

schedule: every thursday, 1.20-3.30 pm, except 02.29? (or 02.20).
9 sessions + 1 session with presentitions (04.03)
1. Increasing subsequences in random words.
Let us fix N2 1. A word with length n and letters in II 4, NI is just a sequence
w = (w_1, u_2, ..., u_n) with each w; E II 4, NI.
= NJ, N2 ... Nn
exemple: N=6, n=9 : w= 431631263
IF N= n and every letter i6 II 4, nI appears exactly ance, one dolarins a permutition
of E S(n).
ex: n=9, or=941359268
I II 4, NI° | = N°,
$$|S(n)| = n! = \frac{n}{11}i$$
.
One advants these adv of words with their uniform probability measure.
Defition: An increasing subword or subsequence in a word w with length is a
subword w; wix ... we with $i_d < i_d < i_d < \cdots < i_d$ and $w_{i_d} < w_{i_d} < \cdots < w_d$.
ex: in 431631263, 1423 is an increasing subword of w f.
(We denote $l(w) = max 2$ length of an increasing subword of w f.
(Im 's poblem . (1961) what is the distribution of $l_1 = l(o_1)$ with
 $o_n \sim Unif. (CTN)$, $n \rightarrow +\infty$?
We can ask the same question with a large condom word w, in II, NI°, $n \rightarrow +\infty$
(and possibly N=+ to x well)
This question led Ulan to davelap the Morte Carlo simulation method.

Non-trivial fact:
$$\lambda(w)$$
 is a non-increasing sequence $((5,2,4,4)$ in the previous example).
Definition An integer partition with size n is a non-increasing sequence
 $\lambda = (\Lambda_3 \ge \lambda_2 \ge \dots \ge \Lambda_1)$ of positive integers with $|\lambda| = \sum_{i=1}^{n} X_i = n$.
ex: $(5,2,4,4)$ is an integer partition with size 9 and length 4.
We denote $Y(n) = 2$ integer partitions with size 1 g
 $Y(4) = \frac{1}{2}(4)$ (3, 4), $(2,2)_1(2,4)$ (4,4) (4

Consider $\sigma_n \sim \text{Unif}(S(n))$ and $\lambda_n = \lambda(\sigma_n)$. $\lambda_{n,4} = l_n$. Lagon-Shepp, Kerou-Vershik 1977: if one drows the Young disprom of An with $\frac{1}{\sqrt{n}} \approx \frac{1}{\sqrt{n}}$ cells, its boundary converges in probability to 2 continuous limit shape: $\frac{2}{11}\left(s \operatorname{arcsin} \frac{s}{2} + \sqrt{4-s^2}\right)$ $\int \frac{2}{11}\left(s \operatorname{arcsin} \frac{s}{2} + \sqrt{4-s^2}\right)$ $\int \frac{1}{45^\circ}$ Kerov, 1993; $(w_n(s) - \Omega(s)) \sqrt{n} \longrightarrow Gaussian distribution on [-2,2]$ (content) continuous function associated to λ_n k=2 k=2 $k \sim N(0, 1)$ iiO. Baradin-Okaunkau-Olshanski Okaunkau Qaaa Jahanssan $\int_{n}^{n} \left(\frac{\lambda_{n,1}}{2\sqrt{n}} - 1, \frac{\lambda_{n,2}}{2\sqrt{n}} - 1, \dots, \frac{\lambda_{n,k}}{2\sqrt{n}} - 1 \right) \xrightarrow[n \to +\infty]{} k \text{ first particles of the Airy} process.$ Consider a random Hermitian matrix with size nxn and Gaussian entries : $M_{n} = \begin{pmatrix} X_{1} & Y_{12} + i \overline{Z}_{12} \\ Y_{12} - i \overline{Z}_{12} \\ \vdots \\ X_{n} \end{pmatrix}$ with independent variables $X_{i}, Y_{i}, \overline{Z}_{i}, \overline{Z}_{i}$ $\mathbb{E}[X_{i}^{2}] = 4, \mathbb{E}[Y_{i}^{2}] = \mathbb{E}[\overline{Z}_{i}^{2}]^{2} = \frac{4}{2}$

$$(\text{difficult question: compute 1 ST(A) | ord 1 ST(A, N) | ...).}$$

$$Theorem Robinson 1938 There is > combinistorial bijedian.
Schenked 1960
Knoth 1970
RSK: [I 4, N] - [] SST(A, N) * ST(A).
 $x \in YG$ (P(W), Q(W))
Tf N=n, the restriction of RSK to S(A) yields > bijedian.
 $S(A) * ST(A) * ST(A).$
 $x \in YG$ (P(W), Q(W))
Tf N=n, the restriction of RSK to S(A) yields > bijedian.
 $S(A) * ST(A) * ST(A).$
 $x \in YG$ (P(W), Q(W))
 $Tf N=n, the restriction of RSK to S(A) yields > bijedian.
 $S(A) * ST(A) * ST(A).$
 $x \in YG$ (P(W), Q(W))
 $Tf N=n, the restriction of RSK to S(A) yields > bijedian.
 $S(A) * ST(A) * ST(A).$
 $x \in YG$ (P(W), Q(W))
 $Tf N=n, the restriction of RSK to S(A) = \frac{3}{2}$
 $\frac{3}{2}$ ($\frac{$$$$$

The second tobleou Q(w) records the growth of the two tobleoux P and Q therefore it is standard.

Why is P(w) semisborderd? non decreasing rows by construction.
One has to show that 2 configuration lace with b ≤ c ≤ 2 is impossible.
by induction, if P is semistandard, then P < i \$lso.
if P <= i antains lace with b < c < 3, then previously
c was on the lower row, before 3, but stridly ofter the column of b
One can invert the insertion procedure, whence the bijertive character.
Theorem (Graene, 1994). The shape of P(w) and Q(w) is
$$\lambda(w)$$
.
It is prove that the length of the first row of P(w) and Q(w) is $\ell(w)$.
We define the intertion for down of the subword which consists in lefters
inserted in pestion (1, i) at the time of their insertion (lateron, they might be pushed).
Ex: with w = 0 = 941359268,
b₁ = 32. — by construction, decreasing words.
b₂ = 8.
Any non-decreasing subword can interse exists w; C by with w < sup
if w < b_{k+A}, then there exists w; C by with w; < wy
if w; < b_{k+A}, then there exists w; C by with w < f(P(w))_A.
4. Measures on integer partitions.
The image of the uniform measure by RSK shape is :

- the Schur-Neyl massive SW_N, if w~ lhift[I, NI^A).
SW_{N,A} (
$$\lambda$$
) = 1SST(A, N)1 1ST(A)1
- the Planchard massive Pl_n if $\sigma \sim lhift(Sh)$.
Pl_n (λ) = 1ST(A)².
problem: study $\lambda_{n} \sim Pl_{n}$. In particular, what is the asymptotic behavior of $\lambda_{n, \Delta} = \ell(\sigma_{n})$?.
buv
Lemmo: EE[l_n] < $\ell(\sigma_{n})$?.
buv
Lemmo: EE[l_n] < $\ell(\sigma_{n})$?.
buv
Lemmo: $EE[l_{n}] < \ell(\sigma_{n})$?.
buv
Lemmo: $EE[l_{n}] < \ell(\sigma_{n})$?.
buv
Lemmo: $E[l_{n}] < \ell(\sigma_{n})$?.
buv
buv
couchy. Schwate $\sum_{n} P[n \in Q(\sigma_{n})] = P[c_{n}(n) = n] = \frac{1}{n}$.
Couchy. Schwate $\sum_{n} P[n \in Q(\sigma_{n})] = P[c_{n}(n) = n] = \frac{1}{n}$.