extremol control measures are af this kind.$
e. $\exists extremol control measures are a$

$$= \frac{\sum_{i=1}^{N-1} (y_{N} - y_{i})(x_{N} - x_{i}) \frac{N}{|i|}}{\sum_{i=1}^{N} \frac{1}{1 - x_{i}y_{N}} \frac{N-1}{|j|} \frac{1}{1 - x_{N}y_{j}} C_{N-1} .$$

$$= \sum_{i=1}^{N-1} (y_{N} - y_{i})(x_{N} - x_{i}) \frac{\Delta(y_{1} - y_{N})}{\sum_{i=1}^{N-1} (1 - x_{i}y_{i})}$$

$$\frac{\text{conditions} \odot \text{the Gauchy formula : given two commuting diphobets of variables}}{\text{we have}} = \frac{1}{\lambda \in \mathcal{N}} S_{\lambda}(X) S_{\lambda}(Y) = \frac{1}{|Y|} \frac{1}{1 - x;Y} + \frac{1}{1 - x;Y} + \frac{1}{|Y|} + \frac{1}{1 - x;Y} + \frac{1}{|Y|} + \frac{1$$

(2) the Jacobi-Tridy formula:

$$S_{\lambda}(x) = \det(h_{\lambda_{i}} + j - i)_{A \leq i, j \leq \ell(\Lambda)} \quad \text{with} \quad h_{o} = 1$$

$$h_{k < o} = O.$$

$$\text{Indeed}, \quad S_{\lambda}(x_{1}, ..., x_{N}) = \begin{bmatrix} y^{\lambda + e_{N}} \end{bmatrix} \left(\sum_{\lambda \in Y} S_{\lambda}(x_{1}, ..., x_{N}) \partial_{\lambda + e_{N}}(y_{1} - y_{N}) \right)$$

$$= \begin{bmatrix} y^{\lambda + e_{N}} \end{bmatrix} \left(\frac{1}{i \leq j} y_{j} - y_{i} - \frac{1}{i \leq j} \frac{1}{i \leq j} - \frac{1}{i \leq j} \frac{1}{i \leq j} \right)$$

$$= \begin{bmatrix} y^{\lambda_{+}e_{v}} \end{bmatrix} \sum_{\sigma \in \mathcal{L}(\sigma)} y^{\sigma(e_{v})} \sum_{T \in \mathbf{A}_{v}} y^{T} h_{T}(x)$$

$$= \sum_{\sigma \in \mathcal{L}(v)} \sum_{i=1}^{v} h_{\lambda_{i}-i+\sigma(i)}$$

$$= \det \left(h_{\lambda_{i}+j-i} \right) .$$