Exercice 1 Soit V un espace vectoriel réel de dimension 2, et $\{X,Y\}$ une base de V.

- 1. Montrer que toute application bilinéaire anticommutative sur V définit un crochet de Lie. On appelle $\mathfrak{aff}(\mathbb{R})$, l'algèbre de Lie $(V, [\,\cdot\,,\cdot\,])$ où [X,Y]=Y.
- 2. Montrer que toute algèbre de Lie de dimension 2 réelle est soit abélienne, soit isomorphe à $\mathfrak{aff}(\mathbb{R})$.
- 3. Vérifier que chacune de ces algèbres est isomorphe à l'algèbre de Lie d'un groupe de Lie. Ce groupe de Lie peut-il être choisi compact?

Exercice 2 Pour toute algèbre de Lie \mathfrak{g} ,

on définit sa série centrale (C_n) par $C_0 = \mathfrak{g}$ et pour $n \geq 0$, $C_{n+1} = [C_n, \mathfrak{g}]$, et on dit que \mathfrak{g} est nilpotente s'il existe un $n \geq 0$ tel que $C_n = 0$; on définit sa série dérivée (D_n) par $D_0 = \mathfrak{g}$ et pour $n \geq 0$, $D_{n+1} = [D_n, D_n]$, et on dit que \mathfrak{g} est résoluble s'il existe un $n \geq 0$ tel que $D_n = 0$.

Montrer que les groupes suivants sont des groupes de Lie, puis décrire leurs algèbres de Lie respectives (on donnera à chaque fois une base pour laquelle on calculera les crochets de Lie entre éléments de la base). Préciser si celles-ci sont abéliennes, nilpotentes, résolubles.

- 1. $\operatorname{SL}_2(\mathbb{R}) = \{ x \in \mathcal{M}_2(\mathbb{R}) \mid \det x = 1 \}$
- 2. $SU(2) = \{x \in \mathcal{M}_2(\mathbb{C}) \mid {}^t \overline{x}x = I_2 \& \det x = 1\}$
- 3. Heis(3) = $\left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \middle| (x, y, z) \in \mathbb{R}^3 \right\}.$
- 4. $\operatorname{Sol}(3) = \mathbb{R} \ltimes \mathbb{R}^2$, muni de la structure de variété produit, où $t \in \mathbb{R}$ agit sur \mathbb{R}^2 via la matrice $\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$. (On réalisera $\operatorname{Sol}(3)$ comme un sous-groupe plongé de $\operatorname{SL}_3(\mathbb{R})$.)

Groupes de Lie classiques

Soient n, p et q des entiers non nuls. On définit, en notant $I_n \in \mathcal{M}_n(\mathbb{R})$ la matrice identité, $I_{p,q} = \begin{pmatrix} -I_p & 0 \\ 0 & I_q \end{pmatrix} \in \mathcal{M}_{p+q}(\mathbb{R})$, et $J_n = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$, les groupes suivants :

$$\begin{array}{lll} \operatorname{SL}_{n}(\mathbb{R}) &= \{x \in \operatorname{GL}_{n}(\mathbb{R}) : \det x = 1\} \\ \operatorname{SL}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{n}(\mathbb{C}) : \det x = 1\} \\ \operatorname{SL}(n,\mathbb{H}) &= \{x \in \operatorname{GL}_{n}(\mathbb{C}) : \det x = 1\} \\ \operatorname{SL}(n,\mathbb{H}) &= \{x \in \operatorname{GL}_{n}(\mathbb{H}) : \det x = 1\} \\ \operatorname{O}(n) &= \{x \in \operatorname{GL}_{n}(\mathbb{R}) : {}^{t}x \, x = I_{n}\} \\ \operatorname{SO}(n) &= \operatorname{O}(n) \cap \operatorname{SL}_{n}(\mathbb{R}) \\ \operatorname{SO}^{*}(2n) &= \{x \in \operatorname{GL}_{p+q}(\mathbb{R}) : {}^{t}x \, I_{p,q} \, x = I_{p,q}\} \\ \operatorname{O}(p,q) &= \{x \in \operatorname{GL}_{p+q}(\mathbb{R}) : {}^{t}x \, I_{p,q} \, x = I_{p,q}\} \\ \operatorname{SO}(p,q) &= \operatorname{O}(p,q) \cap \operatorname{SL}_{p+q}(\mathbb{R}) \\ \operatorname{SO}(p,q) &= \operatorname{O}(p,q) \cap \operatorname{SL}_{p+q}(\mathbb{R}) \\ \operatorname{SO}(p,q) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C}) &= \{x \in \operatorname{GL}_{2n}(\mathbb{C}) : {}^{t}x \, I_{n} \, x = I_{n}\} \\ \operatorname{Sp}_{n}(\mathbb{C})$$

 $O_{n}(\mathbb{C}) = \{x \in GL_{n}(\mathbb{C}) : {}^{t}x \, x = I_{n}\}$ $SO_{n}(\mathbb{C}) = O_{n}(\mathbb{C}) \cap SL_{n}(\mathbb{C})$ $Sp(n) = \{x \in \mathcal{M}_{n}(\mathbb{H}) : {}^{t}\overline{x} \, x = I_{n}\}$ $Sp(n) = \{x \in \mathcal{M}_{n}(\mathbb{H}) : {}^{t}\overline{x} \, x = I_{n}\}$ $Sp(n) = Sp(n) \cap SL_{n}(\mathbb{C}) \cap L(2n)$

 $SO(n, \mathbb{H}) = \{x \in SL(n, \mathbb{H}) : \tau_2(^t x) x = I_n\}$ $Sp_*(n) = Sp_n(\mathbb{C}) \cap U(2n)$

On les appelle groupes de Lie classiques et ils sont utiles dans l'exercice suivant.

Exercice 3 Isomorphismes $\mathfrak{su}(2) \simeq \mathfrak{so}(3)$ et $\mathfrak{sl}_2(\mathbb{R}) \simeq \mathfrak{so}(1,2)$.

Les définitions des groupes de Lie classiques sont rappelées plus haut.

- 1. Vérifier que SU(2) est constitué des matrices de la forme $\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}$, avec $|a|^2 + |b|^2 = 1$. En déduire que SU(2) est difféomorphe à une variété de dimension 3 bien connue.
- 2. Montrer que $E_1 = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $E_2 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ et $E_3 = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ forment une base de son algèbre de Lie $\mathfrak{su}(2)$. Expliciter les relations de crochet entre E_1 , E_2 et E_3 .

Sur $\mathfrak{su}(2)$, on considère la forme quadratique $Q(M) = \det(M)$.

- 3. Soit $\varphi : \mathfrak{su}(2) \to \mathbb{R}^3$ donnant les coordonnées de $U \in \mathfrak{su}(2)$ dans la base $\{2E_1, 2E_2, 2E_3\}$. À quelle forme quadratique sur \mathbb{R}^3 correspond Q via φ ?
- 4. En déduire que la représentation adjointe définit naturellement un morphisme $\rho: SU(2) \to SO(3)$.
- 5. Montrer que ρ est une submersion, puis que c'est un morphisme surjectif. Quel est son noyau ?
- 6. Déduire de ce qui précède que SO(3) est difféomorphe à une variété de dimension 3 bien connue et que $\mathfrak{su}(2)$ et $\mathfrak{so}(3)$ sont isomorphes.

On pose
$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

7. Montrer que H, E et F forment une base de l'algèbre de Lie $\mathfrak{sl}_2(\mathbb{R})$. Expliciter les relations de crochet entre H, E, F.

Étant donnée une algèbre de Lie réelle \mathfrak{g} de dimension finie, sa forme de Killing est la forme bilinéaire symétrique $B_{\mathfrak{g}}: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ définie par $B_{\mathfrak{g}}(x,y) = \operatorname{tr}(\operatorname{ad} x \circ \operatorname{ad} y)$.

- 8. Montrer qu'un isomorphisme d'algèbres de Lie envoie forme de Killing sur forme de Killing.
- 9. On note B la forme de Killing sur $\mathfrak{sl}_2(\mathbb{R})$. Déterminer la matrice de B dans la base E, H, F. Quelle est sa signature?
- 10. Déterminer la signature de la forme de Killing de $\mathfrak{su}(2)$. En déduire que les algèbres de Lie $\mathfrak{su}(2)$ et $\mathfrak{sl}_2(\mathbb{R})$ ne sont pas isomorphes.
- 11. Adapter ce qui a été fait ci-dessus et montrer que les algèbres de Lie $\mathfrak{sl}_2(\mathbb{R})$ et $\mathfrak{so}(1,2)$ sont isomorphes.