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Abstract. In this article, we establish the mod-ϕ convergence of the major index of a uniform ran-
dom standard tableau whose shape converges in the Thoma simplex. This implies various proba-
bilistic estimates, in particular speed of convergence estimates of Berry–Esseen type, and strong large
deviation principles.
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1. Major index of a random standard tableau

1.1. Integer partitions and standard tableaux. If λ = (λ1 ≥ λ2 ≥ · · · ≥ λℓ(λ)) is a non-increasing
sequence of positive integers, we recall that it is called integer partition of the integer n = |λ| =∑ℓ(λ)

i=1 λi, and that it is represented by a Young diagram, which is the array of n boxes with λ1

boxes on the first row, λ2 boxes on the second row, and so on. For instance, the integer partition
λ = (4, 2, 2, 1) has size |λ| = 9, and it is represented by the Young diagram:

Throughout the article, we use the French convention for drawing Young diagrams, with the first
parts of the partition corresponding to the bottom rows. Let us denote Y(n) the set of all integer
partitions with size n, and Y =

⊔
n∈NY(n) the set of all integer partitions. Given λ ∈ Y(n), a

standard tableau with shape λ is a numbering of the cells of the Young diagram of λ by the integers
in [[1, n]] which is bijective and strictly increasing along the rows and columns. For instance,

8
4 7
3 5
1 2 6 9

is a standard tableau with shape (4, 2, 2, 1). The set of standard tableaux with shape λ will be
denoted ST(λ), and the cardinality of this set is given by the Frame–Robinson–Thrall hook length
formula [FRT54]. Given a cell @ of a Young diagram λ, its hook length h(@) is the number of cells
of the hook which is included in the Young diagram λ and which contains @, the cells above @ and
the cells on the right of @. For instance, the Young diagram of the integer partition λ = (4, 2, 2, 1)
has the following hook lengths:

1
3 1
4 2
7 5 2 1

Then, for any integer partition λ ∈ Y(n),

|ST(λ)| = n!∏
@∈λ h(@)

;

see for instance [Mac95, Section I.4, Example 3]. In this article, we shall be interested in the distri-
bution of a certain statistics X : ST(λ)→ N, the set ST(λ) being endowed with the uniform law.
Before presenting this statistics, let us associate to the cells of a Young diagram λ another integer:
if the cell @ is in i-th row and the j-th column of the Young diagram λ, its content is c(@) = j − i.
For instance, λ = (4, 2, 2, 1) admits the following contents:

3
2 1
1 0
0 1 2 3

The contents are involved in numerous combinatorial formulæ in the theory of integer partitions.
For instance, the cardinality of the set SST(λ,m) of semistandard tableaux with shape λ and entries
in [[1,m]] is given by the product

∏
@∈λ

m+c(@)
h(@)

; see [Sta99, Corollary 7.21.4]. The contents of the
cells of the Young diagrams shall also play an important role in our work.
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1.2. Major index and Schur functions. A descent of a standard tableau of size n is an integer
i ∈ [[1, n− 1]] such that i+1 appears in a row strictly above the row containing i. Themajor index
of a standard tableau T is the sum of its descents:

maj(T ) =
∑

i∈Desc(T )

i.

For instance, if λ = (4, 2, 2, 1) and T is the standard tableau given as an example in the previous
paragraph, then the set of descents of T is {2, 3, 6, 7}, and the major index is 2 + 3 + 6 + 7 =
18. The definitions of descent and major index for a standard tableau are closely related to the
analogue definitions for a permutation. Given σ ∈ S(n), a descent of the permutation σ is an
index i ∈ [[1, n− 1]] such that σ(i) > σ(i + 1). For instance, the descent set of the permutation
σ = 592138647 is {2, 3, 6, 7}. The Robinson–Schensted–Knuth algorithm yields a bijection between
S(n) and the set

⊔
λ∈Y(n) ST(λ) × ST(λ) of pairs of standard tableaux with the same shape. For

instance, 592138647 ∈ S(9) corresponds to the pair of standard tableaux

P =

9
5 8
2 6
1 3 4 7

; Q =

8
4 7
3 5
1 2 6 9

.

This bijection preserves the set of descents: if RSK(σ) = (P,Q), then Desc(σ) = Desc(Q); see for
instance [Loe11, Theorem 10.117].

The purpose of this article is to study the distribution of maj(T ) when T is taken uniformly at
random in the set ST(λ) of standard tableaux with shape λ, and λ = λ(n) is an integer partition
with size n, n going to infinity. Equivalently, this amounts to consider the distribution of maj(σ)
when σ is a permutation taken uniformly at random in a RSK class of growing size. The case of
a uniform random permutation in S(n) can essentially be recovered as a particular case of our
results; see the discussion after the statement of Theorems A and B. The following result due to
Billey–Konvalinka–Swanson [BKS20] ensures that under mild hypotheses and after appropriate
scaling, this distribution of maj(T ) with T ∼ U(ST(λ)) is asymptotically normal:

Theorem 1 (Billey–Konvalinka–Swanson). Wedenoteλ′ the conjugate of an integer partitionλ, which
is obtained by symmetrizing the Young diagram with respect to the diagonal. Consider a sequence of
integer partitions (λ(n))n≥1 such that

|λ(n)| = n ; n− λ
(n)
1 → +∞ ; n− λ

(n)′

1 → +∞.

Then, with T (n) taken uniformly at random in ST(λ(n)),

maj(T (n))− E[maj(T (n))]√
var(maj(T (n)))

⇀n→+∞ N (0, 1).

The conditions n−λ(n)
1 → +∞ and n−λ(n)′

1 → +∞ are actually necessary: otherwise, the limiting
distribution exists but is not Gaussian, see [BKS20, Theorem 1.3]. We shall see in the sequel that
if |λ| = n and T ∼ U(ST(λ)), then

ℓ(λ)∑
i=1

(i− 1)λi ≤ maj(T ) ≤
(
n

2

)
−

ℓ(λ)∑
i=1

(
λi

2

)
and the variance ofmaj(T ) is of orderO(n3). Thus, in most cases, the values ofmaj(T ) are of order
O(n2), and their fluctuations around the mean are of orderO(n

3
2 ) and asymptotically normal. This

raises the question of the large deviations of maj(T ) of order O(n2): given y > 0, what are the
asymptotics of

P[maj(T (n))− E[maj(T (n))] ≥ yn2] ?
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We shall explain in this article how to estimate these probabilities if one knows the limit shape of
the partitions λ(n). On the other hand, Theorem 1 ensures that

dKol

(
maj(T (n))− E[maj(T (n))]√

var(maj(T (n)))
, N (0, 1)

)

= sup
s∈R

∣∣∣∣P[maj(T (n))− E[maj(T (n))] ≤ s
√
var(maj(T (n)))

]
−
∫ s

−∞
e−

x2

2
dx√
2π

∣∣∣∣
goes to 0 when n goes to infinity, but it does not give the speed of convergence, related to the
quality of the Gaussian approximation. One of our main results is a uniform upper bound for this
Kolmogorov distance, which is of order O(n− 1

2 ).

The major index of standard tableaux is related to the Schur functions and to the so-called q-hook
length formula. For any family of variables (x1, . . . , xN) with N ≥ ℓ(λ), set

sλ(x1, . . . , xN) =
det((xi)

λj+N−j)1≤i,j≤N

det((xi)N−j)1≤i,j≤N

with by convention λj = 0 if j > ℓ(λ). The specialisation xN+1 = 0 from R[x1, . . . , xN+1] to
R[x1, . . . , xN ] stabilises these Schur polynomials:

∀N ≥ ℓ(λ), sλ(x1, . . . , xN , 0) = sλ(x1, . . . , xN).

Consider the projective limit in the category of graded algebras R[X] = lim←−N→∞ R[x1, . . . , xN ].
In R[X], there exists a unique element sλ(X) whose projections are the symmetric polynomials
defined above. This is the Schur function sλ, see for instance [Mac95, Section I.3]. An important
result in the theory of these symmetric functions is the Stanley q-hook length formula [Sta99,
Corollary 7.21.3]: if |q| < 1, then

sλ(1, q, q
2, . . . , qn, . . .) = qb(λ)

∏
@∈λ

(
1

1− qh(@)

)
,

with b(λ) =
∑ℓ(λ)

i=1 (i − 1)λi. Moreover, up to a combinatorial factor, the principal specialisation
sλ(1, q, q

2, . . .) is the generating series of the major indices of the standard tableaux with shape λ:

sλ(1, q, q
2, . . .) =

 |λ|∏
i=1

1

1− qi

 ∑
T∈ST(λ)

qmaj(T ),

see [Sta99, Proposition 7.19.11].

1.3. Cumulants of the major index. The starting point of the argument of [BKS20] is the fol-
lowing important remark, which is based on earlier works by Chen–Wang–Wang [CWW08] and
by Hwang–Zachavoras [HZ15]. Given T ∈ ST(λ), set X(T ) = maj(T ) − b(λ), and consider the
generating series of this statistics:∑

T∈ST(λ)

qX(T ) =

∏|λ|
i=1(1− qi)∏

@∈λ(1− qh(@))
.

We obtain a product of ratios of q-integers [a]q = 1−qa

1−q
. This leads to simple formulas for the

cumulants of the random variable X(T ) with T ∼ U(ST(λ)). Given a random variable whose
Laplace transform E[ezX ] is convergent on a disk D(0,R) = {z ∈ C | |z| < R} with R > 0, we
recall that the cumulants of X are the coefficients κ(r)(X) of the log-Laplace transform:

logE[ezX ] =
∞∑
r=1

κ(r)(X)

r!
zr in a neighborhood of 0.
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The cumulants of X are related to its moments by a Möbius inversion formula with respect to the
lattice of set partitions:

κ(r)(X) =
∑

π∈P(r)

(−1)ℓ(π)−1 (ℓ(π)− 1)!

ℓ(π)∏
j=1

E[X |πj |]

 ,

the sum running over the setP(r) of set partitions π1⊔π2⊔· · ·⊔πℓ(π) of the integer interval [[1, r]].
This combinatorial formula enables one to define the cumulants of X assuming only that X has
moments of all order. Now, consider a finite set T endowed with the uniform distribution, and a
statistics X : T→ N. The generating function E[qX ] is given by the ratio P (q)

P (1)
, where

P (q) =
∞∑

m=0

∣∣{T ∈ T | X(T ) = m}
∣∣ qm ; P (1) =

∞∑
m=0

∣∣{T ∈ T | X(T ) = m}
∣∣ = |T|.

Lemma 2. Suppose that the polynomial P ∈ Z[q] is given by a ratio of q-integers:

P (q) =

∏l
k=1[bk]q∏l
k=1[ak]q

,

where {a1, . . . , al} and {b1, . . . , bl} are multisets of non-negative integers. Then, X takes its values in
[[0, n]] with n =

∑l
k=1(bk − ak), and for any r ≥ 1,

κ(r)(X) =
Br

r

l∑
k=1

((bk)
r − (ak)

r),

where Br is the r-th Bernoulli number. Consequently, the odd cumulants of X of order larger than 3
vanish.

Proof. Denote cm =
∣∣{T ∈ T | X(T ) = m}

∣∣, so that P (q) =
∑n

m=0 cm qm. By hypothesis, P is a
polynomial of degree n and is the ratio of two polynomials

∏l
k=1(1− qbk) and

∏l
k=1(1− qak) with

degrees
∑l

k=1 bk and
∑l

k=1 ak, so n is equal to the difference of the two sums. Now, the Bernoulli
numbers Br are defined by their generating series

t

1− e−t
=

∞∑
r=0

Br
tr

r!
= 1 + t

∂

∂t

(
∞∑
r=1

Br

r

tr

r!

)
,

so the divided Bernoulli numbers Br

r
have for exponential generating series:
∞∑
r=1

Br

r

tr

r!
= log

(
et − 1

t

)
.

It suffices now to write, for q = ez with z close to 0:

logE[ezX ] =
l∑

k=1

log

(
ezbk − 1

ezak − 1

)
− logP (1)

=
l∑

k=1

log

(
ezbk − 1

zbk

)
− log

(
ezak − 1

zak

)

=
∞∑
r=1

Br

r
zr

(
l∑

k=1

((bk)
r − (ak)

r)

)
.

Since t
1−e−t − t

2
= t coth( t

2
) is an even function, the odd Bernoulli numbers of order 2r + 1 ≥ 3

all vanish. Therefore, κ(2r+1)(X) = 0 for any r ≥ 1. □
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Let us discuss a bit the properties of the generating series φ(z) =
∑∞

r=1
Br

r
zr

r!
= log( e

z−1
z

) of the
divided Bernoulli numbers. We shall also work with

ϕ(z) = φ(z)− z

2
= log

(
sinh z

2
z
2

)
=

∞∑
r=2

Br

r

zr

r!
,

which is an even function. The Bernoulli numbers are related to the Riemann ζ function by the
equation:

Br = 2
(−1) r

2
+1 r!

(2π)r
ζ(r)

for r even. Therefore, |Br| ≃ 4
√
πr
(

r
2πe

)r for r even, and the radius of convergence of the series
φ and ϕ is equal to 2π. Indeed, these series exhibit two singularities at t = ±2iπ. However, the
open disc D(0,2π) is not the whole domain of definition and analyticity of these functions. Indeed,
ϕ′(z) = 1

2
coth z

2
− 1

z
makes sense for any z /∈ 2iπZ, so if z /∈ iR, then we can set

ϕ(z) =

∫ 1

0

(
z

2
coth

tz

2
− 1

t

)
dt.

Thus, the functions φ(z) and ϕ(z) admit analytic extensions to the domain
D0 = C \ (i[2π,+∞) ⊔ i(−∞,−2π]).

In several proofs hereafter, an important property of the domain D0 will be that it is stable by the
operation z 7→ xz for any x ∈ [−1, 1].

2iπ

−2iπ

Figure 1. The domain of definition and analyticity of the series ϕ(z) and φ(z).

With T = ST(λ) andX(T ) = maj(T )− b(λ), the random variableX satisfies the hypotheses of
Lemma 2 with:

|ST(λ)|E[qX ] = P (q) =

∏|λ|
i=1[i]q∏

@∈λ[h(@)]q
.

Therefore, for any r ≥ 1,

κ(r)(maj(T )− b(λ)) =
Br

r

 |λ|∑
i=1

ir −
∑
@∈λ

(h(@))r

 . (1)

A large part of our work will consist in analysing the asymptotics of this combinatorial formula
when λ is a partition of growing size. If the growth of the sequence (λ(n)) is specified a bit more
precisely than in Theorem 1, then it is a possible to write an asymptotic expansion of each r-th
cumulant, which leads to an asymptotic expansion of the scaled log-Laplace transform

logE[ez
maj(T (n))

n ];

see Theorem A. Then, standard arguments of probability theory enable the computation of the
large deviation estimates and of the Kolmogorov distance (see Theorems B and C hereafter).
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1.4. Growing partitions and the Thoma simplex. We are interested in the asymptotic behavior
of the random variablemaj(T ) when the underlying Young diagram λ = λ(n) has size n and grows
to infinity while having a certain limit shape. There are several relevant notions of limit shapes
for Young diagrams; in our setting, the natural assumption is that the rows λ(n)

1 , λ
(n)
2 , . . . and the

columns λ(n)′

1 , λ
(n)′

2 , . . . grow with known asymptotic frequencies (αi)i≥1 and (βi)i≥1:

αi = lim
n→∞

λ
(n)
i

n
; βi = lim

n→∞

λ
(n)′

i

n
.

It is then convenient to introduce the so-called Frobenius coordinates of Young diagrams, and to use
them in order to embed Y =

⊔
n∈N Y(n) in the Thoma simplex. If λ is an integer partition with

size n, its Frobenius coordinates (a1, a2, . . . , ad | b1, b2, . . . , bd) are the two sequences of half-integers
which measure the size of the rows and columns of λ, starting from the diagonal; see Figure 2 for
an example in size 11, with d = 2.

λ =

b2b1

a2

a1 =

(
9

2
,
5

2

∣∣∣∣ 52 , 32
)
.

Figure 2. Frobenius coordinates of the integer partition λ = (5, 4, 2).

By considering the Frobenius coordinates as areas of regions of the Young diagram, it is easy to
see that the sum

∑d
i=1(ai + bi) is equal to the size of the partition λ. The Thoma simplex Ω is

defined as the set of pairs of infinite nonincreasing sequences

Ω =

{
((αi)i≥1, (βi)i≥1)

∣∣∣∣ α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0,
∞∑
i=1

(αi + βi) ≤ 1

}
.

This infinite-dimensional simplex plays an important role in the asymptotic representation theory
of the symmetric groups, because it parametrises the extremal characters of S(∞); see [Tho64;
KV81] and [Mél17, Theorem 11.31]. Any integer partition λ = (a1, . . . , ad | b1, . . . , bd) with size
n ≥ 1 can be seen as an element of the Thoma simplex, by associating to it the pair ωλ = (α, β)
with

α =
(a1
n
,
a2
n
, . . . ,

ad
n
, 0, 0, . . .

)
; β =

(
b1
n
,
b2
n
, . . . ,

bd
n
, 0, 0, . . .

)
.

We call growing a sequence of integer partitions (λ(n))n≥1 with |λ(n)| = n for any n ≥ 1, and we
say that it is convergent if it is growing and if the Thoma parameters ωλ(n) converge coordinatewise
towards a parameterω ∈ Ω. Equivalently, all the rows and columns of the partitions λ(n) rescaled by
a factor 1

n
admit limit frequencies. Notice that the sum of the coordinates of the Thoma parameter

ωλ of an integer partition is always equal to
a1
n

+ · · ·+ ad
n

+
b1
n

+ · · ·+ bd
n

=
n

n
= 1.

By the Fatou lemma, the sum of the coordinates of a limit ω of Thoma parameters of integer
partitions is smaller than 1, and it can be strictly smaller than 1 (consider for instance the case
where λ(n) is a square of size ⌊

√
n⌋ × ⌊

√
n⌋, plus a O(

√
n) additional boxes on its first row; then,

the limit ω is the pair of null sequences).

Lemma 3. Given a sequence (ω(n))n≥1 = (α(n), β(n))n≥1 of Thoma parameters, the following are
equivalent:
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(1) The parameters ω(n) converge coordinatewise towards a parameter ω.

(2) For any k ≥ 2, the k-th moments

pk(ω
(n)) =

∞∑
i=1

(α
(n)
i )k + (−1)k−1

∞∑
i=1

(β
(n)
i )k

converge towards pk(ω).

Proof. Given a parameter ω = (α, β) ∈ Ω, we set γ = 1−
∑∞

i=1(αi + βi). Let M 1([−1, 1]) be the
set of Borel probability measures on [−1, 1], endowed with the topology of weak convergence. By
using standard arguments from the theory of weak convergence of probability measures (see for
instance [Bil99]), it is not difficult to show that the map

Ω→M 1([−1, 1])

(α, β) 7→ µ(α,β) =
∞∑
i=1

αi δαi
+

∞∑
i=1

βi δ−βi
+ γ δ0

is a homeomorphism towards a closed subset ofM 1([−1, 1]). Since [−1, 1] is a compact interval, the
weak convergence of its probability measures is equivalent to the convergence of all the moments.
The result follows since ∫ 1

−1

xk µω(dx) = pk+1(ω)

for any k ≥ 1 and any ω ∈ Ω. □

In the sequel, we denote p1(ω) = 1 for any ω ∈ Ω, and if λ = (a1, . . . , ad | b1, . . . , bd) is an integer
partition with size n = |λ| ≥ 1, we set

pFk (λ) = nk pk(ωλ) =
d∑

i=1

(ai)
k + (−1)k−1

d∑
i=1

(bi)
k.

The pFk with k ≥ 1 are the Frobenius moments; in particular, pF1 (λ) = |λ| = n. One of the main
tool that we shall use is the following:

Theorem 4 (Asymptotics of the cumulants of the major index). Let (λ(n))n≥1 be a growing sequence
of integer partitions; we denote (T (n))n≥1 the associated sequence of random standard tableaux. We have
for any r ≥ 2:

κ(r)(maj(T (n))) =
Br

r(r + 1)
((pF1 )

r+1 − pFr+1) +
Br

2r

(
(pF1 )

r +
r−1∑
s=1

(
r

s

)
(−1)s pFs pFr−s

)
+O(nr−1),

(2)
where pFk = pFk (λ

(n)) = nk pk(ωλ(n)), and where the remainder is uniform with respect to the choice of
a growing sequence.

At first sight, this might seem easy to prove, because the Frobenius coordinates of λ dictate the
geometry of its Young diagram, and because Equation (1) relates the cumulants of maj(T ) to the
hook lengths of the cells of the Young diagram of λ, which also seem to be geometric observables.
Unfortunately, the geometric connection between (a1, . . . , ad | b1, . . . , bd) and {h(@) | @ ∈ λ} is
more subtle than what one might think, for the following reason. If the cell @ is on the i-th row
and j-th column and if it belongs to the square of size d× d in the bottom left corner of λ (i ≤ d
and j ≤ d), then h(@) = ai + bj .

However, if @ does not belong to the bottom left square (and in general this is the case for a large
proportion of boxes), then the relation between h(@) and the Frobenius coordinates is much more
complicated. For instance, if @ = (i, j) satisfies i ≤ d and j > d, then h(@) depends on ai and on
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the part of λ where the connection
between hook lengths and

Frobenius coordinates is clear

Figure 3. The Frobenius coordinates are not directly related to the hook lengths.

which i′ > i satisfy ai′ + i′ + 1
2
≥ j. Thus, the transformation of Equation (1) into Equation (2)

(which is suitable to asymptotic analysis) is not immediate. We shall solve this problem by using
a combinatorial bijection from the theory of integer partitions (see Lemma 10), and by making
calculations in the so-called Kerov–Olshanski algebra of observables.

1.5. Main results and outline of the paper. We are now ready to state our main results regarding
the asymptotic behavior ofmaj(T (n))when T (n) ∼ U(ST(λ(n))) and (λ(n))n≥1 is a growing or con-
vergent sequence of integer partitions. Given a parameter ω ∈ Ω, we denote µω the corresponding
probability measure on [−1, 1] (see Lemma 3), and

Λω(z) =

∫ 1

t=0

∫ 1

x=−1

(ϕ(tz)− ϕ(txz))µω(dx) dt;

Ψω(z) =
1

2

∫ 1

x=−1

∫ 1

y=−1

(
ϕ(z) +

ϕ((y − x)z)− ϕ(yz)− ϕ(−xz)
xy

)
µ⊗2
ω (dx dy).

Theorem A (Asymptotic expansion of the log-Laplace transform). Let (λ(n))n≥1 be a growing
sequence of integer partitions, (T (n))n≥1 the associated sequence of random standard tableaux, and
(µ(n))n≥1 the associated sequence of probability measures on [−1, 1]. IfX(n) = maj(T (n))

n
, then

logE
[
ez (X

(n)−E[X(n)])
]
= nΛω(n)(z) + Ψω(n)(z) + o(1).

The remainder o(1) goes to 0 uniformly with respect to the growing sequence (λ(n))n≥1, and uniformly
on any compact subset of the domain 1

2
D0.

Theorem B (Strong large deviations of the major index). Let (λ(n))n≥1 be a convergent sequence of
integer partitions with associated Thoma parameters (ω(n))n≥1 and limit parameter ω ∈ Ω. We suppose
that ω is not one of the two pairs

ω1 = ((1, 0, . . .), (0, . . .)) ; ω−1 = ((0, . . .), (1, 0, . . .)).

(1) The function Λω is even and strictly convex on R.

(2) Fix a real number

0 < y <
1

4

(
1−

∫ 1

x=−1

xµω(dx)

)
.

We denote Λ∗
ω(n)(y) = suph∈R(hy − Λω(n)(h)) the Legendre–Fenchel conjugate of Λω(n) . There

exists a unique parameter h ∈ (0,+∞) such that y = Λ′
ω(h), and

P[maj(T (n))− E[maj(T (n))] ≥ yn2] =
e−n (Λ

ω(n) )
∗(y)

h
√

2πnΛ′′
ω(h)

eΨω(h) (1 + o(1)).

(3) In particular, with the same assumptions on y and (λ(n))n≥1,

lim
n→∞

logP[maj(T (n))− E[maj(T (n))] ≥ yn2]

n
= −Λ∗

ω(y).
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It will be clear from the proof of Theorem B that similar estimates hold for the probabilities
P[maj(T (n)) − E[maj(T (n))] ≤ −yn2]: with the same assumptions on y, there exists a unique
parameter h− ∈ (−∞, 0) such that h− = Λ′

ω(−y), and we have

P[maj(T (n))− E[maj(T (n))] ≤ −yn2] =
e−n (Λ

ω(n) )
∗(−y)

|h−|
√
2πnΛ′′

ω(h−)
eΨω(h−) (1 + o(1)).

The third part of Theorem B can also be restated as follows: given a convergent sequence (λ(n))n≥1

of integer partitions with limiting parameter ω ∈ Ω \ {ω1, ω−1}, the sequence of random variables
(n−2(maj(T (n))−E[maj(T (n))]))n≥1 satisfies a large deviation principle onRwith speed n and good
rate function Λ∗

ω (see [DZ98, Section 1.2] for the general definition of a large deviation principle).
However, let us remark that we are also able to describe the second order of the probabilities of
large deviations: it is described by the same residue Ψω as in the asymptotic expansion of the log-
Laplace transforms. In the literature, these results are usually called precise, sharp or strong large
deviation estimates.

Remark 5. As explained in Subsection 1.2, the previous results regard for the major index of a
permutation σ(n) taken uniformly at random in a RSK class with growing shape λ(n). Let us then
relate our asymptotic estimates to the case where σ(n) is taken uniformly at random in the whole
symmetric groupS(n). This amounts to first choose at random an integer partition λ(n) according
to the Plancherel measure

P(n)[λ(n)] =
|ST(λ(n))|2

n!
,

and then to take T (n) ∼ U(ST(λ(n))). The asymptotics of the Plancherel measure on integer par-
titions are nowadays well known; see for instance [LS77; KV77; KV81; BDJ99; BOO00; Oko00;
Oko01; IO02]. If one rescales the Young diagram λ(n) ∼ P(n) in both directions by a factor n− 1

2 ,
then this renormalised shape converges towards a continuous limiting curve (Logan–Shepp–Kerov–
Vershik law of large numbers). In particular, the Frobenius coordinates of λ(n) all converge to 0,
so in the Thoma simplex Ω, we have the convergence in probability

λ(n) → ω0 = ((0, 0, . . .), (0, 0, . . .)).

Therefore, one can expect that at least for the first order, the asymptotics ofmaj(σ(n)) with σ(n) ∼
U(S(n)) are described by Theorems A and B, but in the special case where ω = ω0 and µω = δ0 is
the Dirac measure at 0. Thus, one can predict:

logE

[
e
z

(
maj(σ(n))−E[maj(σ(n))]

n

)]
= nΛω0(z) +O(1) = n

∫ 1

t=0

ϕ(tz) dt+O(1).

This is indeed the case, as can be seen by using the following combinatorial argument. The distri-
bution of the statistics maj over the symmetric group S(n) is well known to be the same as the
distribution of the number of inversions inv; see [Foa68; FS78] for a bijective proof of this identity.
By induction on n, it is easy to see that the generating function of the number of inversions is:

E[ezmaj(σ(n))] = E[ez inv(σ(n))] =
n∏

k=1

1 + ez + e2z + · · ·+ e(k−1)z

k
=

n∏
k=1

ekz − 1

k(ez − 1)
.
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Using also the identity E[maj(σ(n))] = n(n−1)
4

, we therefore get:

logE

[
e
z

(
maj(σ(n))−E[maj(σ(n))]

n

)]
=

n∑
k=1

φ

(
kz

n

)
− nφ

( z
n

)
− (n− 1)z

4

=
n∑

k=1

ϕ

(
kz

n

)
− nφ

( z
n

)
+

z

2

= n

∫ 1

t=0

ϕ(tz) dt+
1

2
ϕ(z) +O(n−1).

Here we used the Euler–Maclaurin formula in order to transform a Riemann sum into an integral;
this argument will be used several times throughout the paper, see the proof of Lemma 12 for
the details. We thus recover the expected term of order O(n). The term of order O(1) does not
correspond with

Ψω0(z) =
1

2

(
ϕ(z)− z2

12

)
,

and this is due to the fact that we are not taking into account the fluctuations of the RSK shape of
σ(n) around its limit ω0 (these fluctuations do not cancel when taking the log-Laplace transform,
since it is a non-linear functional of probability measures). However, notice that the computation
above yields an explicit term Ψ(z) with order O(1). So, one can adapt Theorem B and its proof to
the case of maj(σ(n)) with σ(n) ∼ U(S(n)), just by taking this residue Ψ(z) = 1

2
ϕ(z) instead of a

function Ψω(z). So, one obtains the strong large deviations of maj(σ(n)), with an estimate of the
probabilities of large deviations instead of their logarithms. To our knowledge, this result is new.

Theorem C (Kolmogorov distance between the major index and its normal approximation). Let
(λ(n))n≥1 be a growing sequence of integer partitions; we suppose to simplify that

max

(
λ
(n)
1

n
,
λ
(n)′

1

n

)
≤ 1

2

for n ≥ n0 ≥ 4 (in other words, the first row and the first column of λ(n) are not too close to n). Then,
for n ≥ n0,

dKol

(
maj(T (n))− E[maj(T (n))]√

var(maj(T (n)))
, N (0, 1)

)
≤ C√

n

for some universal constant C ≤ 30.

Although Theorems B and C are not directly related, a control on the Kolmogorov distance
between an exponentially tilted version of maj(T (n)) and its normal approximation will be an
important step towards the proof of the strong large deviation estimates. We close our introduction
by making several remarks, and by giving a short outline of the proofs our our main results.

Remark 6. Taking the exponential of the asymptotic expansion given by Theorem A, we get:

E
[
ez(X

(n)−E[X(n)])
]
= enΛω(z) eΨω(z) (1 + o(1)).

Informally, this can be understood as follows: as n goes to infinity, the centered random variable
X(n) − E[X(n)] is approximated by the sum of n independent and identically distributed random
variables with Laplace transform eΛω(z), plus some remainder which is encoded in the Laplace sense
by the multiplicative residue eΨω(z). This viewpoint is the one of mod-ϕ convergent sequences of
random variables, and this framework has been explored in particular in [JKN11; KN12; DKN15;
FMN16; FMN19; Chh+20]. An important assumption in these works is that eΛω(z) is the Laplace
transform of an infinitely divisible distribution, for instance a Poisson orGaussian distribution. For
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the major index of a random standard tableau, the same ideas apply, but eΛω(z) is not anymore the
Laplace transform of a probability distribution (see Remark 25). Thus, we obtain our strong large
deviation results by comparing in the Laplace sense a random variableX(n) and something which is
not a random variable, but which plays an analogous role in the computations. We believe that this
idea is of independent interest, and that it could lead to important extensions of the aforementioned
framework of mod-ϕ convergent sequences.

Remark 7. Theorem 1 relies on the analysis of Equation (1): indeed, this formula implies that the
cumulants of order r ≥ 3 of the rescaled random major indices go to 0 as n goes to infinity, as
long as the first row or first column of λ = λ(n) does not contain almost all the cells. On the other
hand, the theory of mod-Gaussian sequences admits a formulation in terms of upper bounds on the
cumulants, see [FMN16, Section 9] and [FMN19, Sections 4-5]. So, it is natural to find the usual
results from the theory of mod-ϕ sequences (Berry–Esseen estimates and strong large deviations)
in the setting of random standard tableaux and their major indices. This also explains why we shall
start our analysis by looking in details at the cumulants κ(r)(maj(T (n))); although one could work
directly with the log-Laplace transforms, it is much easier to first analyse the coefficients of these
generating series, and then to resum them (see Remark 14).

Remark 8. In [BS20], several extensions of Theorem 1 are proven for other statistics of other ran-
dom combinatorial objects, and in particular for the rank of a random semistandard tableau (semi-
standard means that the rows of the tableau are only weakly increasing, and therefore that one
allows repetitions in the entries of the tableau). As the formula for the generating function of this
statistics has a form very similar to the form of the generating series of the major index of a random
standard tableau, it is almost certain that our main results have direct analogues in this setting, and
with similar proofs.

The steps of the proof of our main results are the following:
• We relate the cumulants of maj(T ) to several other observables of the integer partition λ,
in particular the Frobenius moments (Subsection 2.2) and the power sums of the contents
(Subsection 2.3). This enables one to prove that κ(r)(maj(T )) is an observable of λ in the
sense of Kerov and Olshanski, and to determine the asymptotic behavior of each cumulant,
thereby proving Theorem 4 (Subsection 2.4).
• Theorem C is then an easy consequence of the asymptotics of cumulants and of a general
result relating the growth of the cumulants to the distance to the Gaussian distribution
[FMN19, Corollary 30]; see Subsection 3.2.
• We resum the limits of the cumulants, and we prove that the limiting functions are the ones
that appear in Theorem A (Subsection 3.1). We also show that the asymptotic estimates of
the log-Laplace transforms hold not only on a disc of convergence of the power series ϕ(z)
and φ(z), but in fact on the domain 1

2
D0.

• Finally, in Subsection 3.3, given a convergent sequence (λ(n))n≥1 with limiting parameter
ω ∈ Ω, we study the behavior of the false Laplace transform eΛω(z) on a line z = h + iξ
with h ̸= 0 fixed and ξ ∈ R. We choose the parameter h so that the random variable
X̃(n) obtained from X(n) by an exponential tilting with strength h has its mean close to
E[X(n)] + ny instead of E[X(n)], and we prove a central limit theorem with explicit Berry–
Esseen estimate for the tilted random variable X̃(n). This central limit theorem leads to our
Theorem B by standard arguments from the theory of large deviations.
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2. Observables of integer partitions

In this section, λ = λ(n) is an integer partition of size n, and we aim to prove Theorem 4
by rewriting the equation for cumulants (1) in the Kerov–Olshanski algebra O of observables of
integer partitions. We refer to [KO94; IO02] and [Mél17, Chapter 7] for details on this algebra,
which plays a major role in the asymptotic representation theory of symmetric groups and in the
study of related models of large (random) integer partitions; see also [OO98] for the connection
with shifted symmetric functions, and [IK99] for the realisation of O as a subalgebra of the algebra
of partial permutations. We shall mostly use the basis of Frobenius moments (pFµ)µ∈Y of O , but in
order to deal with the power sums of contents (p@

µ)µ∈Y, it will be convenient to also work with the
canonical basis of renormalised character values (Σµ)µ∈Y (see Subsection 2.3).

2.1. Cumulants and the Kerov–Olshanski algebra. We denote O the algebra of functions from
Y =

⊔
n∈N Y(n) to R which is spanned algebraically by the Frobenius moments pFk with k ≥ 1.

By [IO02, Proposition 1.5], the Frobenius moments are algebraically independent, so if

pFµ = pFµ1
pFµ2
· · · pFµℓ

for any integer partition µ = (µ1, µ2, . . . , µℓ) ∈ Y, then (pFµ)µ∈Y forms a linear basis of O . In the
following, the elements of O will be called observables of Young diagrams or integer partitions. We
endow O with the gradation deg pFµ = |µ|; then, O becomes a graded algebra, which is isomorphic
to the graded algebra Sym of symmetric functions (see [Mac95, Chapter I]): a natural isomorphism
consists in sending each Frobenius moment pFµ to the corresponding product of Newton power
sums pµ. Theorem 4 admits then the following reformulation:

Theorem 9 (The cumulants belong to the algebra of observables). For r ≥ 2, the r-th cumulant of
the statistics maj(T ) with T uniformly chosen in ST(λ) is an element of the algebra of observables O .
Moreover, deg κ(r)(maj(T )) = r+1, and the terms with degree r+1 and r in κ(r)(maj(T )) are given
by the formula of Theorem 4.

Note that Theorem 9 immediately implies the uniform remainder O(nr−1) in Theorem 4. Indeed,
for any λ(n) ∈ Y(n), pFµ(λ(n)) = n|µ| pµ(ωλ(n)) for any µ ∈ Y, and on the other hand, |pµ(ω)| ≤ 1

for any ω ∈ Ω and any µ ∈ Y. So, if the terms with degree smaller than r − 1 in κ(r)(maj(T ))
write explicitly as ∑

|ν|≤r−1

cν p
F
ν ,

then the evaluation of this remainder on an integer partition λ(n) ∈ Y(n) is bounded from above
by  ∑

|ν|≤r−1

|cν |

 nr−1,

so it is a uniform O(nr−1), regardless of the choice of an integer partition λ(n).

The starting argument of the proof of Theorem 9 is the following:

Lemma 10. For any integer partition λ with length smaller than n, we have the equality of multisets:

{h(@), @ ∈ λ} ⊔ {λi − λj + j − i, 1 ≤ i < j ≤ n}
= {n+ c(@), @ ∈ λ} ⊔ {1(n−1), 2(n−2), . . . , (n− 1)}.

where a(b) denotes the sequence with b values equal to a.
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Proof. This identity is one of the main argument of the proof of the Stanley hook length formula;
see for instance [Mél17, Proposition 4.63]. □

As a consequence, for any r positive integer and any integer partition λ with size n, we can
rewrite ∑

@∈λ

(h(@))r =
∑
@∈λ

(n+ c(@))r +
n∑

i=1

(n− i) ir −
∑

1≤i<j≤n

(λ∗
i − λ∗

j)
r

where λ∗
i = λi − i+ 1

2
is the i-th descent of λ. So, Equation (1) becomes

κ(r)(maj(T )− b(λ)) =
Br

r

( ∑
1≤i<j≤n

(λ∗
i − λ∗

j)
r −

∑
@∈λ

(n+ c(@))r −
n∑

i=1

(n− i− 1) ir

)
. (3)

Let us also write the consequence of Lemma 10 for the log-Laplace transform of maj(T ), without
extraction of its coefficients.

Proposition 11. For any integer partition λ with size n ≥ 1 and any z such that 2z ∈ D0,

logE
[
ez

maj(T )
n

]
=

b(λ) z

n
+

∑
1≤i<j≤n

φ

(
(λ∗

i − λ∗
j)z

n

)
−
∑
@∈λ

φ

((
1 +

c(@)
n

)
z

)
−

n∑
k=1

(n− k − 1)φ

(
kz

n

)
,

where T ∼ U(ST(λ)).

Proof. The assumption 2z ∈ D0 ensures that both sides of the formula are well defined, since
λ∗
i − λ∗

j ≤ 2n for any pair (i, j), and n+ c(@) ≤ 2n for any cell @ ∈ λ. Set y = z
n
. We have

E[eymaj(T )] =
eb(λ) y

|ST(λ)|

∏n
k=1(e

ky − 1)∏
@∈λ(e

h(@) y − 1)
= exp

(
b(λ) y +

n∑
k=1

φ(ky)−
∑
@∈λ

φ(h(@)y)

)

by using the hook length formula |ST(λ)| =
∏n

k=1 k∏
@∈λ h(@)

. As before, the result follows by replacing
the sum over hook lengths by three sums involving the integers k ∈ [[1, n]], the contents of the cells
of λ and the descent coordinates. □

In order to prove Theorem 9, it suffices to treat the case of even cumulants, as the odd cumulants
vanish. The cumulants of order r ≥ 2 are invariant by translation, so κ(r)(maj(T ) − b(λ)) =
κ(r)(maj(T )). For any even integer r ≥ 2, set

αr =
1

2

∑
1≤i,j≤n

(λ∗
i − λ∗

j)
r ; βr =

∑
@∈λ

(n+ c(@))r ; γr =
n∑

i=1

(n− i− 1) ir.

The even cumulant κ(r)(maj(T )) is proportional to αr − βr − γr, and we shall analyse separately
these quantities. We shall also work with the following holomorphic functions on 1

2
D0:

α(z) =
b(λ) z

n
+

∑
1≤i<j≤n

φ

(
(λ∗

i − λ∗
j)

n
z

)
;

β(z) =
∑
@∈λ

φ

((
1 +

c(@)
n

)
z

)
;

γ(z) =
n∑

k=1

(n− k − 1)φ

(
kz

n

)
.
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We have logE[ez
maj(T )

n ] = α(z) − β(z) − γ(z), and for r ≥ 2, the r-th coefficient of the Taylor
expansion of α(z) at z = 0 is equal to Br

r
αr

nr , and similarly for the functions β(z) and γ(z).

In the sequel, if k ∈ N and z ∈ C, we denote z↓k the falling factorial z(z−1)(z−2) · · · (z−k+1).
Note that the term γr is easy to compute: we have

δr =
n∑

i=1

ir =
nr+1

r + 1
+

r∑
s=1

Bs

s!
r↓s−1 nr+1−s =

(pF1 )
r+1

r + 1
+

r∑
s=1

Bs

s!
r↓s−1 (pF1 )

r+1−s

for r ≥ 1, and γr = (n − 1) δr − δr+1 = (pF1 − 1) δr − δr+1. Therefore, γr is an observable with
degree r + 2, and we have the following expansion with respect to the degree for r ≥ 2:

γr =
(pF1 )

r+2

(r + 1)(r + 2)
− (pF1 )

r+1

r + 1
− 7 (pF1 )

r

12
+ terms of degree smaller than r − 1. (γ )

In order to prove Theorem A, we shall also use the following control of the function γ(z).

Lemma 12. If z ∈ D0, then ∣∣∣∣γ(z)− ∫ 1

t=0

(n2(1− t)− n)φ(tz) dt

∣∣∣∣
is locally uniformly bounded.

Proof. The Euler–Maclaurin formula ensures that for f smooth function on [0, n],
n∑

k=1

f(k) =

∫ n

0

f(x) dx+
f(n)− f(0)

2
+

f ′(n)− f ′(0)

12
+O(n∥f ′′∥∞),

with a universal constant in the O(·). With f(x) = (n− x− 1)φ(xz
n
), ∥f ′′∥∞ is a O(n−1), with a

uniform constant in theO(·) if z stays in a compact subsetK of D0. Indeed, if x ∈ [−1, 1], then the
scaled parameter xz also stays in a compact subsetK ′ of D0; see Figure 4, whereK is in purple and
K ′ \K is in blue. The result follows now immediately by making the change of variable x = nt in

2iπ

−2iπ

K

Figure 4. If K is a compact subset of D0, then [−1, 1]K = K ′ is also a compact
subset of D0.

the main term of the Euler–Maclaurin formula. □
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2.2. Descents and Frobenius moments. Given an integer partition λ, let us denote A(λ) =
(a1, . . . , ad) and B(λ) = (−b1, . . . ,−bd), so that pFr (λ) =

∑
x∈A(λ) x

r −
∑

x∈B(λ) x
r. The signed

Frobenius coordinates are related to the set of descent coordinates D(λ) = {λi − i + 1
2
, i ≥ 1} =

{λ∗
i , i ≥ 1} by the relations:

A(λ) = Z′
+ ∩D(λ) ; B(λ) = Z′

− \ (Z′
− ∩D(λ)),

where Z′ = Z+ 1
2
is the set of half-integers; see [IO02, Proposition 1.1]. These relations are obvious

if one draws the Young diagram λ with the Russian convention, that is to say rotated by 45 degrees
and with cells of area 2: see Figure 5.

Figure 5. The descent coordinates of the integer partition λ = (5, 4, 2).

As a consequence,

pFr (λ) =
∑
i≥1

(
λi − i+

1

2

)r

−
(
−i+ 1

2

)r

;

see [IO02, Proposition 1.4]. Therefore, for r ≥ 2 even, the term αr admits the following expansion
in terms of the Frobenius moments and of the sums δ∗r =

∑n
i=1(i−

1
2
)r:

αr =
1

2

r∑
s=0

(
r

s

)
(−1)r−s

(
n∑

i=1

(λ∗
i )

s

)(
n∑

j=1

(λ∗
j)

r−s

)

=
1

2

r∑
s=0

(
r

s

)
(−1)r−s(pFs + (−1)sδ∗s)(pFr−s + (−1)r−sδ∗r−s)

=
1

2

r∑
s=0

(
r

s

)
((−1)s pFs pFr−s + (−1)s δ∗s δ∗r−s + 2 δ∗s p

F
r−s).

Obviously, δ∗r =
∑r

s=0

(
r
s

)
(−1

2
)r−s δs, so the formula above proves that αr belongs to the algebra

O . Moreover, it is of degree r + 2, and we obtain its leading terms:

αr =
(pF1 )

r+2

(r + 1)(r + 2)
+

1

2

r∑
s=0

(
r

s

) (
2(pF1 )

s+1 pFr−s

s+ 1
+ (−1)s pFs pFr−s

)
− (pF1 )

r

12
+ · · · (α)

by computing some combinatorial sums, for instance
∑r

s=0

(
r
s

) (−1)s

(s+1)(r−s+1)
= 2

(r+1)(r+2)
for r even.

The remainder is an observable with degree smaller than r−1, for any r ≥ 2. The following lemma
is the corresponding control of the function α(z):

Lemma 13. If z ∈ 1
2
D0, then∣∣∣∣α(z)− ∫ 1

t=0

∫ 1

x=−1

(
n2(1− t)φ(tz) + n

φ((x+ t)z)− φ(tz)

x

)
µ(n)(dx) dt

∣∣∣∣ ,
is locally uniformly bounded, independently from the growing sequence (λ(n))n≥1.
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Proof. First, let us remove the linear terms from α and φ. We have

b(λ) +
1

2

∑
1≤i<j≤n

(λ∗
i − λ∗

j) =
1

2

(
n∑

i=1

(n− 1)λi +
∑

1≤i<j≤n

(j − i)

)

=
n(n− 1)

2
+

n(n− 1)(n+ 1)

12
=

n3

12
+

n2

2
− 7n

12
,

and on the other hand,

B1

∫ 1

t=0

∫ 1

x=−1

(
n2(1− t) tz + n z

)
µ(n)(dx) dt =

n2z

12
+

nz

2
,

so the lemma is equivalent to the locally uniform boundedness of

α(z)−
∫ 1

t=0

∫ 1

x=−1

(
n2(1− t)ϕ(tz) + n

ϕ((x+ t)z)− ϕ(tz)

x

)
µ(n)(dx) dt

with α(z) = 1
2

∑
1≤i,j≤n ϕ(

(λ∗
i−λ∗

j )z

n
). We now consider the interval of half-integers

In =

{
−n+

1

2
,−n+

3

2
, . . . ,−1

2

}
,

which contains n entries. If F (λ) = A(λ) ⊔ B(λ) and Dn = {λi − i + 1
2
, 1 ≤ i ≤ n}, then

by the discussion at the beginning of this paragraph, Dn is the symmetric difference (F (λ))∆(In).
Therefore, for any even function G,∑

x,y∈Dn

G(y − x) =
∑
x,y

1x∈Dn1y∈Dn G(y − x)

=
∑
x,y

(1x∈F + 1x∈In − 2 1x∈B)(1y∈F + 1y∈In − 2 1y∈B)G(y − x)

=
∑
x,y

(1x∈A + 1x∈In − 1x∈B)(1y∈A + 1y∈In − 1y∈B)G(y − x)

=
∑
x,y∈F

sgn(xy)G(y − x) + 2
∑

x∈F, y∈In

sgn(x)G(y − x) +
∑

x,y∈In

G(y − x). (4)

With G(t) = 1
2
ϕ( tz

n
), the first term of (4) rewrites as∑

x,y∈F

sgn(xy)G(y − x) =
1

2

∫ 1

x=−1

∫ 1

y=−1

ϕ((y − x)z)

xy
µ(n),⊗2(dx dy)

=
1

2

∫ 1

x=−1

∫ 1

y=−1

ϕ((y − x)z)− ϕ(yz)− ϕ(−xz)
xy

µ(n),⊗2(dx dy),

by using on the second line the vanishing of
∫ 1

−1
1
x
µ(n)(dx), which comes from the fact that λ has the

same number of positive and negative Frobenius coordinates. The double integral above is involved
in theO(1) term of the asymptotics of the log-Laplace transform; let us just explain why it is locally
uniformly bounded with respect to the variable z. We are integrating against a probability measure
on [−1, 1]2 the function

G(x, y, z) =


ϕ(z(y−x))−ϕ(zy)−ϕ(−zx)

xy
if xy ̸= 0,

1
y2

(
1− zy

2
coth zy

2

)
if x = 0 and y ̸= 0,

1
x2

(
1− zx

2
coth zx

2

)
if x ̸= 0 and y = 0,

− z2

12
if x = y = 0,
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which is continuous on [−1, 1]2 × D0. Therefore, if z stays in a compact subset K of D0, then
G(x, y, z) is uniformly bounded by some constant C(K) (continuous function on a compact), and
the integral

∫∫
[−1,1]2

G(x, y, z)µ(n),⊗2(dx dy) is also bounded by C(K).

We now deal with the two remaining terms of Equation (4). We have

2
∑

x∈F, y∈In

sgn(x)G(y − x) =

∫ 1

x=−1

( ∑
y∈−In

ϕ((x+ y
n
)z)

x

)
µ(n)(dx)

= n

∫ 1

t=0

∫ 1

x=−1

ϕ((x+ t)z)

x
µ(n)(dx) dt+O(n−1).

Indeed, the sum over half-integers in−In is a Riemann sumwithmiddle points, and for any smooth
function f on [0, 1], ∣∣∣∣∣ ∑

y∈−In

f
(y
n

)
− n

∫ 1

0

f(t) dt

∣∣∣∣∣ ≤ ∥f ′′∥∞
24n2

.

We use this estimate with f(t) = ϕ((x+ t)z), and the remainder is a uniform O(n−1) if z stays in a
compact subset of D0. By using as before the vanishing of

∫ 1

−1
1
x
µ(n)(dx), we can replace ϕ((x+t)z)

by the differenceϕ((x+t)z)−ϕ(tz), thereby getting the term of ordern in our asymptotic expansion
of α(z). Finally, ∑

x,y∈In

G(y − x) =
n2

2

∫ 1

u=0

∫ 1

v=0

ϕ(|u− v|z) du dv +O(n−1)

by using twice the argument of Riemann sums with middle points, and the even character of the
function ϕ. Since the image of the Lebesguemeasure on the square [0, 1]2 by themap (u, v) 7→ |u−v|
is the density 2(1− t) dt on [0, 1], we thus obtain the term of order n2. □

Remark 14. The integral formula from Lemma 13 can be derived directly from Equation (α) if
|z| < π, by resummation of the series φ. The interest of Lemma 13 lies in the control on the whole
domain 1

2
D0; and the same remark applies to the functions β(z) and γ(z), see Lemmas 12 and 17.

Technically, we could have dealt only with the analytic functions α(z), β(z) and γ(z), but it is very
difficult to guess the correct form of the integrals approximating these functions. For instance, the
term of order n in the control of α(z) can be written as∫ 1

t=0

∫ 1

x=−1

φ((x+ t)z)− φ(tz)

x
µ(n)(dx) dt

or as ∫ 1

t=0

∫ 1

x=−1

(1 + x)φ((1 + x)tz)− φ(tz)− xφ(txz)

x
µ(n)(dx) dt,

and it is almost impossible to guess the correct form without using the cumulants as a guide. In
order to prove that the integrals above are equal, it seems also necessary to expand the power series
φ, which again leads us to the cumulants (in this regard, see the end of the proof of Lemma 17).
Another reason why cumulants are useful is that thanks to the properties of the Kerov–Olshanski
algebra of observables, it is easy to compute the limits of the cumulants and then sum these limits;
and in particular this is much easier than to find directly theO(1) term in the asymptotic expansion
of the log-Laplace transform of the scaled random major index. The validity of the summation of
the limits will be explained in Subsection 3.1.
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2.3. Symmetric functions of the contents. For any r ≥ 1, βr =
∑

@∈λ(n+ c(@))r is a symmetric
function of the contents of the cells of the Young diagram of λ with coefficients in Z[n], so by
[Mél17, Theorem 8.26], it is an observable in the Kerov–Olshanski algebra. In order to compute
its leading terms, let us introduce another combinatorial basis of this algebra, which is based on the
representation theory of the symmetric groups. For any integer partitions λ and µ with respective
sizes n and k, set

Σµ(λ) =

{
n↓k chλ(µ⊔1(n−k))

chλ(1(n))
if n ≥ k,

0 if n < k.

Here, chλ denotes the character of the irreducible representation of the symmetric group S(n)
with label λ; later we shall use the notation

χλ =
chλ(·)

chλ(1(n))

for the normalised irreducible character. The irreducible character chλ can be seen as a function on
the setY(n) of integer partitions of size n (the conjugacy classes of the symmetric groupS(n), and
also as a function from the group algebraCS(n) toC. We refer to [Sag01] and to [Mél17, Chapters
2 and 3] for details on the representation theory of S(n) and the construction of its irreducible
representations. It turns out that the family of symbols (Σµ)µ∈Y, viewed as functions from Y to
R, forms a linear basis of the algebra O . Moreover, degΣµ = |µ| for any integer partition µ, and
Σµ − pFµ has degree smaller than |µ| − 1; see [Mél17, Theorems 7.4 and 7.13].

Proposition 15. Given an integer partition λ and k ≥ 1, we denote

p@
k (λ) =

∑
@∈λ

(c(@))k

the k-th power sum of the contents of the cells of λ. This function is an observable of Young diagrams
with degree k + 1, and for any k ≥ 1,

p@
k =

Σk+1

k + 1
+

1

2

k−1∑
j=1

ΣjΣk−j + terms with degree smaller than k − 1.

Proof. Note that power sums of the contents have been studied extensively in [LT01]; hereafter,
we prove the formula for the leading terms of p@

k by reinterpreting O as the Ivanov–Kerov algebra
of partial permutations [IK99]. Given two finite subsets A and B of N∗ and two permutations
σ ∈ S(A) and τ ∈ S(B), we can define the product of the two pairs (σ,A) and (τ, B) by

(σ,A) (τ, B) = (σ ◦ τ, A ∪B).

This definition gives rise to a semigroup P whose elements are the pairs (σ,A)withA finite subset
of N∗ and σ ∈ S(A). These pairs are called partial permutations, and a filtration of P is provided
by deg(σ,A) = |A|. We continue to denote P the algebra whose elements are the formal linear
combinations of partial permutations with bounded degree. For any integer partition µ with size
k, set

Σµ =
∑

i1 ̸=i2 ̸=···̸=ik

(
(i1, . . . , iµ1)(iµ1+1, . . . , iµ1+µ2) · · · , {i1, . . . , ik}

)
,

the sum running over k-arrangements of positive integers. The linear span of the elements Σµ is
the subalgebra PS(∞) of elements of P which are invariant by the conjugation action of S(∞):

τ · (σ,A) = (τστ−1, τ(A)).
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Then, the identification of the symbols Σµ in PS(∞) and in O gives rise to an isomorphism of
filtered algebras; see [Mél17, Section 7.3]. Let us now introduce the generic Jucys–Murphy elements

X1 = 0 ; Xn≥2 =
n−1∑
i=1

(
(i, n), {i, n}

)
;

they are elements of degree 2 in the algebra P of partial permutations. For any k ≥ 1,

ek(X1, X2, X3, . . . , Xn, . . .) =
∑

µ∈Y(k)

Σµ+1

zµ+1

,

where µ + 1 denotes the integer partition (µ1 + 1, µ2 + 1, . . . , µℓ + 1); see [Mél17, Lemma 8.24].
For any n ≥ 1, the linear map

πn : P → CS(n)

(σ,A) 7→

{
σ if A ⊂ [[1, n]]

0 otherwise

is a morphism of algebras, and it sends PS(∞) to the center Z(CS(n)). We then have, for any
integer partition λ ∈ Y(n),

Σµ(λ) = χλ(πn(Σµ)),

where on the left-hand side we evaluate the observable Σµ on the integer partition λ, and on the
right-hand side we consider the symbol Σµ ∈ PS(∞), project it onto Z(CS(n)) by the map πn,
and then evaluate the normalised irreducible character χλ on this linear combination of conjugacy
classes. Now, if m ≤ n, then πn(Xm) = Jm is a special element of CS(n): this Jucys–Murphy
element acts diagonally on a certain basis (bT )T∈ST(λ) of the irreducible representation ofS(n)with
label λ, and more precisely,

Jm bT = c(m,T ) bT ,

c(m,T ) being the content of the cell labeled m in the standard tableau T ; see [OV04] and [Mél17,
Theorem 8.14]. Therefore, for any k ≥ 1, the elementary symmetric function of the contents

e@
k (λ) =

∑
@1<@2<···<@k

c(@1) c(@2) · · · c(@k)

is an observable in the algebra O (in the formula above, we have fixed an arbitrary total order on
the cells of the Young diagram λ, for instance the one coming from a labeling of the cells by a
standard tableau). Indeed, if we endow the irreducible representation with label λ with the scalar
product for which (bT )T∈ST(λ) is an orthonormal basis, then

e@
k (λ) =

1

dimλ

∑
T∈ST(λ)

∑
m1<m2<···<mk

⟨c(m1, T ) c(m2, T ) · · · c(mk, T ) bT | bT ⟩

=
1

dimλ

∑
T∈ST(λ)

∑
m1<m2<···<mk

⟨Jm1Jm2 · · · Jmk
bT | bT ⟩

= χλ(ek(J1, J2, . . . , Jn)) = χλ(πn(ek(X1, X2, . . .))) =
∑

µ∈Y(k)

Σµ+1(λ)

zµ+1

,

by using the aforementioned expansion of the elementary function of the generic Jucys–Murphy
elements. The relation

pk = (−1)k k
∑

µ∈Y(k)

(−1)ℓ(µ)−1 (ℓ(µ)− 1)!∏
s≥1(ms(µ))!

eµ
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between the power sums pk and the elementary symmetric functions ek in the algebra Sym trans-
lates then to the same relation between the functions p@

k and e@
k , and therefore proves that the

functions p@
k belong to O . Moreover, for the same reason as above,

p@
k (λ) = χλ(πn(pk(X1, X2, . . .))),

so in order to prove the proposition, it now suffices to compute the k-th power sum of the generic
Jucys–Murphy elements. We have

(Xn)
k =

∑
i1,...,ik<n

(
(i1, n)(i2, n) · · · (ik, n), {i1, i2, . . . , ik, n}

)
,

so deg(Xn)
k ≤ k + 1 for any k ≥ 1. More precisely, the elements with degree k + 1 are those such

that i1 ̸= i2 ̸= · · · ≠ ik, and we then have (i1, n)(i2, n) · · · (ik, n) = (n, ik, . . . , i2, i1). Therefore,
the component with degree k + 1 of (Xn)

k is∑
i1,...,ik<n

i1 ̸=i2 ̸=···̸=ik

(
(ik, . . . , i1, n), {i1, . . . , ik, n}

)
.

Similarly, the component with degree k of (Xn)
k is the sum of the product of transpositions

(i1, n), . . . , (ik, n) with exactly one pair (k1, k2) such that 1 ≤ k1 < k2 ≤ k and ik1 = ik2 ; all
the other indices are distinct. Since

(i1, n)(i2, n) · · · (ik1 , n) · · · (ik2 , n) · · · (ik, n) = (ik2−1, . . . , ik1 , . . . , i1, n)(ik, . . . , ik2+1, ik1 , n)

= (ik, . . . , ik2+1, ik1−1, . . . , i1, n)(ik2−1, ik2−2, . . . , ik1)

is a disjoint product of a k− (k2− k1) cycle with a k2− k1 cycle, we see that the terms with degree
k in (Xn)

k are given by:

=
∑

1≤k1<k2≤k

∑
a1 ̸=a2 ̸=···̸=ak−(k2−k1)−1 ̸=b1 ̸=···̸=bk2−k1

ax,by<n

(
(a1, . . . , ak−k2−k1−1, n)(b1, . . . , bk2−k1), {ax, by, n}

)

=
k−1∑
j=1

(k − j)
∑

a1 ̸=a2 ̸=···̸=ak−j−1 ̸=b1 ̸=···̸=bj
ax,by<n

(
(a1, . . . , ak−j−1, n)(b1, . . . , bj), {ax, by, n}

)
.

Let us now take the sum over n ≥ 1 of the terms with degree k + 1 and k. The homogeneous
component with degree k + 1 of pk(X1, X2, . . . , Xn, . . .) is∑

i1 ̸=i2 ̸=···̸=ik ̸=ik+1

ik+1=max(i1,...,ik+1)

(
(ik+1, . . . , i2, i1), {i1, i2, . . . , ik+1}

)
=

Σk+1

k + 1
,

the factor 1
k+1

taking into account the choice of a maximum in a (k + 1)-cycle. Similarly, the
homogeneous component with degree k in pk(X1, X2, . . . , Xn, . . .) is

=
k−1∑
j=1

(k − j)
∑

a1 ̸=a2 ̸=···̸=ak−j−1 ̸=ak−j ̸=b1 ̸=···̸=bj
ak−j is the maximum

(
(a1, . . . , ak−j−1, ak−j)(b1, . . . , bj), {ax, by}

)

=
1

2

k−1∑
j=1

Σ(j,k−j),

with by convention Σ(j,k−j) = Σ(k−j,j) if j < k
2
. Indeed, the factors (k − j) are compensated by

the choice of a maximum in one cycle, and the factor 1
2
corresponds to the choice of one of the

two cycles which contains the maximum. Notice that Σ(j,k−j) − ΣjΣk−j has degree smaller than
k−1; this follows from a more general rule for the product of symbolsΣµ, see [Mél17, Proposition
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7.6]. The claimed formula for the leading terms of p@
k is now obtained by using the projection πn

of PS(∞) onto Z(CS(n)) and the evaluation of a normalised irreducible character χλ. □

Corollary 16. For any k ≥ 1,

p@
k =

pFk+1

k + 1
+ terms with degree smaller than k − 1.

Proof. This follows immediately from Proposition 15 and from the following expansion of the
symbols Σk in the basis of Frobenius moments: for any k ≥ 2,

Σk = pFk −
k

2

k−2∑
j=1

pFj p
F
k−1−j + terms with degree smaller than k − 2.

Let us explain the origin of this formula.The Frobenius–Schur formula for the characters of the
symmetric group leads to the following explicit formula for Σk(λ), which is due to Wassermann
(see [Was81] and [Mél17, Proof of Theorem 7.13]):

Σk(λ) = [z−1]

(
−1

k

(
z − 1

2

)↓k n∏
i=1

z − (−i+ 1
2
)

z − (λi − i+ 1
2
)

n∏
i=1

z − k − (λi − i+ 1
2
)

z − k − (−i+ 1
2
)

)
.

The right-hand side rewrites as:

− 1

k

(
z − 1

2

)↓k

exp

(
∞∑
j=1

pFj
j zj

(
1− 1

(1− k
z
)j

))

= −1

k

(
z − 1

2

)↓k

exp

(
−

∞∑
j=1

∞∑
m=1

(
j +m− 1

m

)
pFj k

m

j zj+m

)
.

Set cj,m = −
(
j+m−1

m

)
km

j
. We have

−1

k

(
z − 1

2

)↓k

=
k−1∑
l=0

(−1)l−1el(
1
2
, 3
2
, . . . , 2k−1

2
)

k
zk−l,

so

Σk =
∞∑
r=1

k−1∑
l=0

(−1)l−1el(
1
2
, 3
2
, . . . , 2k−1

2
)

k r!

∑
k+1−l=j1+m1+···+jr+mr

j1,m1,...,jr,mr≥1

cj1,m1 · · · cjr,mr

(
r∏

s=1

pFjs

)
.

Let us now extract the terms with the highest degree:
• the maximum degree is obtained when r = 1, l = 0, j1 = k and m1 = 1. We then get

(−1)−1

k
ck,1 p

F
k = pFk .

• the terms with degree k − 1 are obtained when r = 1, l = 0, j1 = k − 1 andm1 = 2; when
r = 1, l = 1, j1 = k − 1 and m1 = 1; and also when r = 2, l = 0, j1 + j2 = k − 1 and
m1 = m2 = 1. We get respectively

(−1)−1

k
ck−1,2 p

F
k−1 =

k2

2
pFk−1;

(−1)0 e1(12 ,
3
2
, . . . , 2k−1

2
)

k
ck−1,1 p

F
k−1 = −

k2

2
pFk−1;

and the sum over indices j ∈ [[1, k − 2]] of
(−1)−1

2k
cj,1 ck−1−j,1 p

F
j p

F
k−1−j = −

k

2
pFj p

F
k−1−j.
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Taking the sum of these terms ends the proof of our corollary. □

The corollary above implies that

βr =
r∑

s=0

(
r

s

)
(pF1 )

s pFr+1−s

r + 1− s
+ terms with degree smaller than r − 1. (β )

The following lemma is the corresponding control on β(z):

Lemma 17. If z ∈ 1
2
D0, then∣∣∣∣β(z)− n

∫ 1

t=0

∫ 1

x=−1

(
φ(txz) +

φ((x+ t)z)− φ(tz)

x

)
µ(n)(dx) dt

∣∣∣∣ ,
is locally uniformly bounded, independently from the growing sequence (λ(n))n≥1.

Proof. Recall that β(z) =
∑

@∈λ φ((1 +
c(@)
n
)z). We split this sum in 2d parts, according to which

hook with size ai + bi and based at the i-th cell of the diagonal of λ contains @:

β(z) =
d∑

i=1

1

2
f(0) +

ai− 1
2∑

k=1

f

(
k

n

)+
d∑

i=1

1

2
f(0) +

bi− 1
2∑

k=1

f

(
−k

n

) ,

with f(t) = φ((1 + t)z). For any i ∈ [[1, d]], we have∫ 1

0

ai f

(
ait

n

)
dt =

∫ ai

0

f
(u
n

)
du =

∫ 1
2

0

f
(u
n

)
du+

ai− 1
2∑

k=1

∫ k+ 1
2

k− 1
2

f
(u
n

)
du

=
1

2
f(0) +

ai− 1
2∑

k=1

f

(
k

n

)
+O

(
∥f ′∥∞
n

+
ai∥f ′′∥∞

n2

)
,

and similarly for the parameters bi. As a consequence,

β(z) = n

∫ 1

t=0

∫ 1

x=−1

φ((1 + xt)z)µ(n)(dx) dt+O(1)

with a locally uniformly bounded remainder. Let us then show that the integral is the same as the
integral of the statement of the lemma. Since both integrals are holomorphic functions on 1

2
D0, it

suffices to prove the equality on a small disc containing 0, and then we can expand the power series
φ. We have:

I1 =

∫ 1

t=0

∫ 1

x=−1

φ((1 + xt)z)µ(n)(dx) dt

=
∞∑
r=1

Br

r

zr

r!

∫ 1

t=0

∫ 1

x=−1

(1 + xt)r µ(n)(dx) dt

and

I2 =

∫ 1

t=0

∫ 1

x=−1

(
φ(txz) +

φ((x+ t)z)− φ(tz)

x

)
µ(n)(dx) dt

=
∞∑
r=1

Br

r

zr

r!

∫ 1

t=0

∫ 1

x=−1

(
(tx)r +

(x+ t)r − tr

x

)
µ(n)(dx) dt,

so we have to show that for any r ≥ 1,∫ 1

t=0

∫ 1

x=−1

(1 + xt)r µ(n)(dx) dt =

∫ 1

t=0

∫ 1

x=−1

(
(tx)r +

(x+ t)r − tr

x

)
µ(n)(dx) dt.
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The first integral is equal to
∑r

s=0

(
r
s

)pr+1−s(ω(n))
r+1−s

, and the second integral is

pr+1(ω
(n))

r + 1
+

r−1∑
s=0

(
r

s

)
pr−s(ω

(n))

s+ 1
,

so the identity simply comes from
(
r
s

)
1

s+1
=
(

r
s+1

)
1

r−s
. □

2.4. Asymptotics of the cumulants. We can now proceed to:

Proof of Theorems 4 and 9. The previous arguments have shown that for r even, αr, βr and γr are
observables of the Young diagram λ; therefore, the same is true for κ(r)(maj(T )) = Br

r
(αr−βr−γr).

Moreover, by taking the adequate linear combination of the three equations (α), (β ) and (γ ), we
get:

r

Br

κ(r)(maj(T )) =
(pF1 )

r+1 − pFr+1

r + 1
+

1

2

(
(pF1 )

r +
r−1∑
s=1

(
r

s

)
(−1)s pFs pFr−s

)
+ · · ·

where the dots indicate terms with degree smaller than r − 1. So, the terms with degree r + 2
disappear, and the terms with degree r + 1 and r simplify as indicated above. □

Example 18. By using a computer algebra system, we can compute:

κ(2)(maj(T )) =
1

36
(Σ1(3) −Σ3) =

1

36

(
(pF1 )

3 − pF3 −
3

2
(pF1 )

2 +
3

4
pF1

)
.

Remark 19. The expectation ofmaj(T ) (first cumulant) can also be written as an observable of the
integer partition λ. Indeed,

E[maj(T )] = b(λ) +
1

2

(
n∑

i=1

i−
∑
@∈λ

h(@)

)

=
n∑

i=1

(i− 1)λi +
1

2

( ∑
1≤i<j≤n

(λi − λj + j − i)−
∑
@∈λ

(n+ c(@))−
n∑

i=1

(n− i− 1) i

)

=
n∑

i=1

(i− 1)λi +
1

2

( ∑
1≤i<j≤n

(λi − λj)−
n(n− 1)

2
− 1

2
pF2 (λ)

)

=
n− 1

2

(
n∑

i=1

λi

)
− n(n− 1)

4
− 1

4
pF2 (λ) =

n(n− 1)

4
− 1

4
pF2 (λ),

so κ(1)(maj(T )) = 1
4
((pF1 )

2 − pF2 − pF1 ) =
1
4
(Σ1(2) −Σ2).

Remark 20. The calculation of the previous remark allows one to compute the range of maj(T )
when T runs over ST(λ). Indeed, by Lemma 2,

0 ≤ maj(T )− b(λ) ≤
n∑

i=1

i−
∑
@∈λ

h(@),

which can be rewritten as:
b(λ) ≤ maj(T ) ≤ 2E[maj(T )]− b(λ).

The left-hand is
∑ℓ(λ)

i=1 (i− 1)λi, and the right-hand side can be rewritten as n(n−1)
2
−
∑ℓ(λ)

i=1
λi(λi−1)

2
,

for instance by using the identity Σ2 = 2 p@
1 .

The upper bounds computed in Lemmas 12, 13 and 17 can also be combined in order to get:
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Theorem 21 (Control of the log-Laplace transform). On the domain 1
2
D0, the analytic function

logE
[
e

z maj(T (n))
n

]
− n

∫ 1

t=0

∫ 1

x=−1

(φ(tz)− φ(txz))µ(n)(dx) dt

is locally uniformly bounded, independently from the growing sequence (λ(n))n≥1.

3. Asymptotics of the distribution of maj(T )

In this section, we prove our main Theorems A, B and C by using the controls on the cumulants
and on the log-Laplace transform provided by Theorems 4 and 21. Our techniques are inspired
by the framework of mod-ϕ convergent sequences developed in [JKN11; KN12; DKN15; FMN16;
FMN19; BMN19; MN22]. However, the knowledge of this general framework is not required, and
hereafter, we shall give ad hoc proofs of the asymptotic estimates satisfied by the distribution of
maj(T (n)) with T (n) ∼ U(ST(λ(n))).

3.1. Asymptotics of the log-Laplace transform. The proof of Theorem A relies on a resumma-
tion of the estimates of the cumulants, and on the following argument from complex analysis.

Lemma 22. Let (fn)n≥1 be a sequence of holomorphic functions on a domain D (connected open subset
of the complex plane C), such that (fn)n≥1 converges to 0 on an open subset D ′ ⊂ D . We also suppose
that (fn)n≥1 is uniformly bounded on any compact subset of D . Then, (fn)n≥1 converges to 0 locally
uniformly on D .

Proof. By theMontel theorem, (fn)n≥1 is sequentially compact onD , and any limit of a convergent
subsequence (fnk

)k≥1 vanishes on D ′, hence on the whole domain D by the principle of analytic
continuation. So, the limit of convergent subsequences is unique, which proves that (fn)n≥1 con-
verges to the zero function on D . □

Lemma 23. Given a domain D ⊂ C, we denote O(D) the space of holomorphic functions on this
domain, endowed with the Montel topology of locally uniform convergence. The maps

Λ : Ω→ O

(
1

2
D0

)
and Ψ : Ω→ O

(
1

2
D0

)
ω 7→ Λω ω 7→ Ψω

are continuous with respect to this topology and to the topology of convergence of coordinates in the
Thoma simplex Ω.

Proof. Let us treat for instance the case of Λ. We compose the following continuous maps:

(1) the map ω ∈ Ω 7→ µω ∈M 1([−1, 1]) introduced during the proof of Lemma 3;

(2) the map µ ∈M 1([−1, 1]) 7→ µ⊗ dt ∈M 1([−1, 1]× [0, 1]);

(3) the integration map

F : M 1([−1, 1]× [0, 1])→ O

(
1

2
D0

)
ν 7→

∫
[−1,1]×[0,1]

(ϕ(tz)− ϕ(txz)) ν(dx dt).
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Let us detail the last item. For z fixed in 1
2
D0, ν 7→ F (ν)(z) is continuous from M 1([−1, 1]× [0, 1])

to C, by definition of the weak topology of convergence of probability measures. By the same
argument as in the proof of Lemma 13, if z stays in a compact subset K ⊂ 1

2
D0, then there is a

uniform bound on

{(ϕ(tz)− ϕ(txz)) | z ∈ K, t ∈ [0, 1], x ∈ [−1, 1]},
and therefore on {F (ν)(z) | z ∈ K, ν ∈M 1([−1, 1]× [0, 1])}. The Montel compactness principle
ensures then the global continuity of ν 7→ F (ν). □

Remark 24. We are not saying that 1
2
D0 is the whole domain of definition and analyticity of the

integrals Λω and Ψω. Indeed, ϕ admits a logarithmic singularity at 2iπ, but this singularity can be
removed by integration of the parameter t; see also our Remark 25, where we give a function Λω0

which is well-defined on the whole imaginary line iR.

Proof of Theorem A. We apply Lemma 22 to the sequence of functions

fn(z) = logE
[
ez(X

(n)−E[X(n)])
]
− nΛω(n)(z)−Ψω(n)(z).

Let us remark the following consequence of Lemma 23: since Ω is a compact topological set, the
functions Ψω(n)(z) are locally uniformly bounded on 1

2
D0, independently from the growing se-

quence (λ(n))n≥1. Therefore, in order to prove the theorem, it suffices to show that

(1) fn(z) converges to 0 on a disc containing the origin;

(2) logE
[
ez(X

(n)−E[X(n)])
]
− nΛω(n)(z) is locally uniformly bounded on 1

2
D0.

The second item is an immediate consequence of Theorem 21, by using the computation from
Remark 19 in order to deal with the term

−z E[X(n)] = −nz

4

(
1−

∫ 1

x=−1

xµ(n)(dx)

)
+O(1)

in the log-Laplace transform of the recentered random variables (this explains the replacement of
φ by ϕ in the formula for Λω ). We now suppose that z belongs to the disc D(0, π). If λ(n) is an
integer partition with size n, then we have

pFk (λ
(n)) = nk pk(ω

(n)) = nk

∫ 1

x=−1

xk−1 µ(n)(dx),

so the estimate of Theorem 4 rewrites as:

κ(r)(X(n)) =
nBr

r(r + 1)

(∫ 1

x=−1

(1− xr)µ(n)(dx)

)
+

Br

2r

(
1 +

r−1∑
s=1

(
r

s

)
(−1)s

∫ 1

x=−1

∫ 1

y=−1

xs−1 yr−s−1 µ(n),⊗2(dx dy)

)
+O(n−1)

for any r ≥ 2. Let us denote nKr the term proportional to n in each expansion above. We have:
∞∑
r=2

Kr
zr

r!
=

∞∑
r=2

Br

r(r + 1)

(∫ 1

x=−1

zr(1− xr)

r!
µ(n)(dx)

)

=

∫ 1

t=0

∫ 1

x=−1

(
∞∑
r=2

Br

r

(tz)r(1− xr)

r!

)
µ(n)(dx) dt

=

∫ 1

t=0

∫ 1

x=−1

(ϕ(tz)− ϕ(txz))µ(n)(dx) dt.
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The exchange of the symbols
∫
and

∑
is justified by the fact that we are looking at convergent

power sums. Similarly, if Lr is the term of order O(1) in the expansion of the cumulant κ(r)(X(n)),
then

2
∞∑
r=2

Lr
zr

r!
= ϕ(z) +

∞∑
r=2

Br

r

zr

r!

∫ 1

x=−1

∫ 1

y=−1

(y − x)r − yr − (−x)r

xy
µ(n),⊗2(dx dy)

=

∫ 1

x=−1

∫ 1

y=−1

(
ϕ(z) +

ϕ((y − x)z)− ϕ(yz)− ϕ(−xz)
xy

)
µ(n),⊗2(dx dy).

So, one obtains the formula of Theorem A. The only thing that we need to check is that we can
indeed exchange the limits with the summation over indices r ≥ 1. However, by Theorem 21,

logE
[
ez(X

(n)−E[X(n)])
]
− n

∫ 1

t=0

∫ 1

x=−1

(ϕ(tz)− ϕ(txz))µ(n)(dx) dt

is locally uniformly bounded for |z| < π. Therefore, the remainder lives in a compact subset of the
space of holomorphic functions on D(0,π), and we can indeed take the sum of the limits. □

Remark 25. Our Theorem A ensures that given a convergent sequence (λ(n))n≥1 with limit ω,
the log-Laplace transform of X(n) behaves asymptotically like nΛω(z). This makes one wonder
whether Λω(z) is itself the log-Laplace transform of a probability distribution. The general answer
to this question is negative. Indeed, by Bochner’s theorem, if Λ(z) is the log-Laplace transform of
a probability distribution, then for any finite family of real numbers ξ1, . . . , ξr, the matrix

(eΛ(iξi−iξj))1≤i,j≤r

is Hermitian non-negative definite. Consider the case where ω0 = ((0, 0, . . .), (0, 0, . . .)) is the
Thoma parameter with two null sequences (by continuity, any Thoma parameter sufficiently close
to this parameter will also fail the Bochner condition). We then have:

Λω0(iξ) =

∫ 1

t=0

log

(
sin tξ

2
tξ
2

)
dt

since µω0 = δ0. With (ξ1, ξ2, ξ3) = (0, 3, 6), a numerical integration of the function above yields
a symmetric matrix (eΛ(iξi−iξj))1≤i,j≤3 whose smallest eigenvalue is −0.0135 . . ., so it is not non-
negative definite.

3.2. Upper bounds on cumulants and Berry–Esseen estimates. In [FMN16; FMN19], the clas-
sical method of cumulants used in order to prove a central limit theorem has been perfected in
order to obtain moderate deviation estimates and upper bounds on the Kolmogorov distance be-
tween a distribution and its normal approximation. In our setting, these methods translate to the
following:

Lemma 26. LetX be a random variable with variance σ2 > 0. We suppose that for any r ≥ 3,

|κ(r)(X)| ≤ r!σ2KLr−2

for some constantsK ≥ 1
4
and L > 0; in particular, the log-Laplace transform logE[exZ ] is convergent

on the open discD(0, 1
L
). Then,

dKol

(
X − E[X]√

var(X)
, N (0, 1)

)
≤ 18KL

σ
.
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Proof. In the following, we adapt the proof of [FMN19, Corollary 30]. A classical inequality due
to Berry ensures that if U and V are real-valued random variables with Fourier transforms ΦU(ξ)
and ΦV (ξ), and if m is an upper bound on the density of the distribution of V with respect to the
Lebesgue measure, then

dKol(U, V ) ≤ 1

π

∫ T

−T

∣∣∣∣ΦU(ξ)− ΦV (ξ)

ξ

∣∣∣∣ dξ + 24m

πT

for any T > 0; see [Ber41] and [Fel71, Lemma XVI.3.2]. We set

U =
X − E[X]√

var(X)
; V = N (0, 1) ; T =

σ

4KL
.

Note that log ΦU(ξ) is equal to its Taylor series on the interval (−T, T ). We have:

ΦU(ξ)− ΦV (ξ) = exp

(∑
r≥2

κ(r)(X)

r!

(
iξ

σ

)r
)
− e−

ξ2

2 = e−
ξ2

2

(
exp

(∑
r≥3

κ(r)(X)

r!

(
iξ

σ

)r
)
− 1

)
,

and if z =
∑

r≥3
κ(r)(X)

r!

(
iξ
σ

)r, then
|z| ≤ K|ξ|2

∑
r≥3

(
L|ξ|
σ

)r−2

= |ξ|2 KL|ξ|
σ − L|ξ|

≤ 4KL|ξ|3

3σ
≤ |ξ|

2

3
.

Therefore, | exp(z)− 1| ≤ |z| e|z| ≤ 4KL|ξ|3
3σ

e
|ξ|2
3 , so the integral in Berry’s upper bound is smaller

than ∫
R

4KL|ξ|2

3σ
e−

|ξ|2
6 dξ = 4

√
6π

KL

σ
.

We conclude by using the upper bound m = 1√
2π

on the density of the normal distribution. □

Proof of Theorem C. The variance of maj(T (n)) satisfies

n3(1− p3(ω
(n)))− 3n2

2

36
≤ σ2 ≤ n3(1− p3(ω

(n)))

36
;

see our Example 18. In particular, if we suppose that max(
λ
(n)
1

n
,
λ
(n),′
1

n
) ≤ 1

2
and that n ≥ 4, then

p3(ω
(n)) =

∫ 1

x=−1

x2 µω(n)(dx) ≤
1

4

and 3
8

n3

36
≤ σ2 ≤ n3

36
if n ≥ 4. Now, the cumulants with higher order satisfy

|κr(maj(T (n)))| ≤ |Br|
r

n∑
i=1

ir ≤
Br (n+ 1

2
)r+1

r(r + 1)
≤ r!

π2

100

(n+ 1
2
)3

36

(
n+ 1

2

2π

)r−2

since
|Br|

r(r + 1)
≤ 2 ζ(4) r!

20 (2π)r
=

π2 r!

3600

1

(2π)r−2

for r ≥ 4. The theorem follows from Lemma 26 with σ2 = var(maj(T (n))), L =
n+ 1

2

2π
and

K =
1

4

(n+ 1
2
)3

36σ2
≥ 1

4
.

Note that we could remove the assumption on λ
(n)
1 and λ

(n),′

1 by reworking a bit the argument of
Lemma 26. By the remark made just after the statement of Theorem 1, the only thing to avoid
is that lim supn→∞(n − λ

(n)
1 ) < +∞ or lim supn→∞(n − λ

(n),′

1 ) < +∞, since this prohibits the
convergence in distribution to the Gaussian law N (0, 1). □
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3.3. Exponential tilting of measures and control of the tilted Fourier transforms. In order to
prove Theorem B, we shall adapt the proof of [FMN16, Theorem 4.2.1], which gives a very similar
result in the case where the leading term Λ(z) of the scaled log-Laplace transform is the log-Laplace
transform of a non-lattice infinitely divisible distribution. By our Remark 25, this is not the case here
with Λω(z), so we need to rework some of the arguments.

For x ∈ (−1, 1), a simple analysis of the function h 7→ log(
x sinh h

2

sinh hx
2

) shows that it is defined on
the whole real line, even, positive for h ̸= 0 and strictly convex. Therefore, if µ is a probability
measure on [−1, 1] which is not concentrated on {−1, 1}, then the map

h 7→
∫ 1

t=0

∫ 1

x=−1

(ϕ(th)− ϕ(txh))µ(dx) dt

is also even, positive for h ̸= 0 and strictly convex. In particular, this is true when µ = µω and
ω ∈ Ω is not one of the two parameters ω1 = ((1, 0, . . .), (0, . . .)) and ω−1 = ((0, . . .), (1, 0, . . .)).

Lemma 27. For ω ∈ Ω, the derivative Λ′
ω(h) goes to 1

4

∫ 1

x=−1
(1− x)µω(dx) when h goes to infinity.

Proof. We compute

Λ′
ω(h) =

∫ 1

t=0

∫ 1

x=−1

(
t

1− e−ht
− tx

1− e−thx
+

t(x− 1)

2

)
µω(dx) dt.

Hence, the limit when h goes to infinity is
∫ 1

t=0

∫ 1

x=−1
t(1−x)

2
µω(dx) dt =

1
4

∫ 1

x=−1
(1−x)µω(dx). □

Λω

asymptotic slope
1
4
(1− p2(ω))

Figure 6. Restriction to the real line of the function Λω for ω /∈ {ω1, ω−1}.

Until the end of this section, we fix a convergent sequence (λ(n))n≥1 with limiting parameter ω /∈
{ω1, ω−1}, and a real number y ∈ (0,Λ′

ω(∞)). Since Λ′
ω is strictly increasing, there exists a unique

h ∈ (0,+∞) such that Λ′
ω(h) = y. Moreover, since ω 7→ Λ′

ω is continuous with respect to the
topology of uniform convergence on compact sets (Lemma 23), and since Λ′

ω(∞) = 1
4
(1− p2(ω))

is also a continuous function of ω (Lemma 3), for n large enough, there exists a unique parameter
h(n) ∈ (0,+∞) such that Λ′

ω(n)(h
(n)) = y, and we have limn→∞ h(n) = h.

We define the tilted random variable X̃(n) by the formula:

P
[
X̃(n) ∈ (x, x+ dx)

]
=

eh
(n)x

E[eh(n)X(n) ]
P[X(n) ∈ (x, x+ dx)],

with X(n) = maj(T (n))
n

. This exponential tilting of probability measures corresponds to a shift of
the log-Laplace transforms: if Λ(n)(z) = logE[ezX(n)

] is the log-Laplace transform of X(n), then
Λ(n)(z + h(n))− Λ(n)(h(n)) is the log-Laplace transform of X̃(n). Set

Ψ(n)(z) = Λ(n)(z)− zE[X(n)]− nΛω(n)(z);
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by Theorem A, Ψ(n)(z) = Ψω(n)(z) + o(1), and since (λ(n))n≥1 is a convergent sequence, Ψ(n)

converges locally uniformly on 1
2
D0 towards the analytic function Ψω(z). We translate this result

for the tilted sequence (X̃(n))n≥1:

logE
[
ezX̃

(n)
]
= n

(
Λω(n)(z + h(n))− Λω(n)(h(n))

)
+
(
Ψ(n)(z + h(n))−Ψ(n)(h(n))

)
+ zE[X(n)].

Since
E
[
X̃(n)

]
= (Λ(n))′(h(n)) = E[X(n)] + nΛ′

ω(n)(h
(n)) + Ψ(n),′(h(n)),

we can rewrite the previous estimate as follows:

logE
[
ez(X̃

(n)−E[X̃(n)])
]
= n

(
Λω(n)(z + h(n))− Λω(n)(h(n))− zΛ′

ω(n)(h
(n))
)

+
(
Ψ(n)(z + h(n))−Ψ(n)(h(n))− zΨ(n),′(h(n))

)
.

The two functions Λω(n)(z + h(n))− Λω(n)(h(n))− zΛ′
ω(n)(h

(n)) and Ψ(n)(z + h(n))−Ψ(n)(h(n))−
zΨ(n),′(h(n)) are analytic on the domain −h(n) + 1

2
D0, and they converge locally uniformly on the

domain−h+ 1
2
D0 towards Λω(z+h)−Λω(h)−zΛ′

ω(h) andΨω(z+h)−Ψω(h
(n))−zΨ′

ω(h). In par-
ticular, the convergence holds on the whole imaginary line iR, because the translation by−h(n) < 0
of the domain 1

2
D0 moves away from this line the two intervals i[2π,+∞) and i(−∞,−2π]. The

estimates above imply then a central limit theorem for the tilted random variable X̃(n). The vari-
ance of X̃(n) is given by the second derivative of Λ(n) at h(n), so it is equivalent to nΛ′′

ω(n)(h
(n)).

Therefore, we can expect that

P

[
X̃(n) − E[X̃(n)]√

nΛ′′
ω(h)

≤ t

]
=

∫ t

−∞
e−

s2

2
ds√
2π

+ o(1).

It will be useful to introduce a deformation of the Gaussian distribution, which is a signed measure
on R and turns out to be a better approximation of the law of X̃(n).

Proposition 28. Let F (n)(t) be the cumulative distribution function of the variable X̃(n)−E[X̃(n)]√
nΛ′′

ω(n)
(h(n))

, and

G(n)(t) =

∫ t

−∞

(
1 +

Λ′′′
ω (h)√

n (Λ′′
ω(h))

3

s3 − 3s

6

)
e−

s2

2
ds√
2π

.

The supremum of |F (n)(t)−G(n)(t)| over R is a o(n−1/2).

Lemma 29. For any δ > 0, h > 0 and ω ∈ Ω\{ω1, ω−1}, there exists a constantA(δ, h, ω) > 0which
depends continuously on its three parameters, such that

∀|ξ| > δ, Re(Λω(h+ iξ)− Λω(h)) ≤ −A(δ, h, ω).

Proof. Numerical experiments show that given two parameters h ̸= 0 and ω ∈ Ω \ {ω1, ω−1},
the map ξ 7→ Re(Λω(h + iξ) − Λω(h)) stays negative, but is not decreasing on the whole interval
(0,+∞); see Figure 7. So, the proof of the lemmawill be a bitmore subtle than a study of variations.
An essential argument which seems clear from Figure 7 is that the aforementioned function admits
a limit when ξ goes to infinity, and we shall compute this limit in a moment.

If z = h+ iξ, then

Re log

(
sinh z

2
z
2

)
=

1

2
log
∣∣∣eh+iξ

2 − e−
h+iξ

2

∣∣∣2 − 1

2
log(h2 + ξ2)

=
1

2
log(2 coshh− 2 cos ξ)− 1

2
log(h2 + ξ2),
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20 40 60 80 100

-0.3

-0.25

-0.2

-0.15
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-0.05

Figure 7. The function ξ 7→ Re(Λω(h+ iξ)− Λω(h)) for h = 5 and ω = ((1
2
, 1
2
, 0, . . .), (0, . . .)).

so

Re log

(
sinh z

2
z
2

)
− Re log

(
sinh h

2
h
2

)
=

1

2
log

(
1 +

1− cos ξ

coshh− 1

)
− 1

2
log

(
1 +

ξ2

h2

)
.

As a consequence,

Re(Λω(h+ iξ)− Λω(h))

=
1

2

∫ 1

t=0

∫ 1

x=−1

(
log

(
1 +

1− cos tξ

cosh th− 1

)
− log

(
1 +

1− cos txξ

cosh txh− 1

))
µω(dx) dt.

With ξ and h fixed in R \ {0}, the function F (x) = log(1 + 1−cosxξ
coshxh−1

) is even, and its restriction to
R+ looks as in Figure 8. An analysis of functions shows that F (x) is always smaller than its mean

0.2 0.4 0.6 0.8 1

1

2

3

4

Figure 8. Graph of the map F : x 7→ log(1 + 1−cosxξ
coshxh−1

), here with h = 5 and ξ = 50.
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G(x) =
∫ 1

t=0
F (tx) dt. Since G′(x) = 1

x
(F (x) − G(x)), this is equivalent to the fact that the map

G is decreasing on R+, see Figure 9. Since
∫ 1

t=0
(F (t)− F (tx)) dt = G(1)−G(x), this implies that

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

4

4.5

Figure 9. Graph of the map G : x 7→
∫ 1

t=0
F (tx) dt, again with h = 5 and ξ = 50.

if h ̸= 0, ξ ̸= 0 and µω is not concentrated on {−1, 1}, then Re(Λω(h + iξ) − Λω(h)) is strictly
negative. Then, in order to establish the lemma, it suffices to prove that

lim
ξ→+∞

Re(Λω(h+ iξ)− Λω(h)) = −A(h, ω) < 0,

and that this convergence is locally uniformwith respect to the parameters h and ω ∈ Ω\{ω1, ω−1}.
Let us remark that

G(x) =

∫ 1

t=0

log

(
1 +

1− cos txξ

cosh txh− 1

)
dt =

∫ 1

t=0

(
log

(
1− cos txξ

cosh txh

)
− log

(
1− 1

cosh txh

))
dt

=
∞∑
r=1

1

r

∫ 1

t=0

1− (cos txξ)r

(cosh txh)r
dt.

As ξ goes to infinity, the integration of a smooth function against the oscillating weight (cos txξ)r
vanishes if r is odd, and gives 1

2r

(
r
r
2

)
times the integral of the function if r is even. Therefore,

lim
ξ→+∞

G(x) =
∞∑
r=1

1

r

∫ 1

t=0

1

(cosh txh)r
dt−

∞∑
s=1

1

22s+1s

(
2s

s

)∫ 1

t=0

1

(cosh txh)2s
dt

=

∫ 1

t=0

log

1 +
√

1− 1
cosh2 txh

2

− log

(
1− 1

cosh txh

) dt

= −2
∫ 1

t=0

log(1− e−t|x|h) dt.

As a consequence,

lim
ξ→+∞

Re(Λω(h+ iξ)− Λω(h)) =

∫ 1

t=0

∫ 1

x=−1

log

(
1− e−t|x|h

1− e−th

)
µω(dx) dt = −A(h, ω) < 0,

and it is easy to see that this convergence has the right properties of uniformity with respect to the
parameters h ∈ R \ {0} and ω ∈ Ω \ {ω1, ω−1}. □
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Proof of Proposition 28. We shall work with a slightly different distribution on R:

G
(n)

(t) =

∫ t

−∞

1 +
Λ′′′

ω(n)(h
(n))√

n (Λ′′
ω(n)(h(n)))3

s3 − 3s

6

 e−
s2

2
ds√
2π

;

this modification is justified by the inequality

|G(n)
(t)−G(n)(t)| ≤

∫
R

∣∣∣∣∣∣ Λ′′′
ω(n)(h

(n))√
(Λ′′

ω(n)(h(n)))3
− Λ′′′

ω (h)√
(Λ′′

ω(h))
3

∣∣∣∣∣∣ |s|
3 + 3|s|
6

e−
s2

2
ds√
2πn

= o

(
1√
n

)
.

As in the proof of Theorem C, we use the Berry inequality: if

Φ1(ξ) = E

exp
iξ

X̃(n) − E[X̃(n)]√
nΛ′′

ω(n)(h(n))

 ;

Φ2(ξ) =

∫
−R

1 +
Λ′′′

ω(n)(h
(n))√

n (Λ′′
ω(n)(h(n)))3

s3 − 3s

6

 e−
s2

2
+isξ ds√

2π
,

then for any T > 0,

sup
t∈R

∣∣∣F (n)(t)−G
(n)

(t)
∣∣∣ ≤ 1

π

∫ T

−T

∣∣∣∣Φ1(ξ)− Φ2(ξ)

ξ

∣∣∣∣ dξ + 24m

πT
,

where m is a uniform upper bound on the (signed) densities |G(n),′

(t)| with n ≥ 1 and t ∈ R
(because of the Gaussian term e−

s2

2 in these densities, there exists indeed such a constant m > 0).
Let us analyse the two Fourier transforms Φ1 and Φ2 on an interval I = [−T, T ] = [−∆

√
n,∆
√
n].

First, Φ2 is the following explicit function:

Φ2(ξ) =

1 +
Λ′′′

ω(n)(h
(n))√

n (Λ′′
ω(n)(h(n)))3

(iξ)3

6

 e−
ξ2

2 .

Indeed, s3 − 3s is the Hermite polynomial H3(s), and one has the general formula∫
R
Hk(s) e

− s2

2
+isξ ds√

2π
= (iξ)k e−

ξ2

2 ;

see [Sze39, Chapter 5]. On the other hand, on a small interval [−δ
√
n, δ
√
n] = I ′ ⊂ I , with

z = iξ√
nΛ′′

ω(n)
(h(n))

, we have by Taylor approximation:

n
(
Λω(n)(z + h(n))− Λω(n)(h(n))− zΛ′

ω(n)(h
(n))
)
= −ξ2

2
+

Λ′′′
ω(n)(h

(n)) (iξ)3

6
√
n (Λ′′

ω(n)(h(n)))3
(1 + oδ(1));

(
Ψ(n)(z + h(n))−Ψ(n)(h(n))− zΨ(n),′(h(n))

)
= −Ψ(n),′′(h(n)) ξ2

2nΛ′′
ω(n)(h(n))

(1 + oδ(1)).

Therefore,

Φ1(ξ) =

1 +
Λ′′′

ω(n)(h
(n))√

n (Λ′′
ω(n)(h(n)))3

(iξ)3

6
(1 + oδ(1))−

Ψ(n),′′(h(n)) ξ2

2nΛ′′
ω(n)(h(n))

(1 + oδ(1))

 e−
ξ2

2 ,

and we have∫
I′

∣∣∣∣Φ1(ξ)− Φ2(ξ)

ξ

∣∣∣∣ dξ ≤ ∫
I′

(
Oδ

(
|ξ|
n

)
+ oδ

(
|ξ|2√
n

))
e−

ξ2

2 dξ = oδ

(
1√
n

)
,
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by using the uniform convergence around h of the functions Λω(n) and Ψ(n) and their derivatives.
Consequently, in order to end the proof of the lemma, it suffices now to control Φ1(ξ) and Φ2(ξ)
over I \ I ′. If we write

Φ1(ξ) = e
n
(
Λ
ω(n) (z+h(n))−Λ

ω(n) (h
(n))−zΛ′

ω(n)
(h(n))

)︸ ︷︷ ︸
a(ξ)

e

(
Ψ(n)(z+h(n))−Ψ(n)(h(n))−zΨ(n),′ (h(n))

)︸ ︷︷ ︸
b(ξ)

,

then Lemma 29 shows that a(ξ) is bounded over I \ I ′ by e−nA(δ) for some constant A(δ) > 0. On
the other hand, the quantity b(ξ) is bounded over I by some constant B(∆). So,∫

I\I′

∣∣∣∣Φ1(ξ)

ξ

∣∣∣∣ dξ ≤ 2B(∆)e−nA(δ)

∫ ∆
√
n

δ
√
n

dξ

ξ
= 2B(∆) e−nA(δ) log

(
∆

δ

)
.

A similar bound exists for the integral of
∣∣∣Φ2(ξ)

ξ

∣∣∣, since the Gaussian term e−n ξ2

2 is bounded from

above by e−n δ2

2 on I \ I ′. We conclude that for any pair δ < ∆,

sup
t∈R

∣∣∣F (n)(t)−G
(n)

(t)
∣∣∣ ≤ C(∆) log

(
∆

δ

)
e−nA(δ) +

24m

π∆
√
n
+ oδ

(
1√
n

)
for some positive constants A(δ) and C(∆). Given ε > 0, we choose δ small enough and ∆ large
enough so that the two last terms of the right-hand side are smaller than ε√

n
for n large enough.

Then, the exponential term goes to 0 faster than 1√
n
, so it is also smaller than ε√

n
for n large enough.

Thus, for any ε > 0,

sup
t∈R

∣∣∣F (n)(t)−G
(n)

(t)
∣∣∣ ≤ 3ε√

n

for n large enough, which means that the distance between the two distributions F (n) and G
(n) is

a o(n−1/2). □

Proof of Theorem B. Our proof follows now the same argument as in [FMN16, Theorem 4.2.1] and
[MN22, Theorem A], and is inspired by standard techniques from the theory of large deviations,
in particular the Bahadur–Rao estimates for sums of non-lattice distributed i.i.d. random variables
[BR60]. We have:

P[maj(T (n))− E[maj(T (n))] ≥ yn2]

= P
[
X(n) ≥ E[X(n)] + yn

]
= E

[
eh

(n)X(n)
] ∫ ∞

E[X(n)]+yn

e−h(n)x P
[
X̃(n) ∈ (x, x+ dx)

]
= e−n(Λ

ω(n) )
∗(y)+Ψ(n)(h(n))−h(n)Ψ(n),′ (h(n))

∫ ∞

−Ψ(n),′ (h(n))

e−h(n)x P
[
X̃(n) − E[X̃(n)] ∈ (x, x+ dx)

]
= e−n(Λ

ω(n) )
∗(y)+Ψ(n)(h(n))−h(n)Ψ(n),′ (h(n))

∫ ∞

− Ψ(n),′ (h(n))√
nΛ′′

ω(n)
(h(n))

e
−h(n)

√
nΛ′′

ω(n)
(h(n))x

dF (n)(x).

Let I(n) be the integral on the last line, and

b(n) = − Ψ(n),′(h(n))√
nΛ′′

ω(n)(h(n))



REFERENCES 35

its lower bound of integration, which goes to 0 as n goes to infinity. By using an integration by
parts and the estimate from Proposition 28, we get

I(n) = h(n)
√

nΛ′′
ω(n)(h(n))

∫ ∞

b(n)

e
−h(n)

√
nΛ′′

ω(n)
(h(n))x

(F (n)(x)− F (n)(b(n))) dx

= h(n)
√
nΛ′′

ω(n)(h(n))

∫ ∞

b(n)

e
−h(n)

√
nΛ′′

ω(n)
(h(n))x

(G(n)(x)−G(n)(b(n))) dx

+ o

(
h(n)

√
Λ′′

ω(n)(h(n))

∫ ∞

b(n)

e
−h(n)

√
nΛ′′

ω(n)
(h(n))x

dx

)
=

∫ ∞

b(n)

e
−h(n)

√
nΛ′′

ω(n)
(h(n))x

dG(n)(x) + o

(
1√
n

)
.

In the integral against the (signed) distribution dG(n)(x), the main contribution comes from the
Gaussian term and is equal to∫ ∞

b(n)

e
−h(n)

√
nΛ′′

ω(n)
(h(n))x−x2

2
dx√
2π

= e
(h(n))2 nΛ′′

ω(n)
(h(n))

2

∫
b(n)+h(n)

√
nΛ′′

ω(n)
(h(n))

e−
y2

2
dy√
2π

=
eh

(n) Ψ(n),′ (h(n))

h(n)
√
2πnΛ′′

ω(n)(h(n))
(1 + o(1));

the other terms give a contribution of order O(n−1) = o(n−1/2). Therefore,

P[maj(T (n))− E[maj(T (n))] ≥ yn2] =
e−n(Λ

ω(n) )
∗(y)+Ψ(n)(h(n))

h(n)
√
2πnΛ′′

ω(n)(h(n))
(1 + o(1)),

and we conclude by using the convergence of h(n) towards h, of Ψ(n) towards Ψω and of Λ′′
ω(n)

towards Λ′′
ω. □
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