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Abstract

This is the draft of the lecture notes for the M2 course given at the University of Geneva in

April 2016 and for the “cours Peccot” given at Collège de France in May 2016. The subject of

the course is to study the geometry of random planar maps by discovering them step-by-step

using the so-called peeling process.

The spatial Markov property of random planar maps is one of the most important properties

of these random lattices. Roughly speaking, this property says that, after a region of the map

has been explored, the law of the remaining part only depends on the perimeter of the discovered

region. The spatial Markov property was first used in the physics literature, without a precise

justification: Watabiki [60] introduced the so-called “peeling process”, which is a growth process

discovering the random lattice step by step and used it to derived the so-called “two-point”

function of 2D quantum gravity. A rigorous version of the peeling process and its Markovian

properties was given by Angel [4] in the case of the Uniform Infinite Planar Triangulation

(UIPT), which had been defined by Angel and Schramm [8] as the local limit of uniformly

distributed plane triangulations with a fixed size. The peeling process has been used since to

derive information about the metric properties of the UIPT [4], about percolation [4, 6, 53]

and simple random walk [9] on the UIPT and its generalizations, and more recently about the

conformal structure [33] of random planar maps. It also plays a crucial role in the construction

of “hyperbolic” random triangulations [7, 32]. In these lecture notes we review and extend all

these results via the new and more universal peeling process recently introduced by Budd [23]

which enables us to treat all the Boltzmann map models at once.

The references and proper citations to recent results are gathered at the end of every chapter

in a bibliographical paragraph in order to lighten the presentation. May the concerned authors

forgive this.



Chapter I : Generalities on planar maps

In this chapter we introduce the basic notions about planar maps: several equivalent definitions,

local topology, duality. We also gather a few applications of Euler’s formula (Platonic solids,

isoperimetric inequalities, Fàry theorem, 5 and 6-colors theorem). Finally we present briefly the

theory of circle packings which is a means to represent a (simple) planar map faithfully in the

plane.

1.1 Definitions

A planar graph is a locally finite (multi-)graph which can be drawn on the plane (or equiva-

lently on the sphere) in such a way that the edges are non-crossing except at the vertices. Such a

drawing is called a proper embedding. Notice that a planar graph may have several topologically

different proper embeddings and the definition only tells us the existence of such. In particular,

the notion of face of the graph is subject to vary with the embedding.

Definition 1. A finite planar map is a finite connected planar (multi-)graph properly embedded

in the plane (or in the sphere) viewed up to homeomorphisms that preserve the orientation.

= 6=

Figure 1.1: The same underlying planar graph can yield different planar maps.

There is an analogous definition of a finite map drawn on the torus or more generally on a

compact (orientable say) surface of genus д ≥ 0, but since we will restrict ourselves to the planar

case we sometimes drop the adjective planar and speak of a map instead of a planar map. May

the reader forgive this.

If m is a planar map, we denote respectively Edges(m),Vertices(m) and Faces(m) the set of its

edges, vertices and faces (the connected components of the complementary of its embedding).

Actually, these sets are only defined for one specific embedding of the map, but we make this

abuse of notion since the only important thing are the incidence relations between those objects
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and they do not depend on the precise embedding considered (see also the equivalent definition

of a map in terms of oriented graphs below). The degree deg( f ) of a face f (we sometimes also

say the perimeter of f ) is the number of edges incident to this face with the convention that

when an edge is lying completely inside a face it is counted twice in the degree. Similarly the

degree deg(x ) of a vertex x is the number of edges adjacent to x , where loops attached to x are

counted twice.

According to Definition 1, a finite planar map is thus an equivalence class of embeddings of a

finite planar graph. This may seem hard to manipulate at first glance, luckily it admits several

equivalent points of view:

• a finite planar map can be seen as a gluing of finitely many polygons (the faces of the

map) along their edges so that the manifold produced this way is a topological sphere,

• a finite planar map can also be seen as a finite graph with a system of coherent orientations

around each vertex of the graph which correspond to the cyclic ordering of the edges when

going clockwise around a vertex in the map.

= =

Figure 1.2: The same planar map seen : [left] as a gluing of polygon (notice that two

edges of a same polygon could be folded to give a single edge in the map), [center] as

an equivalence class of embeddings of a finite planar graph in S2, [right] as a graph with

cyclic orientations around vertices.

Using any of the the last two definitions it should be clear that the number of planar maps with

a given number of edges is finite.

(Planar) maps are more rigid than planar graphs since they are given with an embedding

(equivalently a planar orientation) whereas planar graphs only possess such an embedding. This

rigidity enables us to enumerate planar maps more easily than planar graphs and this is mainly

why we will consider maps instead of graphs. For a complete rigidity we will only consider rooted

maps, that are, maps given with one distinguished oriented edge called the root edge which we

denote by ~e. The origin vertex ρ of ~e is the root vertex (also called origin) and the face incident

on the right of ~e is the root face fr of the map. Once rooted, maps have no non-trivial symmetry.

From now on, all the maps considered are rooted. We denote by

M := the set of all (rooted) finite planar maps,
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in the following a generic planar map will be denoted by m ∈ M. For technical reason we shall

also consider that there exists a unique “vertex map” denoted by † which is made of a unique

vertex and no edge nor face. A simple map is a map in which multiple edges or loops are

forbidden.

A famous theorem on planar maps which looks childish is the 4-colors theorem which proves

that 4 colors suffice to color any planar map such that any pair of adjacent faces (i.e. sharing an

edge) have different colors. The proof is extremely difficult and requires the help of a computer

to check numerous cases, but a version with 6 or even 5 colors is much easier to do (see Exercise

5).

1.2 Local topology and infinite maps

If m is a map and r ∈ {0, 1, 2, 3, . . .} we denote by [m]r and call the ball of radius r in m, the

map formed by all the vertices of m which are at graph distance less than r from the origin ρ of

m together with the edges linking them. The map [m]r inherits the planar orientation from m

and is indeed a planar map rooted at the root edge of m as soon as r ≥ 1. When r = 0 we put

[m]0 = † the “vertex-map”.

Definition 2. We put a distance (check it!) on the set M of all finite maps by the formula

dloc (m,m′) =
(
1 + sup{r ≥ 0 : [m]r = [m′]r }

)−1
. (1.1)

Note that the space (M, dloc) is not complete. The elements in M\M correspond to infinite maps

(in this setup they can be seen as a coherent system of balls of radius r for r ≥ 0). Once this

completion has been done, we have

Proposition 1. The space (M, dloc) is Polish (metric, separable and complete). Furthermore, a

subset A ⊂ M is relatively compact (its closure is compact) if and only if for any r ≥ 0

#{[m]r : m ∈ A} < ∞ or equivalently sup{deg(x ) : x ∈ Vertices([m]r ),m ∈ A} < ∞.

Proof. It is easy to see that dloc is a distance. The separation is granted since M is dense in M

and countable. Completeness. If (mn ) is a Cauchy sequence for dloc then for every r , the ball

[mn]r stabilizes to a certain map m∗r . By coherence we have [m∗r ′]r = m
∗
r for any r ′ ≥ r and so

we can define a unique possibly infinite map m∞ ∈ E such that m∗r = [m∞]r . It is then clear that
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mn → m∞ for dloc. Characterization of the compacts. The condition in the theorem is clearly

necessary for A to be relatively compact for otherwise there exists r0 ≥ 0 and a sequence (mn ) in

A whose balls of radius r0 are all at distance ε = 1
1+r0 from each other. Such a sequence cannot

admit a convergent subsequence. Conversely, a subset A satisfying the condition of the theorem

is easily seen to be pre-compact for dloc: just cover with balls of radius 1/r centered on each

element of {[m]r : m ∈ A}. We leave the equivalent condition to the reader. �

Exercise 1. Compute the limit of the following 6 sequences of planar maps.
n n

n

n n

n n
n n

For the above definition, it is easy to check that if (Pn )n≥0 and P∞ are probability measures

on M then Pn → P∞ in distribution for the local distance if and only if for any r ≥ 0 and any

fixed planar map m0 we have

Pn ([m]r = m0) −−−−→
n→∞

P∞ ([m]r = m0).

In other words, convergence in distribution for the local distance is equivalent to convergence in

distribution of the ball of radius r , for any r ≥ 0. Beware though, the convergence of the proba-

bilities Pn ([m]r0 = m0) is not sufficient to imply convergence in distribution because tightness is

missing (these probabilities could all converge to 0 for example).

Remark 1. An infinite map m may have faces of infinite degrees. For example, the line graph

of length 2n rooted in the middle converges locally towards the map made of an infinite line

separating two faces of infinite degrees.

1.2.1 Infinite maps of the plane and the half-plane

The above definition of infinite maps (as coherent sequences of balls) is equivalent to infinite

locally finite graphs given with a system of coherent (i.e. giving rise to a planar structure) cyclic

orientations of the edges around each vertex. However, this is not equivalent to Definition 1 for

infinite planar maps: the same infinite map may be drawn in two ways on the sphere so that it

is impossible to map the first on the second via a homeomorphism (see Fig. 1.3 below).

For one-ended maps however, things are easier. Let us recall the definition of end in a graph:

Definition 3. Let g be a graph and k1 ⊂ k2 ⊂ · · · an increasing sequence of finite subgraphs of g

which exhausts g, that is
⋃

i≥0 ki = g. An end of g is a nested sequence · · · ⊂ U3 ⊂ U2 ⊂ U1 where

Ui is an infinite connected component of g\ki . A priori, the number of ends may depend on the

sequence (ki )i≥1 however it is an exercise to see that it does not.

Exercise 2. Show that: any finite graph has 0 end, any infinite graph has at least one end, Z has

two ends, Zd for d ≥ 2 has one end and that the complete k-ary tree with k ≥ 3 has uncountably

many ends.
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Figure 1.3: Three examples of infinite maps, the left-most one has infinitely many

ends, the center one has two ends whereas the right-most one has only one end (the

centered region in gray is not a face). In particular, the right-most map can be drawn

on the sphere after shrinking the gray region (and the latter can not be obtained by a

homeomorphism of the first drawing).

There is also a natural way to put a topology on the space of ends of a graph to turn it into

a topological space (see wikipedia “ends of graphs” for example). In particular, the space of ends

of the full k-ary tree is homeomorphic to a Cantor set, i.e. a closed set with no interior and no

isolated points. Coming back to maps (the number of ends of a map is the number of ends of

the graph it induces) then

Proposition 2. Infinite planar maps with one end can be seen as equivalence classes (for orienta-

tion preserving homeomorphisms of the plane) of proper embeddings of infinite planar graphs on

the plane R2 such that every compact of R2 intersects only finitely many edges of the embedding.

Proof. It should be clear that an (equivalence class of) embedding such as the one above defines

an infinite planar map with only one end since any finite set in the map is contained in a compact

set of the embedding and its complement contains at most one unbounded region. Reciprocally,

if m is an infinite planar map with one end then for every r recall that [m]r is the ball of radius r

and write [m]r for the hull of the ball of radius r obtained by filling-in all the finite components

of m\[m]r . Denote the vertices which are at distance r from the origin of m and located on the

boundary of [m]r by ∂[m]r . We then claim that it is possible to draw m on R2 in such a way

that the vertices of ∂[m]r are drawn on the circle of center (0, 0) and radius r , and that all the

edges and vertices of [m]r are inside that circle. Such an embedding is indeed of the required

form. �

Using the last proposition it is legitimate to call infinite planar maps with one end infinite

planar maps of the plane and we almost do so after splitting this group into two further sub-

classes: An infinite map with one end can have 0 or 1 face of infinite degree. If it has one such

face it can be drawn on R×R+ by saying the face of infinite degree contains the half-plane R×R−.

Definition 4 (Maps of the plane and half-plane). A map of the plane is a rooted infinite planar

map with only one end such that all faces are of finite degree. A map of the half-plane is a

rooted infinite planar map with one end such that the root face is of infinite degree.
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1.3 Euler’s formula and applications

The first non-trivial result about planar maps is the famous Euler relation which links the

number of faces, of edges and of vertices of any finite planar map.

Theorem 1 (Euler)

For any finite planar map m we have

#Vertices(m) + #Faces(m) − #Edges(m) = 2. (1.2)

Proof. The proof is done by induction on the number of edges. The only map with 0 edge has 1
vertex and 1 face so that (1.2) is true. Suppose now that #Edges(m) ≥ 1 and erase an arbitrary

edge of m, then two cases may happen:

• either the new map m′ is still connected and so applying the induction hypothesis we have

#Vertices(m′) + #Faces(m′) − #Edges(m′) = 2. Also we have #Vertices(m) = #Vertices(m′) and

#Edges(m) = #Edges(m′)+1 and a careful inspection shows that #Faces(m) = #Faces(m′)+1.
Gathering-up the pieces we find that m obeys (1.2).

• or the removal of the edge breaks m into two connected maps m1 and m2. Applying (1.2) to

each block we find that #Vertices(m1)+#Faces(m1)−#Edges(m1) = 2 as well as #Vertices(m2)+

#Faces(m2) − #Edges(m2) = 2. Also, we have #Vertices(m) = #Vertices(m1) + #Vertices(m2)

and #Edges(m) = #Edges(m1) + #Edges(m2) + 1 and another careful inspection shows that

#Faces(m) = #Faces(m1) + #Faces(m2) − 1, the minus 1 terms stems from the fact that the

external face of m1 and m2 is counted twice otherwise. Putting everything together we

indeed verify (1.2).

�

Remark 2. As we already noticed, the notion of face is not well-defined for planar graphs as it

may depend on its planar embedding. However, we see from Euler’s formula that the number

of faces does not depend on the embedding but only on the underlying graph structure.

Exercise 3. Using Euler’s formula show that the complete graph K5 on 5 vertices (with an edge

between any pair of vertices) and the graph K3,3 made of 3 black vertices and 3 white vertices

such that there is an edge between any pair of black and white vertices are not planar graphs.

Remark 3. The converse of the above exercise is also true: By the well-known Kuratowski

theorem, a graph is planar if it does not contain K5 or K3,3 as a minor. However, in this course,

the planar maps come with their embeddings, and so planarity testing is never an issue.

Euler’s formula is particularly useful when we deal with special classes of planar maps:

Definition 5. Fix k ∈ {3, 4, 5, . . .}. A k-angulation is a planar map m whose faces all have degree

k.
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In the following we will use a lot triangulations in the case k = 3 and quadrangulations in

the case k = 4. Beware, since we allow multiple edges and loops, a triangle (or a quadrangle)

can be folded on itself and look weird at first glance, see Fig. 1.4. The dual (see below) of a

k-angulation, that is a planar map where all the vertices have degree k is called a k-valent map.

=

Figure 1.4: A finite triangulation of the sphere. Notice the triangle which is folded on

itself and looks like a loop with an inner edge: this is indeed a triangle!

In particular, in a finite k-angulation m, we have k · #Faces(m) = 2 · #Edges(m), because each

edges is counted by two faces (or twice by the same face). This combined with Euler’s formula

gives an affine relation between the number of vertices, edges and faces of m (depending on k,

there are congruence constraints).

Definition 6. A planar map is bipartite if one can color its vertices in two colors (black and white

say) so that two neighbor vertices do not share the same color.

We introduce the above definition here because it is easy to see that a planar map is bipartite if

and only if all its faces have even degree (exercise). For example, quadrangulations are bipartite.

As we will see later on, bipartite planar maps are in a sense more regular than general maps

and their enumeration formulas are nicer.

1.3.1 Platonic solids

A well-known application of Euler’s formula is the classification of all regular polyhedrons or

Platonic solids. Indeed, a regular polyhedron can be seen as a finite map such that the degrees

of the vertices and faces are constant. If α ≥ 3 and γ ≥ 3 denote respectively the common degree

of the vertices and faces of the map m with v vertices f faces and e edges then we have

αv = 2e, γ f = 2e, and v + f − e = 2.

It is easy to see that there are only 5 solutions to these equations giving rise to 5 regular

polyhedrons described below. Notice the symmetry between the number of vertices and faces

which play the same role once exchanged. This is explained below by the duality operation.
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Name α γ e

Tetrahedron 3 3 6

Cube 3 4 12

Octahedron 4 3 12

Dodecahedron 3 5 30

Icosahedron 5 3 30

Exercise 4. Show that the above Platonic solids do exist that is, can be constructed in three

dimensions by gluing identical flat regular polygons together.

1.3.2 Fàry theorem

By definition, planar maps can always be drawn on the plane in a proper way. One can wonder

whether it is possible to do this with straight lines. Obvious obstructions are multiple edges or

loops, but once these have been forbidden the answer is yes!

Theorem 2 (Fàry 1948 )

Any simple (without multiple edges nor loops) finite planar map can be properly drawn in

the plane with straight edges.

Proof. The proof is done by induction on the number of vertices of the map m. If m has only

one vertex then (since loops are forbidden) it corresponds to the vertex map which can be drawn

on the plane with no line (in particular straight). If m has more than 2 vertices and is simple

then we use the following lemma:

Lemma 3. Any finite simple planar map m possesses a vertex of degree less than or equal to 5.

Proof of the lemma. By Euler’s formula we have v + f − e = 2 with obvious notations, whereas

the edge count gives

2e = f1 + 2f2 + 3f3 + · · · ,

where fi is the number of faces of degree i in the map m. Since m is simple, there are no faces of

degree 1 or 2 and it follows that 2e ≥ 3f . Combining with Euler’s formula we get that 3v − e ≥ 6
or equivalently 2e

v ≤ 6 − 12
v . Since 2e

v represents the mean degree of a vertex in the map m, the

last inequality implies the existence of a vertex of degree less than 5. �

Coming back to the proof of the theorem, we take a vertex v of degree less than 5 in the

map m. We can suppose, wlog, that m is a (simple) triangulation since adding edges makes

the drawing with straight lines even more difficult. Now erase v from the map (as well as its

incident edges). By the induction hypothesis, the rest of the map can be drawn on the plane

with straight lines. Consider now the vertices to which the vertices v should have been linked.

They form a polygonal face of degree less than 5. By the art gallery theorem (see wikipedia) we

can place back v inside this face in such a way that it can be linked by straight lines to all its

neighbor vertices. �
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Exercise 5. Deduce from Lemma 3 that any planar map can be properly colored with 6 colors.

Harder: prove that 5 colors actually suffices.

1.3.3 Duality

If m is a finite or infinite planar map such that all the faces of m are of finite degree, one can

define the dual map m† obtained informally speaking by placing inside each face of m a vertex

of m† and linking two vertices of m† by an edge if the corresponding faces in m share an edge.

The root edge of the dual map is dual to the root edge of the primal map and crosses it from

left to right. The duality mapping is clearly an involution on the set of all planar maps with

finite face degrees and exchanges the roles of vertices and faces.

Figure 1.5: Duality between planar maps (left) and between quadrangulations and

planar maps (right).

There is also another bijection between, on the one hand, the set of all quadrangulations

with n faces, and on the other hand, the set of all planar maps with n edges. The one-to-one

correspondence is given as follows: If m is a planar map with n edges, then in each face of m we

put an extra point that we link to all (corners of) the vertices adjacent to this face, see Fig. 1.5.

We then erase all the edges of m and are left with a quadrangulation q with n faces (which is

clearly bipartite!). The root edge is transferred from m to q as depicted on Fig. 1.5.

As a consequence of the last bijection, the number of planar maps with n edges andm vertices

is the same as that of planar maps with n edges and m faces. Also, the number of planar maps

with n edges is the same as the number of quadrangulations with n faces which will turn out to

be relatively simple, see next chapter.

1.4 Curvature and isoperimetric inequalities

In this section we consider triangulations only. Let us start with a warmup. If t is a finite

triangulation with v > 0 vertices, f faces and e edges then combining Euler’s formula with the

relation 3f = 2e we get

3v = 6 + e ⇐⇒
2e
v
= 6 −

12
v
.
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The quantity 2e/v represents the mean degree of the triangulation and we see that it goes to 6
as v → ∞. In conformal geometry it represents the “average curvature”: if the mean degree is

equal to 6 the surface is flat, if it is larger than or equal to 7 the surface is negatively curved

and if it is smaller than 6, it is positively curved. Everybody knows the standard 6-regular

triangulation, which is flat, known as the honey-comb lattice. However, it is easy to see that

there exist infinite triangulations whose vertex degrees are bounded from below by 7 say (e.g.

the 7-regular triangulation) but they grow very rapidly. This can be encoded in the so-called

isoperimetric profile:

Theorem 3 (Degrees and isoperimetric profile)

Let t be a triangulation with a boundary of length p, that is a planar map whose faces are

all triangles except for one face, called the external face which is of degree p. We denote by

n the number of inner vertices of t

• If all the inner vertex degrees are larger than or equal to 7 then for some c > 0

p ≥ c · n.

• If all the inner vertex degrees are larger than or equal to 6 then

p ≥
√
12n.

Proof. Let t be a triangulation with n inner vertices and whose minimal inner vertex degree

is d ∈ {6, 7}. We may choose t so that p is the smallest possible. Notice that this forces the

boundary ∂t to be a simple cycle since otherwise if there are pinch points by a simple surgical

operation we can glue two edges and diminish the perimeter while keeping the number of inner

vertices and their degrees unchanged. We write f for the number of faces of t and e its the

number of edges. Counting the edges from the face point of view gives 2e = 3( f − 1) + p and

Euler’s formula writes (n + p) + f − e = 2 which once combined give

3n + 2p = 3 + e . (1.3)

On the other hand counting edges from the vertex point of view yields

2e =
∑

u ∈Vertices(t)

deg(u). (1.4)

From the above display we deduce that 2e ≥ dn where d is the minimal inner vertex degree and

combining this with (1.3) already yields the first point of the theorem.

In the case d = 6 we must do better and we adapt here the proof of [5]. We introduce Σ the

edges incident to both a vertex on the boundary ∂t of t and an inner vertex of t and ∆ the edges

linking two vertices of ∂t. Coming back to (1.4) more carefully we get 2e = 6n + 2p + #Σ + 2#∆
which together with with (1.3) yields

#Σ + 2#∆ ≤ 2p − 6. (1.5)
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We already deduce that p ≥ 4 unless t is made of a single triangle. We now assume that the

triangulation has been chosen so that the ratio c = p2/n is the smallest possible among all

triangulations with boundary so that n ≤ N where N is fixed (if there are several choices, pick

on with minimal p). Let us examine a bit more the structure of such a minimal triangulation.

Recall that the boundary is necessarily simple, and let us now rule-out the possibility of a non-

boundary edge linking two vertices of ∂t. Indeed, if there was such an edge it would split the

map into two triangulations with boundary of perimeter p1 + 1 and p2 + 1 with n1 and n2 inner

vertices respectively such that n1 + n2 = n and p1 + p2 = p.

n1 n2

p1 p2

n1

p1 + 1

n2

p2 + 1p1 + 1

Figure 1.6: One cannot split t into two parts by the minimality assumption.

Notice then that necessarily p > p1 ≥ 2 and p > p2 ≥ 2 and (p1 − 1) (p1 − 1) > 1 otherwise t is

made of two triangles glued together and n would be equal to 0. By our minimality assumption

we must have (p1 + 1)2 ≥ cn1 + 1 and (p2 + 1)2 ≥ cn2 + 1. Using the fact that (p1 − 1) (p2 − 1) > 1 it

follows that

(p1 + p2)
2 > (p1 + 1)2 + (p2 + 1)2 − 2 ≥ c (n1 + n2),

which is absurd. Hence we have with the above notation ∆ = ∅. Now if we consider the set of

all inner vertices adjacent to the boundary of t, by our deduction on t they form a connected

subset which encloses a triangulation t′ with a boundary of perimeter p ′. It is easy to see on

the figure that #Σ = p + p ′ and so using (1.5) we have that p ≥ p ′ + 6. Using our minimality

Σt

t′

Figure 1.7: Induction hypothesis: passing from t to t′.

assumption again we deduce that (p ′)2 ≥ cv ′ + 1 where v ′ is the number of inner vertices of t′.

Since we obviously have v ≤ v ′ + p ′ (with equality if t′ has a simple boundary) we deduce that

c (v ′ + p ′) ≥ cv = p2 ≥ (p ′ + 6)2 ≥ (p ′)2 + 12p ′ ≥ cv ′ + 12p ′,
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and this can only work if c ≥ 12. As N was arbitrary, this proves the second statement of the

theorem. �

Remark 4. The isoperimetric constant
√
12 is achieved in the case of balls of large radius in the

standard infinite 6-regular triangulation.

Exercise 6. Show that there is no infinite triangulation of the plane whose vertex degrees are

bounded by 5. Is there an infinite triangulation of the plane with degrees only in {5, 6} apart the

six-regular triangulation?

1.5 Circle packings

A planar map does not a priori have any canonical representation in the plane (or the sphere)

since even in the finite case, it is given as an equivalence class of embeddings. Still one can ask

if we can make sense of a “faithful” representation of a map.

As in Section 1.3.2 we focus on the case of simple maps where multiple edges and loops have

been forbidden (since in any representation with straight lines, the latter are squashed). We say

that a simple map m is represented by a circle packing if there is a collection (Cv : v ∈ Vertices(m))
of non overlapping disks in the plane R2 such that Cv is tangent to Cu if and only if u and v are

neighbors in m. Recall that the completed plane Ĉ = R2∪{∞} can be identified with the Riemann

sphere S2 by the stereographic projection from the north pole. This projection transforms circles

and lines in Ĉ into circles on the Riemann sphere. Recall also that the Möbius group{
z ∈ Ĉ 7→

az + b

cz + d

}
acts triply transitively on the Riemann sphere (i.e. we can map any triplet of points to any other

triplet of points) and preserves circles.

Theorem 4 (Finite circle packing theorem. Koebe, Andreev–Thurston)

Any finite simple map m admits a circle packing representation on the Riemann sphere.

Furthermore if m is a simple triangulation then the circle packing is unique up to Möbius

transformations.

Remark 5. Fàry’s theorem is a trivial corollary of the above theorem!

Sketch of the proof. First, it is easy to see that it suffices to prove the theorem for simple

triangulations because we can embed any simple planar map inside a simple triangulation by

further triangulating inside each face. Fix a triangulation t and pick a face f ∈ Faces(t) that we

will see as the exterior face. We will prove that we can construct a circle packing of t such that

the three circles corresponding to this outer face are three mutually tangent circles of radius 1,
or equivalently that the three vertices of the triangles form an equilateral triangle. The rest of

the circles are in-between these three circles. We start with the uniqueness statement.

Uniqueness. Since the Möbius group of the Riemann sphere acts triply transitively we can
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Figure 1.8: On the left, a finite circle packing of a planar map. On the right a circle

packing of a triangulation seen on the sphere S2.

transform any circle packing into a packing of the above form (with the marked face forming an

equilateral triangle and the rest of the vertices inside). Imagine that we are given two packings

P and P′ of the above form, in particular the three exterior circles are of radius 1. We then

choose an interior vertex v of the triangulation such that the ratio of the corresponding circles

in the packing is maximal i.e.

λ(v ) =
rP (v )

rP′ (v )
is maximal.

We then examine the structure of the packing around this circle in P. By dividing all the

distances by λ(v ) we end up with a circle of radius rP′ (v ) and such that all the neighboring circles

have a radius which is less than the corresponding radius in P′. By an obvious monotonicity

property of the angles around a circle we deduce that these new radii must coincide with those

in P′ i.e.

λ(u) =
rP (u)

rP′ (u)
= λ(v ),

for all u neighbors of v (for otherwise if the inequality were strict, the neighboring circles would

not surround the circle associated to v). Since the graph is connected we deduce step by step

that λ(·) is constant and must be equal to 1 by the assumption on the exterior circles. Hence

P = P′.

Existence. We will not prove the existence but just describe the algorithm that can be used

(even in practice!) to construct the packing. The idea is to first find all the radii of the circles.

Once these radii are found, one can reconstruct the packing step by step by starting from the

external face and deploying the circles one by one around the circles already explored (notice

that given the radii and the combinatorial layout we can determine the angles, and for this we

crucially use the fact that the underlying map is a triangulation). To find the radii we start with

an arbitrary assignment of radii to the vertices of the triangulations except the three vertices

of the marked face which have their radii fixed for ever to 1. We then examine all the internal

vertices in a cyclic order and repeat forever the following adjustment : see Fig. 1.9.

Repeatedly applying this updating rule, it can be proved (but it is not trivial) that this

algorithm indeed converges towards the unique fixed point for the right values of the radii for
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Figure 1.9: Adjustment rule : For an internal vertex v with radius rv , we examine the

radii of the neighbors of v. Using these radii, one can see whether or not placing the

circles of the corresponding radii around a circle of radius rv would close exactly. For

most of the time it will not. But by a simple monotonicity property, one can always

update the radius rv so that the latter property holds true.

the circles (with the outer three circles normalized) and that these values give rise to a non-

degenerate (all the radii are positive) circle packing for the triangulation t. This can be shown

by understanding the monotonicity properties of the “flow of angles” on the graph when looping

this rule, see [30]. �

1.5.1 Applications

We will use the theory of circles packings in Chapter 8 when studying random walks on random

planar maps. In the mean time, although we will not need it, we state some applications of the

theory of circle packings without giving the proofs. First they lead to a beautiful proof [55] of

the following well-known theorem:

Theorem 5 (Lipton-Tarjan [49])

If m is a planar map with n vertices, then there is a simple closed path made of less than
√
8n

vertices which separates the maps into two components containing less than 2n/3 vertices

each.

Second, there is a wonderful link between circle packings and the Riemann mapping theorem

(which was the initial motivation for Thurston to study circle packings). Imagine that we have

a circle packing of a region Ω, with the hexagonal packing say, and that the same combinatorial

triangulation structure is circle-packed in the disk (we can always do so by the finite circle

packing theorem). We suppose also that the center z ∈ Ω is mapped to 0 ∈ D. Then as the

maximal radius of the circles goes to 0, the mapping induced by the circle packings approximates

a conformal bijection Ω → D such that z is mapped to 0.

Bibliographical notes. Most of this chapter can be found in textbooks on planar graphs/maps.

The local distance has been introduced in the context of random planar maps by Benjamini &
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Figure 1.10: A small balanced separator of a planar graph represented by a circle

packing on the sphere S2. Image of Kenneth Stephenson

Figure 1.11: Thurston conjecture (Rodin–Sullivan/Schramm theorem) : Circle packings

can be used to approximate conformal mappings. Images of Kenneth Stephenson.

Schramm [11]. Part II of Theorem 3 is due to Angel, Benjamini and Horesh [5]. We refer to the

wonderful book [58] for many more applications of the beautiful theory of circle packings. The

proof of uniqueness in the circle packing theorem via maximum principle is taken from wikipedia

and is due to O. Schramm.
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Chapter II : Tutte’s equation

Our goal now is to enumerate planar maps, quadrangulations say. The basic idea, which goes

back to Tutte, is to find a recurrence relation between quadrangulations of different sizes. The

natural idea is to erase the root edge to diminish the size of the map. Unfortunately when

doing so the remaining map is generally not a quadrangulation anymore. The key idea is then

to generalize the model and consider quadrangulation with a boundary which are now stable

under erasing the root edge. We start by solving Tutte’s equation explicitly in the case of

quadrangulations because this yields to remarkably close formulas. Then, in order to present

the results in a unified form, we will discuss a general model called Boltzmann planar maps

which includes 2k-angulations as specific cases.

Tutte’s equation is very important not only because it leads to exact and asymptotic enu-

meration of planar maps but also because it is the true spirit of the peeling process. In fact, as

we will see later on, the peeling process is in fine just a probabilistic way to re-interpret Tutte’s

equation.

2.1 Maps with a boundary.

Recall that if m is planar map, the face incident on the right of the root edge is called the

root face or sometimes the external face. This enables us to see a planar map as a map with

a boundary: the boundary is just the contour of the root face, the degree of the root face is

in this case also called the perimeter of the map. Notice that this boundary usually contains

pinch points, if it does not, the boundary is said to be simple. For k ≥ 3, a k-angulation with a

boundary is a planar map whose faces are all of degree k except the root face which can be of

arbitrary degree (subject to parity constraints).

Remark 6 (Maps with external face of degree 2). It is easy to see that there is a bijection

between the set of all planar maps (different from the vertex map †) and maps with a boundary

of perimeter 2: just see the root edge as a zipper that we zip or unzip. We shall sometimes

implicitly use this identification. Notice that in the case of bipartite m the root edge cannot be

a loop and hence there is a bijection between the set of all bipartite maps (minus the vertex

map) and bipartite maps with a simple root face of degree 2.

Recall our convention that † is the only map with a unique vertex and no face, which will

be seen as the unique map with a boundary of perimeter 0.
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Figure 2.1: A quadrangulation with a simple boundary (on the left) and a quadran-

gulation with a general boundary (on the right). The root (or external) face is light

gray.

2.2 Tutte’s equation in the case of quadrangulations

By bipartiteness a quadrangulation with a boundary necessarily has an even perimeter and

to ease notation in the following we generically denote its half-perimeter by ` ≥ 1, more precisely

for n ≥ 0 and ` ≥ 0 write Q
(`)
n for the set of all (rooted) quadrangulation with n inner faces and

with a root face of degree 2`. Recall that when n = p = 0 the set Q
(0)
0 = {†} only contains the

vertex map. The idea of Tutte’s equation is to write a relation between Q
(`)
n by erasing the root

edge. Let us first describe this decomposition via a figure.

= orn

`

n− 1

` + 1 `1
`2

or n1
n2

Figure 2.2: Tutte’s decomposition.

In words, this decomposition says that a map of Q
(`)
n is either the vertex map (if both

n = ` = 0) or we have the following alternative: if after erasing the root edge, the map stays

connected then we can associate with it an element of Q(`+1)
n−1 –necessarily ` + 1 ≥ 2–, if it does

not then erasing the root edge splits the map into two elements of Q(`1)
n1 and Q

(`2)
n2 respectively

with n1 +n2 = n and `1 + `2 = ` − 1. After introducing the generating function (which can be first

seen as a formal power series)

Q (д, z) =
∑

n≥0, `≥0
дnz`#Q(`)

n ,

the former equation becomes Tutte’s equation

Q (д, z) = 1 +
д

z

(
Q (д, z) − [z0]Q (д, z) − [z1]Q (д, z)

)
+ z

(
Q (д, z)

)2
. (2.1)
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Notice the terms [z0]Q (д, z) and [z1]Q (д, z), which represent the terms in z0 and z1 in Q, must be

subtracted since the quadrangulations for which the erasure of the root edge leaves a connected

part must be of half-perimeter at least 2 (without these terms, the equation would be very easy

to solve!). Tutte has developed the so-called quadratic method to solve such equations. We will

not enter the details of this techniques and rather directly provide the reader with the answer.

Exercise 7. Prove that the above equation characterizes Q as a formal power series in д and z,

in other words, for any n, ` ≥ 0 fixed, Equation (2.1) enables us to compute in finite time the

number of quadrangulations with a boundary of perimeter ` and n inner faces.

2.2.1 The solution

For д, z > 0 let R (д) and Q0 (д, z) be the positive solutions to

R (д) = 1 + 3д R2 (д) and Q0 (д, z) = 1 + zR (д)Q2
0 (д, z)

then we have

Q (д, z) = Q0 (д, z) · (1 − дR2 (д) (Q0 (д, z) − 1)).

The anxious reader may develop explicitly the above calculations to give a closed but rather

bad-looking formula for Q and check that it indeed satisfies (2.1). In particular one sees that the

formal generating series is actually finite for д ≤ 1/12 and z ≤ 1/8; one may also (for example

using Lagrange inversion formula or via a direct tedious calculation) extract the exact values for

the number of quadrangulations with a boundary: for (n, `) , (0, 0) we have

#Q(`)
n =

(2`)!
`!(` − 1)!

3n
(2n + ` − 1)!
(n + ` + 1)!n!

and #Q(0)
0 = 1. (2.2)

Corollary 4. The number of planar maps with n edges is equal to 3n ·
2 · (2n)!
(n + 2)!n!

.

Proof. Specify the last display with ` = 1 and use the bijection presented in Section 1.3.3. �

Rather than the above exact formulas, one should remember the following asymptotic results

for which the critical polynomial exponents and the following functions are universal among many

classes of planar maps:

Definition 7 (The functions h↑ and h↓). For ` ≥ 0 put

h↑(`) = 2` 2−2`
(
2`
`

)
and h↓(`) = h↑(` + 1) − h↑(`) = 2−2`

(
2`
`

)
, ` ≥ 0,

and h↑(`) = h↓(`) = 0 for ` ≤ −1.

Then using the above exact formula and Stirling formula we get

19



#Q(`)
n ∼

n→∞
C (`) κnn−5/2, (2.3)

C (`) = c0α
`h↑(`),

where κ = 12, α = 8 and c0 = (4
√
π )−1 are non-universal factors (they depend on the model of maps

considered such triangulations, quadrangulations or more generally regular critical Boltzmann

maps, see below). Using these asymptotic one sees that at the critical point дc =
1
κ the numbers

[z`]Q (дc , z) are finite and can easily be computed, we shall use a slight variant of them: recall

that by Euler’s formula n + ` + 1 is the number of vertices in a quadrangulation of Q
(`)
n and

introduce for ` ≥ 1

W (`) =
∑
n≥0

#Q(`)
n κ−n = α ` ·

h↑(`)

`(` + 1) (` + 2)
, (2.4)

W (`)
• =

∑
n≥0

(n + ` + 1)#Q(`)
n κ−n = α ` · h↓(`), (2.5)

andW (0) =W (0)
• = 1. The numbersW (`) andW (`)

• will be interpreted as the partition function for

the following measures. The Boltzmann distribution P(`) on quadrangulations with a boundary

of perimeter 2` is the distribution on Q(`) = ∪n≥0Q
(`)
n such that any element q ∈ Q(`) gets a weight

P(`) (q) =
κ−#InnerFaces(q)

W (`)
.

Similarly the Boltzmann distribution P(`)• on pointed quadrangulations with a boundary of

perimeter 2` is the distribution on Q
(`)
• giving weight

P
(`)
• (q•) =

κ−#InnerFaces(q•)

W (`)
•

,

to each quadrangulation q• = (q,v ) equipped with a distinguished vertex v ∈ Vertices(q). The

above calculations may seem miraculous (and in some sense they are) but in fact these forms

are universal among a large class of bipartite planar maps as we shall now see.

The reader only interested in applications to random quadrangulations may

skip the next sections and directly jump to the desired chapter and plug the

last formulas for the numbers W (`) and W (`)
• as well as qk = 12−1δ2 (k ) and

cq = 8 when necessary.

In the rest of these lecture notes we only deal with bipartite planar maps.

2.3 Tutte’s equation for Boltzmann maps

In the rest of these lecture notes we focus on bipartite planar maps because their enumeration

is simpler than that of general planar maps. However, most of the material developed can

be adapted to the general case and in particular to triangulations to the cost of additional

technicalities and heavier notation. Recall from Definition 7 the functions h↑(`) and h↓(`).
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2.3.1 Boltzmann planar maps.

Let q = (qk )k≥1 be a non-zero sequence of non-negative reals which will be called the weight

sequence in these pages. We use this sequence to define a σ -finite measure on the set of all

planar maps by the formula

wq (m) =
∏

f ∈Faces(m)\{fr }

qdeg(f )/2. (2.6)

Notice that the root face do not appear in the above product. In particular, if we take the weight

sequence q = (δk0 (k ))k≥1 then wq (m) is simply 1 if all the faces apart from the root face are of

degree 2k0. For ` ≥ 0, we denote by M(`) the set of all bipartite planar maps such that the root

face has degree 2` (in particular M(0) = {†}). We insist on the fact that the root face may not

be simple, that is, may contain pinch points. We sometimes call a map m ∈ M(`) a map with a

boundary of half-perimeter `. For reasons that will become clearer later on, we will also need

the notion of a pointed planar map. A pointed planar map m• = (m,v ) is just a planar map m

given with a distinguished vertex v ∈ Vertices(m). The weight wq (m•) is simply the weight of m.

We denote accordingly M
(`)
• the set of all (bipartite) pointed planar maps with a boundary of

perimeter 2` and put

W (`) (q) = wq (M
(`) ) and W (`)

• (q) = wq (M
(`)
• ), (2.7)

in particular W (0) (q) =W (0)
• (q) = 1. We write simply W (`) and W (`)

• when the weight sequence

q is implicit. As we saw above, enumerating maps of M(`) is a more general problem than

enumerating planar maps since there is a bijection between maps (different from the vertex map

†) and maps with a boundary of perimeter 2. It is easy to convince ourselves that the above

definitions do not always make sense since W (`)
• (q) and W (`) (q) may be infinite.

Definition 8. The weight sequence q is called admissible when W (1)
• (q) is finitea (and hence one

easily checks that W (`)
• (q) as well as W (`) (q) is finite for all ` ≥ 1).

aThe reader may wonder at this point whether the weaker assumption of finiteness of W (`) (q) is equivalent to

admissibility. It is indeed the case (see Corollary 23) but the above definition with using pointed maps is more

useful thanks to the following Theorem 6.

For example if one takes the weight sequence qk = д · δ2 (k ) corresponding to counting quad-

rangulations with a weight д per inner face, the corresponding measure wq is finite if and only

if д ≤ 1
12 by (2.3). We recall the admissibility condition for the sequence q proved in [51], see

Appendix A. For k ≥ 1 we put

q̃k = qk

(
2k − 1
k − 1

)
and fq (x ) =

∞∑
k=1

q̃kx
k−1.

Proposition 5 (Admissibility criterion). The sequence q is admissible if and only if the following

equation has a positive solution

fq (x ) = 1 −
1
x
.
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This admissibility criterion is easily proved using the Bouttier–Di Francesco–Guitter [21]

bijection between bipartite planar maps and mobiles (labeled trees) but we shall admit it in

these lecture notes. In the case when q is admissible, we shall denote by Zq the smallest solution

to the equation fq (x ) = 1 − 1
x , and put cq = 4Zq. As in the case of quadrangulations, when q is

admissible the numbersW (`) andW (`)
• can be interpreted as the partition functions of Boltzmann

distributions: we shall denote by P(`)q the q-Boltzmann distribution on M(`) giving a weight

P
(`)
q (m) =

wq (m)

W (`) (q)
,

and similarly the pointed q-Boltzmann distributed on M
(`)
• given weight

P
(`)
•,q (m•) =

wq (m•)

W (`)
• (q)

.

As usual, we shall drop the dependence in q when it is implicit. Notice a simple but important

interpretation of the pointed partition function W (`)
• . If m is a map we denote by |m | the

number of vertices of m. It follows readily from the above definitions that the expected volume

of a q-Boltzmann map is given by

∫
P(`) (dm) |m | =

1
W (`)

∑
m∈M(`)

w (m) |m | =
W (`)
•

W (`)
. (2.8)

The ideal goal now is to compute exactlyW (`) (q) andW (`)
• (q) as a function of ` and of the weight

sequence q. The starting point is the same as in the last section: the deletion of the root edge

give us the following recursive equation (Tutte’s equation)

W (`) =

∞∑
k=1

qkW
(`+k−1) +

∑
`1+`2=`−1

W (`1)W (`2), (2.9)

or in terms of the pointed versions

W (`)
• =

∞∑
k=1

qkW
(`+k−1)
• + 2

`−1∑
`1=0

W (`1)
• W (`−`2−1) . (2.10)

As in the last section, the above identities completely characterize W (`) (q) and W (`)
• (q) which

may be seen as formal series in q1,q2,q3, . . ..

2.3.2 The universal solution

The wonderful magic of enumeration of (bipartite) maps is that these equations admit a universal

solution regardless of the weight sequence q. Recall from above that cq/4 is the smallest positive

solution to the equation fq (x ) = 1 − 1
x , then we have:
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Theorem 6 (Universal form for the resolvent of pointed bipartite Boltzmann maps)

For any admissible weight sequence q, there exists cq > 4 such that for z > cq we have

∞∑
`=0

z−`W (`)
• (q) =

(
1 −

cq

z

)−1/2
or equivalently W (`)

• (q) = c`q h
↓(`), ` ≥ 0.

For example when q = 1
12δ2, which corresponds to the model of critical quadrangulations then

it is easy to use the exact enumeration formulas of the last section to deduce that the above

theorem holds with cq = α = 8. The above theorem gives a universal formula for W (`)
• depending

on a single parameter. The easiest explanation for this universal formula goes through the use

of the Bouttier–Di Francesco–Guitter bijection between bipartite planar maps and mobiles, see

Appendix A. However at some point we will need an access to the asymptotic behavior of W (`)

which is a bit more complicated and less universal than that of its pointed analog (see Chapter

5). For the first few chapters we will only need the following fact which we prove in Chapter 5

Lemma 6. If q is an admissible weight sequence then we have

lim
`→∞

W (`+1)

W (`)
= cq. (2.11)

2.3.3 Critical and subcriticial weight sequences

Recall that the weight sequence q is admissible if the equation

fq (x ) = 1 −
1
x

has a positive solution. It is easy to see that the last equation has at most two positive solu-

tions and recall that cq is four times the smallest of such solutions denoted by Zq. We further

distinguish the weight sequence according to whether the graphs of the function x 7→ fq (x ) and

x 7→ 1 − 1
x are tangent at Zq or not. More precisely, in the case when q is admissible we must

have Z 2
q f
′
q (Zq) ≤ 1.

Definition 9. The admissible weight sequence q is called subcriticala if Z 2
q f
′
q (Zq) < 1 and critical

if Z 2
q f
′
q (Zq) = 1, see Fig. 2.3 below.

aThe names subcritical and critical come from the coding of random planar maps by random labeled trees via

the BDG bijection: the weight sequence q is (sub)critical when the distribution it induces on trees is a (sub)critical

multi-type Galton–Watson distribution.

For further use let us write explicitly the two equations defining an admissible and critical

weight sequence ∑
k≥0

qk

(
2k − 1
k − 1

)
Zk−1
q = 1 −

1
Zq
, (admissible) (2.12)

∑
k≥0

qk

(
2k − 1
k − 1

)
Zk−2
q (k − 1) =

1
Z 2
q
, (critical). (2.13)

23



1− 1
x

fq(x)

Zq

1− 1
x

fq(x)

Zq

subcritical critical

Figure 2.3: Graphs of the function x 7→ fq (x ) and x 7→ 1− 1
x in the case of a subcritical

(left) and critical (right) weight sequence.

We will see in Chapter 5 that the asymptotic for W (`) are very different in the subcritical and in

the critical case. This, in turns, change dramatically the geometry of the underlying Boltzmann

random maps.

Bibliographical notes. Although provable using Tutte’s equation the enumeration results pre-

sented in this section are more efficiently proved (and understood) using bijections between maps

and labeled trees (Schaeffer’s bijection [57] in the case of quadrangulations and its extension by

Bouttier–Di Francesco–Guitter [21] in the case of bipartite maps). The beginning of this chap-

ter is adapted from [24]. Tutte’s equation is naturally due to Tutte [59] (first in the context of

triangulations). The solution for quadrangulations here is taken from [22]. The formalism for

Boltzmann planar maps is taken from [51] where the fundamental Proposition 5 is proved using

the BDG bijection [21]. Although easy to derive from [51], Theorem 6 is taken under this form

from [23]. The concept of critical weight sequence is due to [51] later re-interpreted in [23]. We

also use notation of [23].
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Chapter III : Peeling of finite Boltzmann maps

In this chapter we define precisely what we mean by peeling a deterministic (bipartite) planar

map. We then compute the law of the Markov chains given by peeling explorations of finite

q-Boltzmann planar maps and show that a natural random walk hides behind such explorations.

Figure 3.1: Original figures from the paper of Watabiki.

The reader eager to manipulate planar maps in order to get a better understanding

of the notions developed in this chapter is warmly encouraged to play with the

wonderful (and free!) software developed by Timothy Budd available here:

http://www.nbi.dk/∼budd/planarmap/examples/editor.html

3.1 Peeling processes

3.1.1 Gluing maps with a boundary.

Let m be a (rooted bipartite) planar map and recall that m† stands for its dual map whose

vertices are the faces of m and whose edges are dual to those of m. The origin of m† is the root

face fr of m. Let e◦ be a finite connected subset of edges of m† such that the origin of m† is

incident to e◦ (the letter “e” stands for explored). We associate with e◦ a planar map e which,

roughly speaking, is obtained by gluing the faces of m corresponding to the vertices adjacent
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to e◦ along the (dual) edges of e◦, see Fig. 3.2. The resulting map, rooted at the root edge of

m, is a finite (rooted bipartite) planar map with several distinguished faces h1, . . . ,hk ∈ Faces(e)

that correspond to the connected components of m†\e◦. These distinguished faces are called

the holes of e. Notice that the holes are simple, meaning that there is no pinch-point on their

boundaries, and these boundaries also do not have vertices in common. Such an object will be

called a planar map with holes. See Fig. 3.2 below.

Figure 3.2: Illustration of the duality between connected subsets of edges on the dual

map and their associated submaps on the primal lattice.

We say that e is a submap of m and write

e ⊂ m

since m can be obtained back from e by gluing inside each hole hi of e a (uniquely defined)

bipartite planar map ui of perimeter deg(hi ) (the letter u stands for unexplored). To perform this

gluing operation, we implicitly assume that an oriented edge is distinguished on the boundary

of each hole hi of e, on which we glue the root edge of ui . We will not mention this further,

since these edges can be arbitrarily chosen using a deterministic procedure given e. Notice that

after this gluing operation, it might happen that several edges on the boundary of a given hole

of e get identified because the boundary of ui may not be simple, see Fig. 3.3 below. We will

alternatively speak of “gluing” or “filling-in the hole”.

It is easy to see that this operation is rigid (see [8, Definition 4.7]) in the sense that if e ⊂ m,

then the maps (ui )1≤i≤k are uniquely defined (in other words, if one glues different maps inside a

given planar map with holes, one gets different maps after the gluing procedure). This definition

even makes sense when e is a finite map and m is an infinite map. Conversely, if e ⊂ m, one can

recover e◦ in a unique way as the set of all the dual edges between faces of e which are not holes.

Exercise 8. Prove the above rigidity statement.

This discussion shows that there are two points of view on submaps of m which are equivalent:

either submaps can be seen as objets of the type of e◦ (which are connected components of edges
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Figure 3.3: The gluing operation is illustrated below.

containing the origin in m†), or as planar maps e ⊂ m with holes (possibly none) which may be

filled-in to obtain m. In this paper, we will mostly work with the second point of view.

In the case when e◦ contains only one point (the root face) then we abuse notation and say

that e is equal to the root face fr. In fact, when doing so we see the root face of m as a map with

hole made of one simple face of degree deg( fr) and the corresponding hole of the same perimeter.

Recall from Section 1.2 that [m]r , the ball of radius r in a map m was composed of all the

vertices and edges at distance less than r from the origin of m. Notice that with this definition

we may not have [m]r ⊂ m which is a bit annoying (in particular the “holes” of [m]r may not be

simple). We thus introduce another notion:

Definition 10 (The ball of radius r , new version). If m is a map, for r ≥ 0 we denote by

Ballr (m) ⊂ m,

the map with holes obtained by cutting all edges in m that have both endpoints at distance

larger than or equal to r from the origin of the root edge and taking the component of the root.

Equivalently, (Ballr (m))◦ is given by those edges of m† whose dual edges have at least one endpoint

at distance strictly less than r from the origin. We also put Ball0 (m) = fr seen as a map with

hole.

It is easy to see that Ballr (m) contains all the faces of m which are adjacent to at least one vertex

at distance strictly less than r from the origin of the map and that [m]r can be recovered from

Ballr (m). But remark that it is important not to define the local distance with this notion for

otherwise we would not have convergence of the polygon with k sides towards Z.

3.1.2 Peeling process

A peeling exploration is a means to explore a planar map m edge after edge. If e ⊂ m is a planar

map with holes, the active boundary1 of e is given by the union of all the edges adjacent to the

holes of e. We denote it by Active(e). Formally, a peeling exploration depends on a function

1Contrary to [14], the active boundary of e cannot be seen as the union of self-avoiding loops on the original

map m since they are closed paths which may visit twice the same edge, they are called frontiers in [23].
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A, called the peeling algorithm, which associates with any planar map with holes e an edge of

Active(e)∪ {†}, where † is a cemetery point which we interpret as the will to end the exploration.

In particular, if e has no holes, we must have A(e) = †. We say that this peeling algorithm is

deterministic since no randomness is involved in the definition of A.

Intuitively speaking, given the peeling algorithm A, the peeling process of a (bipartite) planar

map m is a way to iteratively explore m by starting from its boundary and by discovering a piece

of m by peeling an edge determined by the algorithm A. If e ⊂ m is a planar map with holes

and e is an edge of Active(e) or e = †, the planar map with holes Peel(e, e,m) obtained by peeling

e is defined as follows. Let Fe be the face of m adjacent to e (provided that e , †) and located

on the other side of e with respect to e. Then there are three possibilities, see Fig. 3.4:

• Either e = † and Peel(e, †,m) = e.

• Event Ck : the face Fe is not a face of e and has degree 2k. Then Peel(e, e,m) is obtained

by gluing Fe on e without performing the possible identifications of its other edges inside

m.

• Event Gk1,k2: the face Fe is actually a face of e. In this case, the edge e is identified in m

with another edge e ′ on the boundary of the same hole where k1 (resp. k2) is half of the

number of edges on the boundary of the hole strictly between e and e ′ when turning in

clockwise order around the hole, and Peel(e, e,m) is the map after this identification in e.

When k1 > 0 and k2 > 0, note that the event Gk1,k2 results in the splitting of a hole into two

holes. If k1 = 0 or k2 = 0 the corresponding hole of perimeter 0 is actually a vertex of the map

since by our convention the vertex map is the only one map of perimeter 0. In particular the

event G0,0 results in the disappearance of a hole.

Definition 11 (Peeling exploration). If m is a (finite or infinite) planar map, the peeling explo-

ration of m with algorithm A is the sequence of planar maps with holes

e0 ⊂ e1 ⊂ · · · ⊂ en ⊂ · · · ⊂ m,

such that the map e0 is the root face fr seen as a map with hole and for every i ≥ 0

ei+1 = Peel(e,A(ei ),m).

In particular, observe that if ei , ei−1 with i ≥ 1, then ei has exactly i internal edges. If

i ≥ 0, the map with holes ei (m) is obviously a (deterministic) function of m. But note that

(ej (m); 0 ≤ j ≤ i ) is also a (deterministic) function of ei (m). Finally, to simplify notation, we will

write ei instead of ei (m). Notice also that although not visible in our notation, the sequence of

explored maps (ei ) depends obviously on the underlying map, but also on the peeling algorithm

A. It should be clear in the following which are the statements valid for all peeling explorations

and those for specific ones.
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Figure 3.4: Illustration of the different peeling events. On the left column is represented

the submap e ⊂ m as well as its associated dual version e◦ in red. The center and right

columns represent two different peeling events, the edge to be peeled is in thick orange.

The event C2 occurs in the center column, whereas event G1,7 occurs in the right column.

Remark 7. One can alternatively represent a peeling exploration e0 ⊂ e1 ⊂ · · · ⊂ en ⊂ · · · ⊂ m as

the associated sequence of growing connected subset of edges (e◦i )i≥0 of the dual map m†, such

that e◦i+1 is obtained from e◦i by adding one edge of m† (unless the exploration has stopped), see

Fig. 3.4. We will however mostly use the first point of view.

Remark 8. The reader may also compare the above presentation with that of [14, Sec. 2.3]. In

the peeling process considered in [14, Sec. 2.3] and which has its origins in [4], the sequence

e0 ⊂ · · · ⊂ en ⊂ · · · ⊂ m is again a sequence of maps with simple holes (with the slight difference

that in this case the holes can share vertices but not edges) but (unless the peeling has stopped),

ei+1 is obtained from ei by the addition of a new face. Furthermore, in this peeling process, m

is obtained from ei by the filling-in the holes of ei with maps having simple boundary. In other

words, the peeling process of [14, Sec. 2.3] is “face”-peeling, while in the present work we have

an “edge”-peeling.

3.1.3 Peeling process with a target

In what follows we will sometimes explore maps with a distinguished target: if m• = (m,v ) is

a pointed map and if e ⊂ m is a submap of m we write e∗ for the submap e ⊂ m together with

the knowledge of the hole of e which contains the distinguished vertex v ∈ Vertices(m). If v is

already an inner vertex of e (an inner vertex of a map with holes is a vertex that is not adjacent
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to the active boundary) then e∗ is given by e together with the knowledge of the distinguished

vertex v. In that case we thus speak of

e
∗
0 ⊂ e

∗
1 ⊂ · · · ⊂ e

∗
n ⊂ · · · ⊂ m

as the peeling exploration with target of (m,v ). Actually in this case, the peeling algorithm A

may even depend on the knowledge of the distinguished hole. If m does not have a distinguished

point but is infinite and one-ended, then we may consider that there is a distinguished point “at

infinity” and we can define a peeling exploration targeting ∞ so that the distinguished hole of

e∗n is the only hole containing an infinite part in m.

3.1.4 Filled-in explorations

In the case of a peeling exploration with a target one can define what we call the respective

filled-in peeling exploration (with a target). If e∗ ⊂ m is a submap of m with a distinguished

hole, we call the hull of e∗ in (m,v ) the submap e obtained by filling-in all the holes of e∗ with

the respective map it contains inside m except for the distinguished hole. Hence e is a submap

with a unique hole (unless e∗ had no distinguished hole, but a distinguished vertex in which case

e is m together with the distinguished point). If e∗0 ⊂ e
∗
1 ⊂ · · · ⊂ e

∗
n ⊂ · · · ⊂ m is a peeling with

target of (m,v ) then

e0 ⊂ e1 ⊂ · · · ⊂ m

is called the filled-in exploration with target of (m,v ). Notice that this sequence may contain

repetitions but this can be avoided if the peeling algorithm A always peels an edge on the

distinguished hole of e∗n which we will implicitly suppose when dealing with filled-in explorations.

Such an exploration process then proceeds by peeling an edge and immediately filling-in the

possible hole not containing the target.

When m does not have a distinguished target (possibly at infinity) and that there is a priori

no distinguished hole in en , we can still decide to track a particular family of holes which we

call the locally largest one and consider the corresponding filled-in exploration. More precisely

if en ⊂ m is a submap of m with at most one hole, then the map en+1 is obtained by first peeling

the edge A(en ): If the peeling of that edge results in a split of the hole into two holes then

we immediately fill-in the smallest of those two (if there is a tie, then choose according to a

deterministic rule) with its respective map inside m. The exploration

e0 ⊂ · · · ⊂ en ⊂ · · · ⊂ m,

is then called the locally largest filled-in exploration in m. Notice that when m has a distinguished

target we generally do NOT have (en )n≥0 = (en )n≥0.

3.2 Law of the peeling under the Boltzmann measures

We suppose in this section that q is an admissible weight sequence so that we can speak of

q-Boltzmann planar maps (possibly pointed). When dealing with random planar maps, we work
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on the canonical space Ω of all the (rooted bipartite, possibly infinite) random maps with holes,

possibly pointed and possibly given with a distinguished hole. This space is equipped with the

Borel σ -field for the (extended) local topology. The notation

P(`),E(`), resp. P(`)• ,E
(`)
•

is used for the probability and expectation on Ω relative to the law of a q-Boltzmann map with

perimeter 2`, resp. a pointed q-Boltzmann map with perimeter 2`. A generic element of the

canonical space will be either denoted by m or by m• = (m,v ) if it is pointed. In this section, we

fix a peeling algorithm A and first compute the law of the peeling exploration e0 ⊂ e1 ⊂ · · · ⊂ m

under P(`) and P(`)• . We denote by Fn the σ -algebra on Ω generated by the exploration (i.e. the

functions (ei )0≤i≤n or (e∗i )0≤i≤n or (ei )0≤i≤n or (ei )0≤i≤n depending on the type of exploration we

consider).

3.2.1 q-Boltzmann maps

Let us first define the following probability transitions:

Definition 12 (Transition probabilities in the Boltzmann case). For any ` ≥ 1,k ≥ 0 and k1,k2 ≥ 0
such that k1 + k2 + 1 = ` we put

b (`) (k ) = qk
W (`+k−1)

W (`)
, b (`) (k1,k2) =

W (k1)W (k2)

W (`)
.

The fact that b (`) defines probability transitions, that is for all ` ≥ 1

1 =
∑
k≥0

b (`) (k ) +
∑

k1+k2+1=`
b (`) (k1,k2)

is equivalent to Tutte’s equation (2.9).

Proposition 7 (Law of the peeling process under the Boltzmann distribution). Fix ` ≥ 1 and a

peeling algorithm A. Then under P(`) the peeling exploration e0 ⊂ e1 ⊂ · · · ⊂ en ⊂ · · · ⊂ m with

algorithm A is a Markov chain whose probability transitions are as follows: Conditionally on Fn

and provided that A(en ) , † (which belongs to Fn), if we denote by Ln the half-perimeter of the

hole on which A(en ) is selected then the events Ck and Gk1,k2 (where k ≥ 1 and k1 + k2 + 1 = Ln

with k1,k2 ≥ 0) occur respectively with probabilities

b (Ln ) (k ) and b (Ln ) (k1,k2).

Proof. Let us first consider the first step of the peeling process assuming that A(e0) , †. By the

rigidity of the gluing operation, the event Ck happens if and only if the map m is obtained from

the gluing of a map of perimeter 2` + 2k − 2 onto the map e0 to which we glued a face of degree

2k on A(e0), hence we have

P(`) (Ck | F0) =
1

W (`)
· qk

∑
m1∈M(`+k−1)

w (m1) = qk
W (`+k−1)

W (`)
= b (`) (k ).
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Furthermore, the above calculation shows that conditionally on the above event, the map m1

filling-in the hole of e1 is distributed according to P(`+k−1). Similarly and again by rigidity, the

event Gk1,k2 where k1+k2+1 = ` happens if and only if the map m is obtained by first identifying

the edge A(e0) with the edge of the same hole located 2k1 steps on its left and then gluing two

maps of respective perimeters 2k1 and 2k2 into the two holes created (recall that when ki = 0
then we just glue a vertex in). The same calculation shows that

P(`) (Gk1,k2 | F0) =
1

W (`)

∑
m1∈M(k1 )

w (m1)
∑

m2∈M(k2 )

w (m2) = b
(`) (k1,k2).

Again, conditionally on the above event, an easy extension of the last calculation shows that

the maps m1 and m2 filling-in the two holes of e1 are independent and respectively distributed

according to P(k1) and P(k2). This proves that the transitions are correct for the first step of the

chain. But this calculation easily propagates to later steps of the chain because we have seen

that after the first step (provided that the peeling has not stopped) the holes of e1 are filled-in

with independent Boltzmann planar maps having the proper perimeter. �

From the last proposition we easily deduce that under P(`) the locally largest filled-in explo-

ration process e0 ⊂ · · · ⊂ en ⊂ · · · ⊂ m is also a Markov chain: we first use the above transition

probabilities and then fill-in the smallest of the two holes (if there are two) with a q-Boltzmann

planar map of the proper perimeter sampled independently of the past exploration.

3.2.2 pointed q-Boltzmann maps

We now proceed to similar calculations in the case of pointed Boltzmann planar maps where we

use a peeling exploration with target. Recall the definition of the events Ck and Gk1,k2 . In the

case of the peeling of a distinguished hole of e∗n we shall write G∗,k2 for the event Gk1,k2 where

the hole on the left of the peeled edge becomes the next distinguished hole of e∗n+1 and similarly

for Gk1,∗. Notice that if the perimeter of the hole on which we peel is ` then on the events G∗, `−1
and G`−1,∗ the new distinguished hole becomes of perimeter 0: it’s a vertex of the underlying

map.

Definition 13 (Transitions probabilities for the distinguished hole in the pointed Boltzmann

case). For any ` ≥ 1,k ≥ 0 and k1,k2 ≥ 0 such that k1 + k2 + 1 = ` we put

b (`)• (k ) = qk
W (`+k−1)
•

W (`)
•

, b (`)• (∗,k2) =
W (k1)
• W (k2)

W (`)
•

, and b (`)• (k1, ∗) =
W (k1)W (k2)

•

W (`)
•

.

Again the fact that b (`)• indeed define probability transitions for all ` ≥ 1 is equivalent to

Tutte’s equation in the pointed case (2.10).

Proposition 8 (Law of the peeling process with target under the pointed Boltzmann distribution).

Fix ` ≥ 1 and a peeling algorithm A. Then under P(`)• the peeling exploration with target e∗0 ⊂ e
∗
1 ⊂
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· · · ⊂ e∗n ⊂ · · · ⊂ m is a Markov chain whose probability transitions are as follows. Conditionally

on Fn and provided that A(e∗n ) , † we denote by Ln the half-perimeter of the hole on which A(e∗n )

is selected. On the event where A(e∗n ) belongs to the distinguished hole of e∗n the events Ck , Gk,∗

and G∗,k (where 0 ≤ k ≤ Ln − 1) occur respectively with probabilities

b (Ln )• (k ), b (Ln )• (k, ∗) and b (Ln )• (∗,k ).

Otherwise if A(e∗n ) is not on the distinguished hole of e∗n then the probability transitions are those

described in Proposition 7.

Proof. This is mutatis mutandis the same proof as for Proposition 7 and one just needs to check

the appearance of the transitions b (`)• for the first step of the Markov chain starting from the

distinguished hole of e∗0 and to establish the fact that the (possibly) two holes of e∗1 are filled-in

with independent maps, the one in the distinguished hole being a pointed q-Botlzmann map and

the one in the non-distinguished hole being a q-Boltzmann map with the proper perimeter. �

From the last proposition we easily deduce that under P(`)• the filled-in exploration process

with target e0 ⊂ · · · en ⊂ · · · ⊂ m, is also a Markov chain: we first use the transitions probabilities

b ( ·)• to see how to make the distinguished hole evolve and then fill-in the non-distinguished hole

(if there is a splitting event) with a q-Boltzmann planar map of the proper perimeter sampled

independently from the past exploration. For later uses, remark that the chain |∂en | made by

the half-perimeter of the hole of en is itself a Markov chain whose probability transitions are

expressed as

P
(`)
• ( |∂en+1 | =m + k | |∂en | =m) = b (m)

• (k + 1)1k≥0 + 2b
(m)
• (∗,−k − 1)1k≤−1. (3.1)

3.3 A random walk

In this section we study the peeling process under P(`) and P(`)• as ` → ∞. This makes a limit

random walk appear which will turn out to be the key to many results on the peeling process.

3.3.1 The step distribution ν

We fix a peeling algorithm A and make it run on a Boltzmann planar map with a very large

boundary. Recall from Propositions 7 and 8 the probability transitions of the peeling process

once an edge has been selected on the boundary of a hole containing either a Boltzmann map or

a pointed Boltzmann map. Using Theorem 6 in the pointed case and (2.11) in the non-pointed

case, as ` → ∞, we see that these transitions admit a limit:

lim
`→∞

b (`) (k ) = lim
`→∞

b (`)• (k ) = qk c
k−1
q (3.2)

and

lim
`→∞

b (`) (k, ` − k − 1) = lim
`→∞

b (`)• (k, ∗) = W (k ) c−k−1q , (3.3)

lim
`→∞

b (`) (` − k − 1,k ) = lim
`→∞

b (`)• (∗,k ) = W (k ) c−k−1q .
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This leads us to introduce the two related objects:

Definition 14 (Transitions probabilities for infinite holes). For any ` ≥ 1,k ≥ 0 we put

b (∞) (k ) = qkc
k−1
q , b (∞) (∞,k ) = b (∞) (k,∞) =W (k )c−k−1q .

Definition 15. Let ν be the measure on Z defined by

ν (k ) =



qk+1c
k
q for k ≥ 0

2W (−1−k )ckq for k ≤ −1,

or equivalently

ν (k ) =



b (∞) (k + 1) for k ≥ 0
b (∞) (−k − 1,∞) + b (∞) (∞,−k − 1) for k ≤ −1.

A priori, these two measures are sub-probability measures as limit of probability measures. By

the one-step peeling transitions of the peeling with target in the pointed Boltzmann case (Eq

3.1) and Theorem 6 we deduce that the half-perimeter of the distinguished hole (when the edge

selected is on that hole) in a filled-in exploration evolves as a Markov chain whose probability

transitions can be rewritten as

p (m,m + k ) = ν (k )
h↓(m + k )

h↓(m)
, k ∈ Z (3.4)

where we recall from Definition 7 that h↓(`) = 2−2`
(
2`
`

)
if ` ≥ 0 and h↓(`) = 0 if ` < 0. We will

use this to prove:

Lemma 9. The measure ν is a probability measure (and b (∞) defines probability transitions).

Proof. So far we can only deduce (by Fatou) that ν is of mass less than or equal to 1 since it is

a limit of transition probabilities. From (3.4) we deduce that for any ` ≥ 1

h↓(`) =
∑
k ∈Z

ν (k ) h↓(` + k ). (3.5)

Summing-up these equalities for ` = 1, . . . ,n and using Definition 7 we deduce that(
h↑(n + 1) − h↑(1)

)
=

∑
k ∈Z

ν (k )
(
h↑(n + k + 1) − h↑(k + 1)

)
and so

1 =
∑
k ∈Z

ν (k )
h↑(n + k + 1) − h↑(k + 1)(

h↑(n + 1) − h↑(1)
) .

Now, using the form of the function h↑ we see that the ratio involving h↑ in the right display is

bounded by some constant C > 0 independent of n and k and goes to 1 for fixed k as n → ∞.

We can then apply the bounded convergence theorem and deduce that
∑

k ∈Z ν (k ) = 1, and so ν

is a probability measure. �
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3.3.2 h↓-transform

In the rest of these lecture notes we shall denote by Sn = X1 + · · · + Xn a random walk with

independent increments distributed according to ν . We assume that under the probability P`
this walk starts from ` ≥ 0. It follows from (3.5) that the function h↓ is harmonic at the

points {1, 2, . . .} for the random walk (S ). Notice that h↓(0) = 1. Furthermore, the form of the

transition (3.4) shows that the half-perimeter of the unique hole in a filled-in exploration under

P
(`)
• is obtained as the Doob h↓-transform of the Markov chain (S ) started from ` and killed at

first entrance in Z≤0 = {. . . ,−2,−1, 0} for the harmonic function h↓.

Reminder on h-transform of Markov chains. Recall that if p (x ,y) are probability transitions for

a discrete Markov chain and if h is a non-negative harmonic function for the chain then

q(x ,y) =
h(y)

h(x )
p (x ,y),

defines new probability transitions of a Markov chain called the Doob h-transform of p which

is defined for every x ,y for which h(x ) > 0 and h(y) > 0. It is assumed that the Markov chain

starts from a value x0 for which h(x0) > 0 and then the form of the transitions shows that it

will never reach a value y for which h(y) = 0. It is easy to see that the probability of any given

path x0,x1, . . . ,xn with h(xi ) > 0 for the chain X with transitions p is transformed for the chain

Y with transitions q into

P(Y0 = x0, · · · ,Yn = xn ) =
h(xn )

h(x0)
P(X0 = x0, · · · ,Xn = xn ). (3.6)

In our case, the underlying Markov chain is the random walk S killed when entering Z≤0. We

sometimes make an abuse of terminology and speak of the h↓-transform of (S ) instead of saying

the h↓-transform of (S ) killed when entering Z≤0. We assume that under P` the process S↓ is

started from ` and has the law of the h↓-transform of S. In our case, this process has an elegant

probabilistic interpretation:

Proposition 10. Under P` with ` ≥ 1, the Markov chain (S↓) has the law of the random walk (S )

conditioned on first hitting in a finite time 0 before Z≤0 and killed at 0, in particular

h↓(`) = P` (τ {0} = τZ≤0 < ∞).

Proof. If A ⊂ Z let τA be the first time the random walk (S ) started from ` enters A ⊂ Z and

let us compute first P` (τ {0} ≤ τZ≤0 ) where Z≤0 = {. . . ,−2,−1, 0}. Since h↓(Sn∧τZ≤0 ) is a bounded

martingale (recall that h↓(k ) decreases like 1/
√
k when k → ∞) we have by the optional sampling

theorem:

h↓(`) = E`
[
h↓(Sn∧τZ≤0 )

]
−−−−→
n→∞

h↓(0)︸︷︷︸
=1

· P` (τ {0} = τZ≤0 < ∞).
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Now Equation (3.6) shows that for any possible particular trajectory Traj starting from ` and

ending at 0 without touching Z≤0\{0} we have

E`
[(
S↓n

)
0≤n≤τ{0}

= Traj
]
=
h↓(0)
h↓(`)

· E`
[
(Sn )0≤n≤τ{0} = Traj

]
,

and the conclusion follows from the two displays above. �

3.3.3 h↑-transform

The function h↑ (which is the discrete primitive of h↓) will also play a role in connection with

the random walk (S ). First, the criticality condition of Definition 9 can be restated in terms of

harmonicity of the function h↑.

Lemma 11. If q is an admissible weight sequence then h↑ is super harmonic on N∗ = {1, 2, 3, . . .}
for the walk (S ). Furthermore q is critical if and only if h↑ is harmonic at those points.

Proof. Summing equations (2.12) and Zq×(2.13) (with a ≤ instead of = in the general case), using

cq = 4Zq and the definitions of h↑ and of ν , we immediately get after a few easy manipulations

that ∑
k≥0

ν (k )h↑(k + 1) ≤ 1 = h↑(1),

and with an equality when q is critical. This is the desired (super)harmonicity of the function

h↑ at the point 1. To transfert it to the others points we use the harmonicity of h↓ at point 1:∑
k ∈Z

ν (k )h↓(k + 1) = h↓(1).

Summing the last two displays and using h↑(` + 1) − h↑(`) = h↓(`) yields∑
k ∈Z

ν (k )h↑(k + 2) ≤ h↑(2),

and with equality in the case of a critical weight sequence. This proves (super-)harmonicity of

h↑ at point 2. We then iterate to get the same statement at points {3, 4, . . .}. �

Proposition 12. Coming back to Proposition 10, one can remove the assumption that τ {0} is finite

since we have τZ≤0 < ∞ under P` almost surely for any ` ≥ 1.

Proof. By Lemma 11, since the function h↑ is super-harmonic, under P` the process h↑(Sn ) is a

super-martingale. Applying the optimal theorem we have

h↑(`) ≥ E`[h↑(Sn∧τZ≤0 )] = 0 × P` (τZ≤0 ≤ n) + E`[h↑(Sn )1τZ≤0>n ].

It is easy to see that if the event {τZ≤0 = ∞} has positive probability, conditionally on it we must

have Sn → ∞. Since h↑(n) → ∞ as n → ∞, we would reach a contradiction in the last display.

Hence P` (τZ≤0 = ∞) = 0 as desired. �
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When h↑ is harmonic (on Z>0) one can define the Markov chain (S↑) via Doob h↑-transform

of the walk (S ) killed when entering Z≤0. We will assume that under the probability measure

P` this chain starts from ` ≥ 1. Notice a slight but important difference between h↓ and h↑:

although both harmonic for the walk on {1, 2, 3, . . .} we have

h↑(0) = 0 whereas h↓(0) = 1.

This changes the behavior of those h-transform: on the one hand S↓ we eventually hit 0, whereas

on the other hand S↑ will always stay positive. In particular it follows from [38] that for a

random walk killed at first entrance of Z≤0 there is a unique (up to multiplicative constant)

harmonic function on N∗ which is null on Z≤0 and we know from [15] that the process (S↑) can

be interpreted as the limit in distribution of the random walk (S ) conditioned on staying positive

up to time n as n → ∞.

Proposition 13 (Transience of the h↑-transform). The Markov chain (S↑i )i≥0 is transient.

Proof. Let us consider the Markov chain S↑ started from ` and consider the first time τ<` it

reaches a value strictly lower than `. By above properties of the h-transform we can write

P` (τ<` (S↑) < ∞) =
1

h↑(`)
E`[h↑

(
Sτ<`

)
1τ`<∞] ≤

sup`′<` h↑(`′)
h↑(`)

< 1.

It follows easily that S↑ is transient. �

3.3.4 Rough behavior of (S )

Recall that a random walk (X ) with independent increments is said to drift to infinity if

limn→∞Xn → +∞ almost surely, drifts to −∞ if limn→∞Xn → −∞. Otherwise the walk must

oscillate meaning that lim supn→∞Xn = +∞ and lim infn→∞Xn = −∞. Then we have:

Proposition 14. Let q be an admissible subcritical weight sequence, then the walk (S ) drifts towards

−∞. If q is critical then (S ) oscillates (in particular if ν has a first moment i.e.
∑
Z ν (k ) |k | < ∞

then necessarily ν is centered i.e.
∑
Z ν (k )k = 0).

Proof. We denote by (Hi )i≥0 the strict increasing ladder heights of the random walk −S, that

is H0 = 0 and −Hi+1 is the first value that −S takes strictly below −Hi for all i ≥ 0 (with the

convention that Hi+1 = ∞ if there is no such value). Then using Proposition 10 we see that

h↓(`) =
∑
i≥0

P0 (Hi = `),

and so V (`) =
∑

i≥0 P0 (Hi ≤ `) is equal to h↑(` + 1). The function V (`) is known as the renewal

function of the walk. In particular it is known (see in particular [?, Appendix B] and also [15,

Section 2]) that

• if S drifts to ∞ then V is bounded (which is not the case here)
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• if S drifts to −∞ then V is superharmonic (and not harmonic) on {0, 1, 2, ...}

• if S oscillates then V is harmonic on {0, 1, 2, ...}.

The proposition follows from these results. �

Bibliographical notes. The peeling process was first used in the physics literature by Watabiki

[60] without a precise justification. A rigorous version of the peeling process and its Markovian

properties was given by Angel [4] in the case of the Uniform Infinite Planar Triangulation

(UIPT). The peeling process used by Angel consists roughly speaking in discovering one face

at a time. It is well designed to study planar maps with a degree constraint on the faces (such

as triangulations or quadrangulations). The peeling process we consider here and which was

recently introduced in [23] is different: it discovers one edge at a time. The advantage of this

“edge-peeling” process over the“face-peeling” process is that it can be treated in a unified fashion

for all models of Boltzmann planar maps. The presentation of the beginning of the section is

adapted from [13]. The role of an underlying random walk in the peeling process is already

present in the works of Angel. In [35] the connection with h-transform was made explicit. The

results of Section 3.3 with the above peeling process and in this generality are almost all due to

Budd [23].
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Chapter IV : Infinite Boltzmann maps

In this chapter we introduce two random infinite planar maps of the plane and of the half-plane

(in the sense of Definition 4) which are obtained as limits of conditioned Boltzmann maps. These

objects are keys in the theory since the peeling process takes a particularly simple form on them.

Figure 4.1: An artistic representation of the UIPQ, which is a random map distributed

according to the measure P(1)∞ when q = (12−1δk=2) corresponding to the model of critical

random quadrangulations.
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4.1 The half-planar Boltzmann map

In this section we suppose that q is an admissible weight sequence. We study the geometry

of random maps sampled according to P(`) and prove that they converge as ` → ∞ towards a

limiting infinite random map with one end and with an infinite (non simple) boundary. Here is

the main result of the section:

Theorem 7 (Half-planar Boltzmann map)

Let q be an admissible weight sequence, then we have the following convergence in distribu-

tion for the local topology

P(`)
(d )
−−−−→
`→∞

P(∞)

where P(∞) is a distribution supported by infinite bipartite planar maps of the half-plane (see

Definition 4) that we call the half-planar q-Boltzmann distribution.

Remark 9 (UIHPQ). When q = (12−1δ2 (k ))k≥1 corresponds to critical Boltzmann quadrangula-

tions, the measure P(∞) is the law of the uniform infinite half-planar quadrangulation (UIHPQ)

with a general boundary already considered in [37, 25].

4.1.1 Convergence of the peeling processes

Our main tool is the convergence of the probability transitions proved in Section 3.3. The reader

should be convinced that this should imply the convergence of the respective peeling processes

under P(`). However this is false for a trivial/obvious reason: under P(`) the peeling process

starts with e0 which is made of the root face (seen as a map with one hole) of perimeter 2` and

this cannot converge as ` → ∞. To cope with this problem we introduce a slight variation of the

definition of submaps.

Let e ⊂ m be a submap of m ∈ M(`) where we think of ` as large. We suppose that the largest

hole of e is of perimeter roughly 2` and that it shares a connected component of its boundary

of length roughly 2` with the external face. We then introduce ẽ the map with holes obtained

from e after transforming both the giant hole of e and its external face into infinite degree faces.

The result is then a map with a unique infinite hole and an external face of infinite degree, see

Fig. 4.2. When peeling an edge on such a map we can still speak of the events Ck and when we

peel an edge on the infinite hole the events Gk1,k2 now become events G∞,k or Gk,∞ (we identify

the current peeled edge with an edge located 2k + 1 on the left for the event Gk,∞ or on the right

for the event G∞,k thus creating a new hole of perimeter 2k).

Recall that a peeling algorithm is a function A which associates to any map with holes e

an edge A(e) on its active boundary Active(e). We suppose in what follows that we fixed an

algorithm A that is “local” in the sense that it does not depend on `. More precisely, we fix A

such that A(e) only depends on ẽ (for example the algorithm that first peels the edge at distance

` from the root edge on e0 is not permitted). Once this definition is understood the following

should be clear:
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e◦ ⊂ m e ⊂ m
ẽ

Figure 4.2: Illustration of the definition of ẽ (in the non bipartite case). The holes are

displayed in gray whereas the external face is in light blue.

Proposition 15. Consider the peeling process (en )n≥0 with a peeling algorithm A satisfying the

above condition. Then we have the following convergence under P(`):

(ẽn )n≥0
(d )
−−−−→
`→∞

(ẽn )n≥0,

where (ẽn )n≥0 is a Markov chain whose probability transitions are as follows. Conditionally on

{ẽi : 0 ≤ i ≤ n} and provided that A(ẽn ) , †, we denote by Ln ∈ {1, 2, 3, . . .} ∪ {∞} the half-

perimeter of the hole on which A(ẽn ) is located. If Ln < ∞ then the events Ck , Gk1,k2 occur with

the transitions described in Proposition 7. Otherwise if Ln = ∞ the events Ck , G∞,k and Gk,∞

occur respectively with probability (see Definition 14)

b (∞) (k ), b (∞) (∞,k ) and b (∞) (k,∞).

Proof. This is merely a consequence of Section 3.3. More precisely, for any n0 ≥ 0 the sequence

(ei )0≤i≤n0 is described by the information of the events of type C· and G· together with the initial

condition e0 which depends on the value of ` ≥ 1. The point is that, under our assumption on A,

the sequence (ẽi )0≤i≤n0 can be described by the information of the appearance of the events C· or

G· only, without requiring the value of `, at least as long as the largest hole in the first n0 steps

remains a macroscopic hole of perimeter roughly 2` sharing a huge boundary with the external

face. Since the last event occurs with a probability tending to one, the result of the proposition

is implied by the convergence of the transition probabilities b (`) towards the transitions b (∞)

established in Section 3.3. �

4.1.2 Proof of Theorem 7: a first peeling algorithm

In order to prove Theorem 7 we will apply Proposition 15 with a particular peeling algorithm

which explores step after step the local structure around the origin in a map. The most obvious

of such algorithms is the following:
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Algorithm Ametric: If e ⊂ m we associate Ametric (e) the edge immediately on the left

of the vertex x which is the closet to the origin of the map among all vertices of the

active boundary Active(e). If there are several choices for x decide between them using a

deterministic procedure fixed a priori.

A dubious point in the definition of the algorithm Ametric is that we have not made precise

whether x has minimal distance to ρ for the graph distance in m or in the submap e. Actually,

if we want Ametric (e) to depend on e only, the second choice is the only reasonable one. But it

turns out the distance in en are related to those of m:

Lemma 16. If e0 ⊂ e1 ⊂ · · · is the peeling of the map m with algorithm Ametric and if τr is the

first time n ≥ 0 such that min{dengr (x , ρ) : x ∈ Active(en )} ≥ r then recalling Definition 10 we have

eτr = Ballr (m).

Proof. Let us prove the lemma by induction on r . For r = 0 the statement is clear thanks to

our definition of Ball0 (m). Suppose now that eτr = Ballr (m). Let us measure the distances within

eτr of the vertices of the active boundary of eτr to the origin of the map. These distances are by

definition larger than r ≥ 0 but it is easy to see that there are some vertices at distance exactly

r . Using the fact that eτr = Ballr (m) we deduce that those vertices are also at distance r from the

origin within the full map m and that the others are at distance strictly larger than r from the

origin. Now between time τr and τr+1 we always peel edges which are incident to those vertices

and all these edges are then part of Ballr+1 (m) hence

eτr+1 ⊂ Ballr+1 (m).

For the reverse inclusion we just remark that any edge which is not an inner edge of eτr+1 must

have both endpoints are distance larger than r + 1 from the origin. �

Proof of Theorem 7. Clearly, the above peeling algorithm satisfies the assumption required in

Proposition 15 and we thus have convergence of the peeling exploration (ẽn )n≥0 with algorithm

Ametric under P(`) towards the peeling exploration (ẽn )n≥0 described in the last section. Our first

goal is to prove that the increasing sequence ẽn indeed defines a locally finite planar map of the

half-plane. This is implied by the following lemma:

Lemma 17. For any r ≥ 0, if θr = min{dẽngr (x , ρ) : x ∈ Active(ẽn )} ≥ r then we have θr < ∞.

Proof of the lemma. If for some r ≥ 0 we have θr = ∞, this means that when constructing the

sequence (ẽn )n≥0 using algorithm Ametric following the transitions of Proposition 15 then ∪n≥0ẽn
does not create a locally finite map. The problem comes from the fact that some vertex may stay

forever on the boundary of ẽn and may never be swallowed by the peeling process (i.e. becomes

an inner vertex of ẽn). If this happens, it is easy to see that there exists such a vertex x which

is on Active(ẽn ) eventually and such that infinitely many peeling steps are occurring just on the

left of x . Such a situation cannot happen with positive probability since each time we peel the
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edge incident to the left of x an event of type G∞,0 of Gk−1,0 happens with a probability bounded

from below by some positive constant and on this event the vertex x becomes an interior vertex

of ẽn+1. �

Hence the last lemma enables to make the following definition:

Definition 16. We define the law P(∞) (whose associate expectation is denoted by E(∞)) of an

infinite random planar map with an infinite boundary called the half-plane infinite q-Boltzmann

map as the law of ⋃
n≥0

ẽn ,

where (ẽn ) is the Markov chain obtained in Proposition 15 used with algorithm Ametric.

Notice that almost surely under P(∞) (dm) the map m is indeed a map of the half-plane and

in particular is one-ended: since the transition probabilities in the finite holes of ẽn are those of

finite Boltzmann maps all the finite holes of ẽn eventually contain a finite map. So the unique

end of m is at each step contained in the unique hole with an infinite boundary.

Coming back to the proof of the theorem, the convergence of the peeling explorations estab-

lished in Proposition 15 together with the last lemma entail ẽτr under P(`) converge towards ẽθr .

Using Lemma 16 it is an easy exercise to see that this implies the convergence of [m]r under P(`)

converges towards [m]r under P(∞). This shows the desired result (notice that here it is crucial

to use [m]r instead of Ballr (m)). �

Exercise 9. Prove that we also have the following convergence P(`)•
(d )
−−−−→
`→∞

P(∞) in distribution for

the local topology.

4.1.3 Peeling explorations under P(∞)

In the last section we have defined the law P(∞) as the law of the lattice produced by the limiting

Markov chain appearing in peeling explorations with algorithm Ametric. We now explicitly give

the law of the peeling explorations under P(∞).

Proposition 18 (Law of the peeling process under P(∞)). Fix a peeling algorithm A. Then under

P(∞) the peeling exploration e0 ⊂ e1 ⊂ · · · ⊂ en ⊂ · · · ⊂ m is a Markov chain whose probability

transitions are as follows. Conditionally on Fn and provided that A(en ) , † we denote by

Ln ∈ {1, 2, 3, . . .} ∪ {∞} the half-perimeter of the hole on which A(en ) is selected. If Ln = ∞ the

events Ck , Gk,∞ and G∞,k for k ≥ 0 occur with respective probabilities

b (∞) (k ), b (∞) (k,∞) and b (∞) (∞,k ).

Otherwise if Ln < ∞ then the probability transitions are those described in Proposition 7.

Proof. This can be seen in many different ways. Probably the simplest is to proceed as in the

initial proof of Proposition 7 and prove that when we peel one edge of m under P(∞) then we
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indeed have the above probability transitions and that conditionally on each of those cases the

possibly two holes of e1 are filled in with independent maps, the one with the infinite perimeter

being of law P(∞) and the other one being a finite q-Boltzmann map of the proper perimeter. �

We will also consider filled-in explorations (en )n≥0 under P(∞) which are naturally obtained

by filling-in the finite holes during a peeling exploration and only keeping the infinite one active.

This is again a Markov chain whose probability transitions are deduced from the last proposition.

In this case the half-perimeter |∂en | of the unique hole of en has a priori no meaning since it

is infinite. But in this context we denote by |∂en | the algebraic variation of the half-perimeter

of that hole with respect to its initial state (indeed at each step the hole of en is only a local

modification of the initial hole of e0). Recall from Section 3.3 the definition of the random walk

(S ) with independent increments distributed according to ν . Then using the above probability

transitions we deduce that

( |∂en |)n≥0 under P(∞) (d )
= (Sn )n≥0 under P0. (4.1)

Exercise 10 (Translation invariance). Show that the law P(∞) is not affected by translating the

root edge of m by one unit to the left or to the right along the infinite boundary.

4.2 Infinite Boltzmann maps of the plane

In this section on top of being admissible, we suppose that the weight sequence q is critical

(see Definition 9). For n ≥ 0 we denote by P(`)n the q-Boltzmann distribution P(`) conditioned

on maps with exactly n vertices. Depending on the weight sequence q there might be parity

constraint on n for the wq-weight of bipartite maps with perimeter 2` and n vertices to be non

zero and we shall henceforth restrict on those values of n. Recall that one can see a planar map

with an external face of degree 2 as a planar map of the sphere and so P(1)n will be seen as a

distribution on planar maps of the sphere with n vertices. The main result is then:

Theorem 8 (Convergence towards the infinite Boltzmann planar map)

Let q be an admissible and critical weight sequence. For any ` ≥ 1 we have the following

convergence in distribution for the local topology

P
(`)
n

(d )
−−−−→
n→∞

P
(`)
∞ ,

(along the values of n for which P(`)n has a meaning) where P(`)∞ is a distribution supported by

infinite bipartite planar maps of the plane such that the external face is of degree 2`. This

is the so-called infinite q-Boltzmann distribution (with external face of degree 2`).

Remark 10 (UIPQ). When q = (12−1δ2 (k ))k≥1 corresponds to critical Boltzmann quadrangu-

lations, the measure P(1)∞ induced on quadrangulations of the plane is the law of the Uniform

Infinite Planar Quadrangulation defined in [27, 45, 52].
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The proof of the above theorem is similar to that of Theorem 7: we prove convergence of the

peeling process with algorithm Ametric under the law P(`)n as n → ∞ towards an explicit Markov

chain, and then define the law P(`)∞ using the last Markov chain.

4.2.1 Convergence of the peeling transitions under P(`)n

The key to prove Theorem 8 is the following enumeration result. Let W (`)
n be the wq weight of

all (bipartite) planar map with external face of degree 2` and n inner vertices (there might be

parity constraint on n).

Lemma 19. Let q be an admissible and critical weight sequence. For any `, `′ ≥ 1 and for any

n0 ≥ 0 we have

W (`)
n

W (`′)
n−n0

−−−−→
n→∞

h↑(`)c`q

h↑(`′)c`
′

q
,

where the limit is taken along the integers n for which both W (`)
n and W (`′)

n−n0 are non zero.

Proof. This is proved in [23, Corollary 2]. [Include a direct derivation.] �

Definition 17 (Probability transitions for the distinguished hole under P( ·)∞ ). For any ` ≥ 1 and

k ≥ 0 we put

b (`)∞ (k ) = ck−1q qk
h↑(` + k − 1)

h↑(`)
, and b (`)∞ (∗,k ) = b (`)∞ (k, ∗) = c−k−1q W (k )h

↑(` − k − 1)
h↑(`)

.

Lemma 20. The probability transitions defining b (`)∞ sum-up to 1, that is for any ` ≥ 1∑
k≥0

b (`)∞ (k ) +
∑
k≥0

b (`)∞ (∗,k ) +
∑
k≥0

b (`)∞ (k, ∗) = 1.

Proof. Rewriting the identity in terms of ν the above equality is equivalent to the fact that the

function h↑ is harmonic for the walk (S ) at all points {1, 2, 3, . . .}. This is indeed the case when

q is critical by Lemma 11. �

These numbers arise as limits in the probability transitions for the peeling under P( ·)n as we

shall now see. Consider a peeling step under P(`)n , as usual there are two cases:

• Event Ck : The probability that the edge to peel is adjacent to a new face of degree 2k
is simply equal to (again we restrict on the values of n on which the quantities W (`)

n are

non-zero)

qk
W (`+k−1)

n

W (`)
n

Lem.19
−−−−−→
n→∞

b (`)∞ (k ).

• Event G(k1,n1), (k2,n2) : Otherwise the edge to peel is identified with another edge on the same

hole splitting the hole into two new holes of half-perimeter k1 (for the one on the left of the
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peeled edge) and k2 with as usual k1+k2−1 = `. We also denote by n1+n2 = n the respective

number of vertices inside each of these holes. The probability of event G(k1,n1), (k2,n2) is then

W (k1)
n1 W (k2)

n2

W (`)
n

.

If we put n1 = n − N where N is fixed, we deduce using Lemma 19 that

W (`−k−1)
n−N W (k )

N

W (`)
n

Lem.19
−−−−−→
n→∞

c−k−1q W (k )
N

h↑(` − k − 1)
h↑(`)

.

Taking the sum over all N ≥ 0 we have∑
N ≥0

c−k−1q W (k )
N

h↑(` − k − 1)
h↑(`)

= c−k−1q W (k )h
↑(` − k − 1)
h↑(`)

= b (`)∞ (∗,k ).

As a consequence of Lemma 20 we deduce that asymptotically when n → ∞ the probability

of an event G(k1,n1), (k2,n2) when both n1 and n2 are large is negligible as n → ∞. Indeed, by

Fatou’s lemma we have:

lim sup
n→∞

∑
n1≥A,n2≥A
n1+n2=n

W (`−k−1)
n1 W (k )

n2

W (`)
n

= 1 − lim inf
n→∞

*...
,

∑
k≥0

qk
W (`+k−1)

n

W (`)
n

+
∑

n1<A, or n2<A
n1+n2=n

W (`−k−1)
n1 W (k )

n2

W (`)
n

+///
-

≤ 1 −
∑
k≥0

b (`)∞ (k ) −
∑
k<A

b (`)∞ (∗,k ) −
∑
k<A

b (`)∞ (k, ∗)

−−−−→
A→∞

0,

by Lemma 20. In particular, when n is large, if we perform one peeling step under P(`)n then with

overwhelming probability there will be only one hole of e1 which contains a macroscopic fraction

of the mass of m whereas the possible other hole is filled-in with a finite map. Using the above

computations it is easy to see that the map filling-in the “finite” hole of e1 is asymptotically

Boltzmann distributed and that the other map is uniform over the constraints imposed on its

perimeter and size (in particular its size tend to ∞ as n → ∞). Iterating the above argument we

deduce the following rigorous statement:

Proposition 21 (Convergence of the peeling process under P(`)n ). Let e0 ⊂ e1 ⊂ · · · ⊂ m be a peeling

process with algorithm A. Then as n → ∞ the law of (ei )i≥0 under P(`)n converges towards the

Markov chain1 (e∗i )i≥0 whose transitions are as follows. Conditionally on Fn and provided that

A(e∗n ) , †, we denote by Ln the half-perimeter of the hole on which A(e∗n ) is located. If A(e∗n )

belongs to a non-distinguished hole then the events Ck , Gk1,k2 occur with the transitions described

in Proposition 7. Otherwise the events Ck , G∗,k and Gk,∗ occur respectively with probability (see

Definition 17)

b (Ln )∞ (k ), b (Ln )∞ (∗,k ) and b (Ln )∞ (k, ∗).

1after we have forgotten the distinguished cycles in the second chain

46



4.2.2 Proof of Theorem 8

It follows the same lines as the proof of Theorem 7. More precisely we consider the peeling process

(ei )i≥0 under P(`)n with algorithm Ametric. By the above proposition, this sequence converges in law

towards the chain (e∗i )i≥0 driven by algorithm Ametric (after we have forgotten the distinguished

holes). As in the preparation of the proof of Theorem 7 we check that
⋃

n≥0 e∗n defines a infinite

map of the plane. This is proved exactly as in Lemma 17 and Definition 16 and we put:

Definition 18. We define the law P(`)∞ (whose relative expectation is denoted by E(`)∞ ) of an infinite

random planar map of the plane whose external face has degree 2` as the law of⋃
n≥0

e∗n ,

where (e∗n ) is the Markov chain obtained in Proposition 21 started from a single face and hole of

degree 2` and driven by the algorithm Ametric.

As in the last section and using Proposition 21 we deduce the convergence of eτr under P(`)n

towards e∗θr . By Lemma 16 this entails that Ballr (m) under P(`)n converges towards Ballr (m)
under P(`)∞ as n → ∞. From this we infer the same convergence for the balls [m]r and this proves

our result. �

4.2.3 Law of peeling explorations with target under P(`)∞

Let us now give the law of peeling explorations under P(`)∞ .

Proposition 22 (Law of the peeling process with target under P(`)∞ ). Fix ` ≥ 1 and a peeling

algorithm A. Then under P(`)∞ the peeling exploration with target (e∗i )i≥0 is a Markov chain whose

probability transitions are as follows. Conditionally on Fn and provided that A(e∗n ) , † we denote

by Ln ∈ {1, 2, 3, . . .} the half-perimeter of the hole on which A(e∗n ) is selected. On the event where

A(e∗n ) belongs to the distinguished hole of e∗n the events Ck , Gk,∗ and G∗,k for k ≥ 0 occur with

the respective probabilities

b (Ln )∞ (k ), b (Ln )∞ (k, ∗) and b (Ln )∞ (∗,k ).

Otherwise if A(e∗n ) is on a non-distinguished hole of e∗n then the probability transitions are those

described in Proposition 7.

Proof. One can proceed as in the initial proof of Proposition 7 and prove that when we peel

one edge of m under P(`)∞ then we have the above probability transitions and that conditionally

on each of those cases the possibly two holes of e1 are filled in with independent maps, the one

within the distinguished hole being of law P( ·)∞ and the other one of law P( ·). �

As usual it follows from the last display that the filled-in explorations with target (en )n≥0

under P(`)∞ are also Markov chains. Let us simply notice that the half-perimeter |∂en | of the

47



unique hole is itself a Markov chain whose probability transitions can be written under the form

p (x ,x + k ) = ν (k )
h↑(x + k )

h↑(x )
. (4.2)

In other words, the half-perimeter process of en evolves as S↑, the random walk S started from

` and conditioned to stay positive, see Section 3.3.3.

Bibliographical notes. Although the results of the first section of this chapter are new in the

present generality, they have been known in several particular cases. In particular Angel [3]

defined first the uniform infinite half-planar triangulation (UIHPT) by taking the limit of the

peeling process in large (in fact infinite) triangulations, see also [54, Section 5]. In fact this

object is slightly different from those studied in this work (except from the trivial fact that it is

a triangulation and so not bipartite) because the object defined in [3] has a simple boundary (no

pinch point). See [37] for the definition of the related uniform infinite half-planar quadrangu-

lation with a general boundary as here via a Schaeffer-type construction (this object is studied

in depth in [25]). This object has the law P(∞) when q = (12−1δk=2). The convergence towards

infinite maps of the plane has first been proved in the case of triangulations by Angel & Schramm

[8] and later by Krikun [46] in the case of quadrangulations. Later Schaeffer-type constructions

of the Uniform Infinite Planar Quadrangulation (whose law “is” that of P(1)∞ when q = (12−1δk=2))
were given [27, 52, 36] and this opened the door to the more general convergence of Theorem 8

which was proved in this generality in [18] using the Bouttier–Di Francesco–Guitter bijection.

The proof given here, only based on the peeling process and the properties of the function h↑,

is new.
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Chapter V : Scaling limit for the peeling process

In this chapter we give the scaling limit for the evolution of the perimeter and volume processes

during filled-in explorations under P(`),P(`)• and P(∞). However, to be able to get nice scaling

limits for these processes we need regularity assumptions on the weight sequence q so that the

step distribution ν (Definition 15) is in the domain of attraction of a stable law.

Figure 5.1: Simulation of the processes ϒ↑a and V(ϒ↑a ) when a = 2.3 [change legend].

These processes describe the scaling limits of the perimeter and volume growth in filled-in

explorations under P(`)∞ when q is of type a = 2.3.

5.1 Classification of critical weight sequences

Recall the admissibility and criticality criteria for q presented in Section 2.3. In the following

we will always suppose that q is admissible and recall the notation cq/4 = Zq for the smallest

solution to fq (x ) = 1 − 1
x .
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We have seen in Theorem 6 that, provided q is admissible, the behavior of the pointed

partition function W (`)
• is universal and only depends on cq. To get access to W (`) the idea is

to vary the weight sequence q. For д ∈ (0, 1) we introduce the weight sequence qд defined by

(qд )k = qkд
k−1. If m ∈ M(`) using Euler’s formula together with

∑
f ∈Faces(m)\{fr } deg( f )/2 + ` =

#Edges(m) we can write that

wqд (m) = д
−1−`д |m |wq (m). (5.1)

Clearly the weight sequence qд is admissible (we diminish the weight) and so we put cqд so that

cqд/4 is the smallest solution to fqд (x ) = 1 − 1
x or equivalently fq (дx ) = 1 − 1

x . The last display

together with Theorem 6 shows that∑
m∈M(`)

|m |wq (m)д
|m |−1 =

(
дcqд

)`
h↓(`), (5.2)

which by integration yields an explicit expression for W (`):

W (`) =
∑
m∈M(`)

wq (m) = h
↓(`) ·

∫ 1

0
dд

(
дcqд

)`
. (5.3)

Before going further, let us deduce a corollary of the last displays which says that the admis-

sibility definition could have equivalently be based on finiteness of W (`) rather than finiteness of

W (`)
• .

Corollary 23. Let q be a weight sequence such that W (`) (q) is finite for some ` ≥ 1 (as opposed

to the stronger condition W (`)
• (q) < ∞). Then q is admissible in the sense of Definition 8.

Proof. Let q be as in the statement and д ∈ (0, 1). By summing (5.1) over all m• ∈ M
(`)
• and

using the fact that k · дk is bounded above by some constant (depending on д) we deduce that

W (`)
• (qд ) = д−1−`

∑
m∈M(`)

|m |wq (m)д
|m |−1 ≤ CдW

(`) (q) <
hyp.
∞.

Hence, for every д ∈ (0, 1) the weight sequence qд is admissible in the sense of Definition 8 and by

Proposition 5 we deduce that fqд (x ) = 1− 1
x or equivalently fq (дx ) = 1− 1

x admits a solution which

we denote by cqд/4 as above. Putting c = supд↑1 cд we easily deduce by monotone convergence

that c/4 < ∞ is solution to fq (x ) = 1 − 1
x hence q is indeed admissible by Proposition 5. �

Coming back to (5.3) we see that the function д 7→ дcqд is continuous and increasing with

limit cq when д → 1−. By Laplace method we deduce that (W (`) )1/` → cq as ` → 1. More

precisely we can now prove (2.11). We form the ratio:

W (`+1)

W (`)
=
h↓(` + 1)
h↓(`)

∫ 1
0 dд

(
дcqд

)`+1
∫ 1
0 dд

(
дcqд

)` .
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Since h↓(` + 1)/h↓(`) → 1 and because дcqд ≤ cq for д < 1 we deduce that asymptotically the ratio

is less than cq. On the other hand, by Laplace method, the main contribution to the integrals

in the last display are for д close to 1, that is for any ε > 0 we have

lim inf
`→∞

W (`+1)

W (`)
≥

∫ 1
1−ε dд

(
дcqд

)`+1
∫ 1
1−ε dд

(
дcqд

)` ≥ (1 − ε )cq(1−ε ) −−−→ε→0
cq,

and the lower bound is granted. More generally, the Laplace method tells us that the fine

asymptotic of
∫ 1
0 f (x )dx where f is non-decreasing is related to the behavior of f near 1. In our

case, we thus need to classify the possible behaviors of cqд near д = 1− which can have a few

different behaviors as we shall now see. Before classifying those behaviors, let us introduce the

notion of regularity :

Definition 19. The admissible weight sequence q is regular if one has fq (Zq + ε ) < ∞ for some

ε > 0 or equivalently if the probability measure ν has an exponential tail on the positive side.

In particular if the weight sequence is supported by finitely many values k ≥ 1 then as soon as

it is admissible, it is automatically regular.

5.1.1 Regular subcritical weight sequences

To later extend the reasoning of the forthcoming calculation we put a = 3
2 in this subsection.

Suppose that q is (admissible) and subcritical. That means that the graphs of x 7→ fq (x ) and

x 7→ 1 − 1
x cross at x = Zq with different tangents f ′q (Zq) < 1/Z 2

q. Then using the notation of the

last section, it is easy to see that for д ∈ (0, 1) we have

дcqд = cq (1 − κ (1 − д)
1/(a−1/2) ) + o(1 − д)1/(a−1/2) as д → 1−,

for some constant κ > 0 where above we have written 1 = 1/(a − 1/2) in a complicated fashion.

Plugging this back into (5.3) and using Laplace method together with the fact that h↓(`) ∼ 1/
√
π`

we find that if we put

pq :=
2κ 1

2−a

cq
√
π
Γ(a +

1
2
), (5.4)

then we have

W (`) ∼
`→∞

pq
2
· c`+1q · `−a . (5.5)

Combining this with the above regularity assumption we deduce that: In the case of a regular

and subcritical sequence we have for some C > 0 and λ ∈ (0, 1)

ν (−k ) ∼
k→∞

pq k−a and ν (k ) ≤ Cλk for k ≥ 0. (5.6)

In particular since a = 3
2 we see that ν has no first moment because of the left tail.
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5.1.2 Regular critical weight sequences

In the case when q is regular and critical, at the point Zq the graphs of x 7→ fq (x ) and of

x 7→ 1 − 1
x are tangent. Since q is regular, the second derivative f ′′q (Zq) is finite. Then using

again the notation of the last section, a local study shows that for д ∈ (0, 1) we have

дcqд = cq (1 − (1 − д)1/(a−1/2) ) + o(1 − д)1/(a−1/2) as д → 1−,

for some constant κ > 0 where now a = 5/2 so that 1/(a − 1/2) is just equal to 1/2. Plugging this

back into (5.3) and using Laplace method, we find that with the same definition of pq as that

of (5.4) we have

W (`) ∼
`→∞

pq
2
· c`+1q · `−a , (5.7)

still with a = 5
2 . In terms of the step distribution ν we deduce that in the case of a regular

and critical sequence we have for some C > 0 and λ ∈ (0, 1)

ν (−k ) ∼
k→∞

pq k−a and ν (k ) ≤ Cλk for k ≥ 0. (5.8)

In particular since a = 5
2 we see that ν has a first moment. By Proposition 14 it is furthermore

centered. This type of behavior is the “generic one” when one deals with natural classes of

random maps.

5.1.3 Critical and non-generic

If we want to ensure other behaviors for cqд near д = 1− one must drop the regularity condition.

We thus want a weight sequence q so that fq is not defined anymore at Zq+ and has an infinite

second derivative at Zq. The natural way to do that is to start from a weight sequence q̂k

asymptotic to k−a for a ∈ (3/2; 5/2) when k → ∞ and then modifying it to achieve the desired

criticality. More precisely:

Lemma 24. We put

c =
4

4fq̂ (1/4) + f ′q̂ (1/4)
and β =

f ′q̂ (1/4)

4fq̂ (1/4) + f ′q̂ (1/4)
,

then the weight sequence q defined by qk = c (β/4)k−1q̂k is admissible, critical and furthermore,

with the above notation we have

дcqд = cq (1 − κ (1 − д)
1

a−1/2 ) + o(1 − д)1/(a−1/2) as д → 1−.

In particular we see that the range of a is constrained by the fact that we want f ′q (Zq ) to

exists at Zq which implies a > 3/2 and its second derivative to explode which implies a < 5/2.
Also we find a posteriori that the β in the above lemma is just cq. We call such a weight
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sequence a critical non-generic weight sequence with exponent a ∈ (3/2; 5/2). Using again the

Laplace method we find that with the same definition of pq given in (5.4) we have

W (`) ∼
`→∞

pq
2
· c`+1q · `−a . (5.9)

In particular the relation of pq with the constant c of the last lemma is of uttermost importance:

after some easy but tedious analysis we find that

pq =
c

cos(a π )

so that together with (5.9) we have

qk ∼
k→∞

pq · cos(a π ) · c−k+1q k−a . (5.10)

These asymptotics translate into asymptotics for the probability measure ν : In the case of a

critical non generic weight sequence with exponent a ∈ (3/2; 5/2) we have

ν (k ) ∼
k→∞

pq · cos(a π ) · |k |−a and ν (−k ) ∼
k→∞

pq · |k |−a , as k → ∞. (5.11)

In particular ν has a first moment and is centered by Proposition 14 when a > 2 and has no

first moment otherwise. The anxious reader may also consider the following very convenient

particular weight sequences:

qk = c · c
−k+1
q

Γ( 12 − a + k )

Γ( 12 + k )
1k≥2, cq = 4a − 2, c =

−
√
π

2 Γ(3/2 − a)
, (5.12)

for which the probability measure ν takes a simple form:

ν (k ) = c
Γ(3/2 − a + k )
Γ(3/2 + k )

1k,0. (k ∈ Z) (5.13)

See [24, Section 5] for a proof that this weight sequence is indeed critical and non-generic with

exponent a ∈ (3/2; 5/2). Notice that this weight sequence is term-wise continuous as a → 5/2
taking the value qk =

1
12δ2 (k ), which corresponds exactly to critical quadrangulations.

Notation: In order to state the results in a unified fashion we will say that a

weight sequence q is of type “5/2” if it is admissible, critical and regular; is

of type “3/2” if it is admissible, subcritical and regular; and finally is of type

“a” with a ∈ (3/2; 2) ∪ (2; 5/2) if it is admissible, critical and non-generic with

exponent a. For the border case a = 2 we will say that q is of type 2 if q is

equal to the particular sequence given in (5.12) for the value a = 2. In all

cases the constant pq appears in the asymptotic of the negative tail of ν with

respect to |k |−a.
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5.1.4 Link with the O (n) model

In order to motivate a bit more the introduction of the non-generic critical weights let us briefly

recall some results for the O (n) model on random quadrangulations proved in [20]. A loop-

decorated quadrangulation (q, l) is a planar map whose faces are all quadrangles on which non-

crossing loops l = (li )i≥1 are drawn (see Fig. 2 in [20]). For simplicity we consider the so-called

rigid model when loops can only cross quadrangles through opposite sides. We define a measure

on such configurations by putting

Wh,д,n ((q, l)) = д |q |h |l |n#l,

for д,h > 0 and n ∈ (0, 2) where |q | is the number of faces of the quadrangulation, |l| is the

total length of the loops and #l is the number of loops. Provided that the measure Wh,д,n has

finite total mass one can use it to define random loop-decorated quadrangulations with a fixed

number of vertices. Fix n ∈ (0, 2). For most of the parameters (д,h) these random planar maps

are “sub-critical” (believed to be tree like when large) or “generic critical” (believed to converge

to the Brownian map). However, there is a fine tuning of д and h (actually a critical line) for

which these planar maps may have different behaviors. More precisely, their gaskets, obtained

by pruning off the interiors of the outer-most loops (see Fig. 4 in [20]) are precisely non-generic

critical Boltzmann planar map in the sense of the last section where

a = 2 ±
1
π
arccos(n/2).

The case a = 2− 1
π arccos(n/2) ∈ ( 32 ; 2) is called the dense phase because the loops on the gasket are

believed in the scaling limit to touch themselves and each other. The case a = 2+ 1
π arccos(n/2) ∈

(2; 52 ) (which occurs at the extremity of the critical line) is called the dilute phase because the

loops on the gasket are believed to be simple in the scaling limit and avoiding each other.

Figure 5.2: A schematic illustration of q-Boltzmann RPM in the dilute (left) and dense

phase (right).
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5.2 Invariance principles for the perimeter processes

This section is devoted to describe the invariance principles for the process of the perimeters

of the distinguished hole in a filled-in peeling exploration under P(∞), P(`)• and P(`)∞ . Recall from

(3.4), (4.1) and (4.2) that |∂en | the half-perimeter in a filled-in exploration under P(`)• , P(`)∞ or

the algebraic variation thereof under P(∞) are respectively distributed as the Markov chains S↓,

S↑ under P` and the random walk S under P0. We will thus present the scaling limits in this

section using the walk S and its relatives S↓ and S↑.

5.2.1 The case of the random walk S

Invariance principles for random walks with independent increments are standard tools in nowa-

days probability. We start by introducing the limiting processes involved which are stable Lévy

processes (we refer to the book of Bertoin [12] for background). For a ∈ [3/2; 5/2] let (ϒa (t ) : t ≥ 0)
be the (a − 1)-stable Lévy process with positivity parameter ϱ = P(ϒt ≥ 0) satisfying

(a − 1) (1 − ϱ) =
1
2
.

That is to say (ϒa (t ))t ≥0 has no drift, no Brownian part and its Lévy measure has been normalized

to

Π(dx ) = cos(a π ) ·
dx
xa

1x>0 +
dx
|x |a

1x<0. (5.14)

Notice that in the case a = 5
2 or a = 3

2 , the process ϒa has no positive jumps. Furthermore, in the

case of a = 3
2 it corresponds to the opposite of the 3

2 -stable subordinator (a pure jump process)

and in the case a = 2 it is the symmetric Cauchy process without drift. Recall that under P0
the process (Sn )n≥0 is a random walk with independent increments of law ν started from 0; the

dependence in q hence in a in implicit in what follows.

Proposition 25 (Scaling limit for the random walk S). If q is of type a ∈ [3/2; 5/2] then under P0
we have the following convergence in distribution for the Skorokhod topology(

S[nt ]

n1/(a−1)

)
t ≥0

(d )
−−−−→
n→∞

(ϒa (pq · t ))t ≥0.

Proof. By classical results (see [42]) the functional convergence towards the stable Lévy process

is granted once we have the convergence of the finite-dimensional marginals or equivalently the

convergence in distribution

Sn

n1/(a−1)
(d )
−−−−→
n→∞

ϒa (pq)
(d )
= (pq)1/(a−1)ϒa (1).

By the description of the tail asymptotics of ν given in the last section it follows that when q
is of type a then ν is a probability distribution in the domain of attraction of an (a − 1)-stable

law. This means that a−1n Sn − bn converges to an (a − 1)-stable law for some scaling sequence
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(an ) and centering sequence (bn ), see [17, Theorem 8.3.1]. By matching the Lévy measure Π

with the tail asymptotics of ν it follows that one can take an = n1/(a−1) and it remains to show

that the centering sequences (bn ) can be set to 0. This is always the case when a ∈ (3/2; 2) since

no centering is needed. In the case when a ∈ (2; 5/2) the fact that the random walk (Si )i≥0 has

mean 0 (Proposition 14) shows that the centering sequence can be set to 0 as well. If now q is

of type 2, recall that it means that ν (k ) = 1
4k2−11k,0 by (5.13). We can then compute exactly

in this particular case the form of (bn ) [do the calculation] and see that it can be taken equal

to 0. (We believe that this scaling limit should also hold true for any critical and non-generic

sequence with exponent a = 2 and not only the special case that we are dealing with). �

For further use, let us note that under the assumptions of the above proposition, the local

limit theorem [41, Theorem 4.2.1] implies that

P0 (Sk = 0) ∼ C0k
−1/(a−1) (5.15)

as k → ∞ for some C0 > 0.

5.2.2 The cases of S↑ and S↓

Recall from Section 3.3 that since h↓ is harmonic for the walk S killed at first entrance of Z≤0

we can define the Markov chain S↓ as the h↓-transform of S and this chain corresponds to the

evolution of the half-perimeter of the distinguished hole in peeling explorations under P(`)• . Also

when q is critical, in particular if q is of type a ∈ (3/2; 5/2] then we can also define S↑ via the

h↑-transform which corresponds to the evolution of the half-perimeter of the distinguished hole

in peeling explorations under P(`)∞ . This chain is not defined when a = 3
2 . Recall also that under

P` the chains S↑ and S↓ start from ` ≥ 1.
We then introduce ϒ↑a and ϒ↓a the versions of the Lévy process ϒa conditioned to stay positive

and respectively to die continuously at 0 when it enters R−, these are obtained from continuous

h-transforms of ϒa using the functions x 7→
√
x and x 7→ 1/

√
x respectively (see [28, 26] for the

definition of these processes). Unless explicitly mentioned, the process ϒ↑a starts from 0 (this

indeed has a meaning) and the process ϒ↓a is started from 1. The process ϒ↑3/2 has no meaning

since in the case a = 3
2 the Lévy process ϒ3/2 is just the opposite of a subordinator. Combining

Proposition 25 with the recent invariance principles proved in [26] shows that:

Proposition 26 (Scaling limit for S↑ and S↓). If q is of type a ∈ [3/2; 5/2] we have the following

convergences in distribution for the Skorokhod topology under P` for ` ≥ 1, the first one being

restricted to a , 3/2: ( 1
n1/(a−1)

· S↑[nt ]

)
t ≥0

(d )
−−−−→
n→∞

(ϒ↑a (pq · t ))t ≥0,(1
`
· S↓

[` (a−1)t ]

)
t ≥0

(d )
−−−−→
`→∞

(ϒ↓a (pq · t ))t ≥0.

Here is a useful and geometric corollary of this scaling limit result:
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Corollary 27 (The filled-in exploration discovers everything). Suppose that q is of type a ∈

[3/2; 5/2]. Let (en )n≥0 be a filled-in peeling exploration under P(`)∞ for some algorithm A. Then⋃
n≥0
en = m, almost surely.

Proof. As in the proof of Lemma 17 one needs to prove that every “vertex” on the boundary of

en is eventually swallowed by the peeling process and becomes an interior vertex of en . We note

however that conditionally on the past exploration, if ` is the length of the distinguished hole,

then for any given vertex v on the boundary of the distinguished hole of en and any edge to peel

on that hole there is probability of order

`−1∑
k=[`/2]

b (`) (∗,k ) or
`−1∑

k=[`/2]
b (`) (k, ∗),

that the peeling of the edge A(en ) swallows in a finite region half of the boundary of the distin-

guished hole so that the vertex v becomes an inner vertex of en+1. Using the exact values of b (`)∞

described in Section 4.2.1 as well as the asymptotics for the tail of ν and the expression of h↑, it

follows that the last display is of order `1−a . Since the half-perimeter of the only hole of en has

the same law as S↑ the proof of the corollary boils down to proving that almost surely we have

∞∑
n=1

*
,

1
S↑n

+
-

a−1

=

∞∑
n=1

1
n

*
,

n1/(a−1)

S↑n

+
-

a−1

= ∞.

We are exactly in the conditions to apply Jeulin’s lemma [44, Proposition 4 c]. Since the proof is

very short and elementary let us recall it here. We denote by Xn =
(
n1/(a−1)/S↑n

)a−1
and suppose

by contradiction that the random series
∑ 1

nXn is bounded by M ≥ 0 on an event A of probability

at least ε > 0. Using the convergence of Xn towards the strictly positive random variable ϒ−1a (pq)

implied by Proposition 26 we deduce that we can find δ > 0 such that

lim inf
n→∞

P(Xn ≥ δ ) ≥ 1 −
ε

2
.

Then taking expectation on the event A we deduce that

E[1A
∑
n≥1

1
n
Xn] =

∑
n≥1

1
n
E[1AXn] ≤ M .

But using the above display we deduce that E[1AXn] ≥ δ max(0, ε − P(Xn < δ )) is asymptotically

larger than δε/2. Plugging back into the last display we find a contradiction because the series∑
n≥1

1
n εδ/2 is obviously not summable! �

Open question. Is the last corollary true for any critical weight sequence?
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5.2.3 Case of P(`): the locally largest cycle

In the case of peeling exploration under the finite Boltzmann measure P(`), there is no canonical

filled-in exploration. But recall that we defined in Section 3.1.4 a tailor made filled-in exploration

(en )n≥0 which follows the locally largest hole. The scaling limit for the half-perimeter process

|∂en | is also known, and takes the following form: If q is of type a ∈ [3/2; 5/2] under P(`) we have

the following convergence in distribution for the Skorokhod topology:(1
`
· |∂e[` (a−1)t ] |

)
t ≥0

(d )
−−−−→
`→∞

(ℵa (pq · t ))t ≥0.

The process ℵa is a little bit complicated to described: it is a self-similar Markov process with

self-similarity index a − 1 which starts from 1 and does not make negative jumps of more than

half of its current size. By the classical Lamperti transformation [47], these processes can be

written as time-change exponential of an underlying Lévy process ξ which in this case has a

Lévy exponent Ψa with E[exp(qξ (t ))] = exp(tΨ(q)) for q > 0 where

Ψa (q) = *
,

Γ(3 − a)
2Γ(4 − 2a) cos(π (a − 1))

+
Γ(a)B 1

2
(−a + 1, 3 − a)

π
+
-
q +

∫
R
(eqy − 1 + q(1 − ey )) Λa (dx )

(5.16)

where B1/2 (u,v ) =
∫ 1/2
0 tu−1 (1−t )v−1dt is the incomplete Beta function and where Λa is the image

of µa by the map x 7→ lnx with

µa (dx ) =
Γ(a)

π

(
1

(x (1 − x ))a
11/2<x<1 + cos(a π ) ·

1
(x (x − 1))a

1x>1
)
dx .

We do not give the details of the proof here and refer to Chapter ??.

5.3 Scaling limit for the volume process

We will now study the volume of the explored map in filled-in peeling explorations. Recall

that during the filled-in explorations under P(`)• ,P
(`),P(∞) or P(`)∞ the non-distinguished finite

holes created during the peeling are filled-in with independent Boltzmann maps of the proper

perimeter. One should first start by studying the renormalized volume of Boltzmann maps with

a large perimeter.

5.3.1 Stable limit for the volume of Boltzmann maps

For a ∈ [3/2; 5/2] we let ξ• (a) be a positive 1/(a− 1
2 )-stable random variable with Laplace transform

E[e−λξ• (a)] = exp
(
−(Γ(a + 1/2)λ)

1
a−1/2

)
. (5.17)

In the case a = 3/2 this random variable is simply the constant 1. In general we have E[1/ξ• (a)] =∫∞
0 dx exp(−x1/(a−1/2) )/Γ(a + 1

2 ) = 1 and we can define a random variable ξa by biasing ξ• (a) by

x → 1/x , that is for any f ≥ 0

E[f (ξa )] = E
[
f (ξ• (a))

1
ξ• (a)

]
.
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Notice that ξa has mean E[ξa] = 1. Recall that |m | denotes the number of vertices of a map m.

Proposition 28. Suppose that q is of type a ∈ [3/2; 5/2]. Then we have

E(`)[|m |] ∼ bq · `a−1/2 as ` → ∞ where bq =
2

cq pq
√
π
, (5.18)

and we have the convergence in distribution under P(`)

`−a+
1
2 |m |

(d)
−−−−→
`→∞

bq · ξa . (5.19)

It is good to notice that in the subcritical case a = 3
2 the volume (i.e. the number of vertices)

of a map m under P(`) is proportional to its perimeter (the random variable ξ3/2 is just the

constant 1). This indicates that the map is folded on its external face and is tree-like.

Proof. Recall from (2.8) that we have

E(`)[|m |] =
W (`)
•

W (`)
.

It follows from Theorem 6 that we have the exact expression W (`)
• = c`qh

↓(`). Combining this

with the asymptotics for W (`) that we derived in Section 5.1 we get the first statement of

the proposition. To prove the second statement it is sufficient (using the first point) to prove

convergence in distribution of the rescaled volume of m• under P(`)• towards bq · ξ• (a) (see [19,

Proof of Proposition 4] for details). To show this, recall from (5.2) and the notation introduced

there that we have

E
(`)
• [д |m |−1] =

1

W (`)
•

∑
m∈M(`)

|m |wq (m)д
|m |−1 =

(
дcqд

)`
h↓(`)

c`qh↓(`)
=

(
дcqд

cq

)`
,

where cqд/4 is the smallest solution to fq (дx ) = 1 − 1
x . Recall from Section 5.1 the asymptotic

expansion
дcqд

cq
= (1 − κ (1 − д)1/(a−1/2) ) + o(1 − д)1/(a−1/2) .

Using this with д = exp(−λ`
1
2−a ) we find, using the relations between cq, pq and bq that

lim
`→∞
E
(`)
•

[
exp

(
−λ`

1
2−a |m• |

)]
= lim

`→∞

(
дcqд

cq

)`
= exp(−κλ1/(a−1/2) )

= exp(−(bq · λ)1/(a−1/2) ) = E[e−λbqξ• (a)],

thereby proving the desired convergence in distribution. �

Remark 11. In the above proposition we work with the number of vertices to measure the size

of a map. However, all the results are true if one instead measures the volume in terms of the

number of faces of the map provided that we change the constant bq into

bFq =
(cq
4
− 1

)
bq.

59



5.3.2 Functional scaling limit for the volume and perimeter

We are now able to introduce the joint scaling limit for the perimeter and volume processes

during a filled-in peeling exploration. For a ∈ [3/2; 5/2], if (χt )t ≥ is a given càdlàg process we

associate with it another process Va (χ ) defined as follows. We let ξ (1)a , ξ
(2)
a , . . . be a sequence of

independent real random variables distributed as the variable ξa of Proposition 28. We assume

that this sequence is independent of the process χ and for every t ≥ 0 we set

Va (χ ) (t ) =
∑
ti ≤t

ξ (i )a · |∆χ (ti ) |
a− 1

2 1∆χ (ti )<0, (5.20)

where t1, t2, . . . is a measurable enumeration of the jump times of χ . In general, Va (χ ) may be

infinite, but since x 7→ xa−
1
2 1x<0 integrates the Lévy measure of (ϒa (t ) : t ≥ 0) in the neighborhood

of 0 it is easy to check that Va (ϒa ) is a.s. finite for all t ≥ 0. It can also be shown using absolute

continuity relations with ϒa that the processes Va (ϒ
↑
a ) as well as Va (ϒ

↓
a ) also make sense.
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Theorem 9 (Scaling limits of the filled-in peeling processes)

Let (en )n≥0 be a filled-in exploration process and denote by |∂en | and |en | the half-perimeter

of the hole (or its algebraic variation in the case when the hole is of infinite perimeter) and

the number of inner vertices of en . Then if q is of type a ∈ [3/2; 5/2] we have the following

convergences in distribution in the sense of Skorokhod

under P(∞),

(
|∂e[nt ] |

n
1

a−1
,
|e[nt ] |

n
a−1/2
a−1

)
t ≥0

(d )
−−−−→
n→∞

((
ϒa , bq · Va (ϒa )

)
(pqt )

)
t ≥0
,

under P(`)∞ ,

(
|∂e[nt ] |

n
1

a−1
,
|e[nt ] |

n
a−1/2
a−1

)
t ≥0

(d )
−−−−→
n→∞

((
ϒ↑a , bq · Va (ϒ

↑
a )

)
(pqt )

)
t ≥0
,

under P(`)• , *
,

|∂e[` (a−1)t ] |

`
,
|e[` (a−1)t ] |

`a−1/2
+
-t ≥0

(d )
−−−−→
`→∞

((
ϒ↓a , bq · Va (ϒ

↓
a )

)
(pqt )

)
t ≥0
.

Proof. The convergence of the first components in each of the above lines is given by Proposition

25 and Proposition 26. It thus remains to study the conditional distribution of the second

component given the first one. We will do that in the first case since the arguments are the same

in the two others cases. To simplify a bit notation we write Pn = |∂en | and Vn = |en |. Recall

from the explicit transitions of the filled-in peeling process under P(∞) that the number of inner

vertices in en can be written as

Vn =
n−1∑
i=0

X
(i )
Pi−Pi+1−1,

where X
(i )
j for i ≥ 0 and j ∈ Z are independent random variables such that X

(i )
j has the same

distribution as the number of vertices inside a q-Boltzmann random map with perimeter 2j if

j ≥ 0 and is 0 otherwise. To simplify further we use the notation ∆̃Pi = Pi − Pi+1 − 1 if ∆Pi ≤ −1
and 0 otherwise. Fix ε > 0 and set for k ∈ {1, 2, . . . ,n}

V >ε
k =

k−1∑
i=0

X
(i )
∆̃Pi

1∆̃Pi>εn1/(a−1) , V ≤εk =

k−1∑
i=0

X
(i )
∆̃Pi

10≤∆̃Pi ≤εn1/(a−1) . (5.21)

We first observe that n−(a−1/2)/(a−1)E[V ≤εn ] is small uniformly in n when ε is small. Indeed, using

the bound E[X`] ≤ C`a−1/2 provided in Proposition 28 we can write

E[V ≤εn ] ≤ C
n−1∑
i=0
E

[
|∆̃Pi |

a−1/21∆̃Pi ≤εn1/(a−1)

]
= Cn

εn1/(a−1)∑
k=1

(k − 1)a−1/2ν (−k )

≤ C ′
√
εn(a−1/2)/(a−1) . (5.22)

On the other hand, by Propositions 25 and 28 together with the fact that (ϒa (t ))t ≥0 does

not have jumps of size exactly −ε almost surely, we deduce that jointly with the convergence

of the rescaled perimeter towards ϒa we have the following convergence in distribution for the

Skorokhod topology (
n−

a−1/2
a−1 ·V >ε

[nt ]

)
t ≥0

(d )
−−−−→
n→∞

(
bq · V>ε

a (ϒa ) (pqt )
)
t ≥0
, (5.23)
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where the process V>ε
a (χ ) is defined as Va (χ ) but only keeping the negative jumps of χ of absolute

size larger than ε. Then, it is easy to verify that, for every δ > 0 and any t0 > 0 fixed we have

P
(

sup
0≤t ≤t0

|Va (ϒa ) (t ) − V
>ε
a (ϒa ) (t ) | > δ

)
−−−→
ε→0

0.

Letting ε → 0 we can use the last display, together with (5.23) and (5.22) to deduce the desired

convergence in distribution. �

Bibliographical notes. The first estimates for the filled-in face-peeling process were performed

by Angel [4] in the case of the UIPT. Scaling limits in distribution were computed in [35] in the

case of the filled-in face-peeling process on critical triangulations and quadrangulations. These

were later extended by Budd [23] to the present peeling process on q-Boltzmann maps of type
5
2 . The introduction of the non-generic critical weight sequences is due to [48], and the scaling

limit for the filled-in peeling process when q is of type (3/2; 5/2) is taken from [24].
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Chapter VI : Percolation(s)

In this chapter, we first deal with random maps of the half-plane.

In this chapter we study percolations (face, dual-face and bond percolations) on random Boltz-

mann planar maps. We will focus on the case of the law P(∞) for which the calculations are the

simplest. Our main tool of course will be the peeling process. However, contrary to the cases

we considered so far, the peeling process will be driven by the percolation of the map which is

itself random (so far we have considered only deterministic peeling process). We will first see

that such explorations are indeed allowed and do not change the probability transitions. We also

introduce in the next section the mean gulp and exposure which are very important geometric

quantities.

Figure 6.1: A random triangulation of the sphere together with the interfaces induced

by a site percolation on it.
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6.1 Prerequisites

6.1.1 Randomized peeling process

In the preceding chapters we have shown that under the Boltzmann distributions, the peeling

process (with or without distinguished cycle, filled-in or not) is actually a Markov chain for which

we computed the exact probability transitions. This was established when the peeling algorithm

A is a deterministic function of the explored map e,e or e∗ when there is a distinguished cycle.

Now, we can imagine that we choose the algorithm at random. More precisely, imagine that the

peeling algorithm A depends on the explored map e (possibly with a distinguished hole) together

with another parameter ω that we may think as an additional randomness: A(e,ω) is then the

next edge to peel on the explored map e given the additional parameter ω. Now, we suppose

that the additional parameter ω which we see as a random variable1 has law P and that it is

independent of the underlying map m sampled according to P(`),P(`)• ,P
(∞) or P(`)∞ . If we denote

P generically for one of the last laws then

Proposition 29. Under the law P(dω) ⊗ P(dm), the law of the peeling process of m with the

“randomized” peeling algorithm e 7→ A(e,ω) is again a Markov chain with the same probability

transitions as for a deterministic peeling algorithm.

In other words, one can use the knowledge of the explored map together possibly with another

source of randomness which is independent of the underlying map to choose which edge to peel

for the next step. Usually, we use this source of randomness together with the map to define

a stochastic process on the map itself: percolation, simple random walk, fpp percolation, SLE6

process etc. Our explorations in these contexts be will “local” so that the peeling algorithm can

always be written in the above form.

6.1.2 Mean gulp and exposure

Let q be an admissible weight sequence and recall from Definition 15 the probability measure

ν which describes the asymptotic changes of the half-perimeter of large holes during a step of

peeling. We shall encounter at many occasions the following quantities:

1We are a bit loose here on the state space of ω and P, but we can think of [0, 1]N with the standard σ -field

and the product Lebesgue measure. That will work for all our purposes.
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Definition 20 (Mean exposure and gulp). The mean exposure (for Boltzmann maps with weight

sequence q) is the mean number of edges “exposed” during a peeling step of type Ck on the infinite

hole under P(∞) that is:

eq =
∑
k≥1

b (∞) (k ) (2k − 1) =
∑
k≥0

qk+1c
k
q (2k + 1).

The mean gulp is the mean number of edges swallowed on the boundary appart from the peeled

edge, during a peeling step of type G∞,k under P(∞) that is

gq =
∑
k≥0

b (∞) (∞,k ) (2k + 1) =
∑
k≥0

W (k )c−k−1q (2k + 1).

The mean exposure and gulp may be infinite. In fact when q is of type a with a ∈ (3/2; 2] then

both eq and gq are infinite. When q is of type a = 3
2 then only the mean gulp is infinite whereas

the mean exposure is finite. Finally, when ν has a first moment, then these two quantities are

finite. Furthermore, since in this case ν is centered (Proposition 14) we must have:

2gq + 1 = eq. (6.1)

In the case of critical quadrangulations for example we have eq = 3 · b (∞) (2) = 3 cq12 = 2.

6.2 Face percolation

If m is a planar map, a face-percolation of m is a coloration of its faces in black and white.

This can be modeled by a function η : Faces(m) → {0, 1} where 0 represents white faces and 1
represents black faces. Two faces are part of the same cluster in the percolation if they share an

edge in common and if they have the same color (equivalently it corresponds to site percolation

on the dual map m†). As usual in percolation theory we are interested in the probability that

there exists an infinite cluster.

6.2.1 The primal exploration

In the case when m is a map whose external face is of infinite degree we should change a little

bit our definition and introduce a special boundary condition: Roughly speaking we image that

the external face is colored in white, except for a little region on the right of the root edge. To

be rigorous we can imagine that we split the initial root edge in order to create a face of degree 2
on its right (this face thus becomes the root face of the map). Then all the remaining inner faces

Figure 6.2: The initial boundary condition for face percolation.
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of the map m are independently of each other colored in black with probability p ∈ (0, 1) and

in white otherwise. By denote by Pp, facem the probability measure on percolations of m obtained

this way. We also denote by C the cluster of the little black region on the right of the root edge.

Theorem 10 (Face percolation thresholds)

Suppose that both eq and gq are finite, then the percolation threshold for face percolation is

pc, face = (eq + 1)/(2eq). More precisely when p ∈ (0, 1) we have

∫
P(∞) (dm)

∫
Pp, facem (dη)1{ |C |=∞} =




0 if p ≤ pc, face,

> 0 if p > pc, face.

The above theorem actually gives an “annealed” percolation threshold since we average over the

map m. However it is easy to show from its proof that pc, face actually corresponds to an almost

sure (or “quenched”) percolation threshold, see Proposition 31.

To prove the above theorem we use a particular (filled-in) peeling algorithm that explores

the underlying map along the percolation. More precisely, imagine that after the first few steps

of the exploration we have discovered a submap en ⊂ m which has the particularity that along

the unique hole of infinite perimeter the inner faces of en which are part of the cluster of the root

face form a connected black component and that all other faces incident to the boundary are

white. See Fig. 6.3. The peeling algorithm Aface then selects the edge on the active boundary

which is the left-most among those adjacent to an inner face belonging to the cluster of the

root face. Clearly this algorithm can be written in the form Aface (en ,ω) where ω is an external

parameter (independent of the map m) from which the percolation configuration is retrieved

(Exercise: prove it!).

cluster explored so far

edge to peel

end of the exploration

Figure 6.3: Illustration of the peeling algorithm used in the case of face-percolation.

The part in gray have not been explored.
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The key is that after one step of this peeling algorithm (and possibly filling-in the finite hole

created) the explored map en+1 we obtain is again of the above form and one can thus iterate

the exploration. We write Bn for the number of inner faces of en adjacent to its unique infinite

hole and which are part of the cluster of the root face. If Bn = 0 then the peeling algorithm

stops, i.e. Aface (en ,ω) = †. We have the following deterministic lemma:

Lemma 30. Let m be an infinite planar map of the half-plane. We suppose that m carries a face

percolation and has the above boundary condition. With the above notation we have

|C| = ∞ ⇐⇒ Bn > 0,∀n ≥ 0.

Proof. The proof should be clear from Fig. 6.3. In words, if the process survives for ever then

we discover an infinite number of faces in the cluster of the root face. A contrario, if the process

stops that means than some peeling step during an event of type G∞,k has swallowed all the

current “black” boundary of the hole thus caging the cluster of the origin into white faces, C is

thus finite. Notice that the holes we fill-in during the exploration are all finite and thus cannot

change the finite or infinite nature of C. �

Proof of Theorem 10. With these ingredients, the proof is easy. It suffices to notice that under

P(∞) (dm)Pp, facem (dη) the process (Bn )n≥0 roughly evolves as a random walk. More precisely the

evolution ∆Bn = Bn+1 − Bn is summarized in the next display:

∆Bn = −1 Event Gk,∞

∆Bn = sup(−Bn ,−2k − 2) Event G∞,k
∆Bn = −1 Event Ck face white

∆Bn = −1 + (2k − 1) Event Ck face black.

From this display we see that (Bn )n≥0 has the same law as the random walk (Sp (n))n≥0 started

from 1, killed and set to 0 when it touches Z≤0, and with independent increments distributed as

∆Sp (n) = −2k with proba 1
2ν (−k ), k ≤ −1

∆Sp (n) = 2k with proba p × ν (k ), k ≥ 0
∆Sp (n) = −1 otherwise.

The expectation of the above increment is δ = p eq − 1 − gq. Clearly if δ > 0 then Sp drifts

towards infinity. In that case there is a positive probability that the walk Sp and a fortiori B

stay positive forever. On the contrary if δ ≤ 0 then Sp almost surely visits the negative side and

so B is eventually 0. Combining this with the relation eq = 1 + 2gq gives our theorem. �

Proposition 31 (Quenched percolation threshold). Almost surely for P(∞) (dm)Pp, facem (dη) there are

no infinite black cluster inside the map m (and not only starting from the root edge) if and only

if p ≤ pc, face.

Proof. Consider first the case when p ≤ pc, face. Then we know that P(∞) (dm)Pp, facem (dη)-almost

surely the exploration of the cluster of the black root face terminates and leaves an unexplored
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region of law P(∞) (dm)Pp, facem (dη) but with a totally white boundary condition. Picking any edge

on the boundary we may trigger a new peeling step until one discovers a black face which enables

us to restart a percolation exploration which will again die out because p ≤ pc, face. Iterating this,

we can make sure that we explore the full map which thus contains only finite black clusters.

Suppose now that p > pc, face. Since the cluster of the origin has a positive chance to be infinite,

we deduce that for every ε > 0 there exists M > 0 such that if the percolation exploration starting

at the root face is still alive after M steps of exploration then it will never die with probability

at least 1 − ε. We denote by q the probability that the initial exploration runs for at least M

steps. We thus start the percolation exploration at the root face and let it run until it either

die or reaches M steps. In the second case we have an infinite cluster (to which the origin face

belongs) with probability at least 1 − ε. In the first case we are left with a unexplored region

of law P(∞) (dm)Pp, facem (dη) but with a totally white boundary condition which is furthermore

independent of the exploration we have performed so far. We can then trigger a few peeling

steps until we find a black face to restart the percolation exploration. Hence, the probability α

to see an infinite cluster in m is at least

α ≥ (1 − ε )q︸   ︷︷   ︸
second case

+ (1 − q)α︸   ︷︷   ︸
�rst case

.

Since ε was arbitrary the above display shows that α = 1. �

Exercise 11. Let q be an arbitrary admissible weight sequence (in particular we do not suppose

that eq and gq are finite). Show that P(∞) (dm)Pp, facem (dη)-almost surely there is at most one infinite

black cluster. (Hint: Use Proposition 14 to show that two black interfaces if they survive must

collide).

6.2.2 Dual exploration

In this section we study the “dual” of the face percolation studied in the last section. By

dual percolation we mean that if the origin cluster is blocked this is because there is a “dual”

cluster in the dual percolation preventing it from going further. In particular we shall prove the

unsurprising result that the corresponding thresholds equal 1 minus the initial one.

Face percolation is not self-dual. If two faces have only a common vertex but no common

edge, they need not be part of the same white cluster, but two such faces do form a local

barrier for connection of black faces. Hence the dual percolation of face percolation is face

percolation but where two faces are part of the same cluster if they have the same color and if

they share a vertex. Equivalently it corresponds to site percolation on the dual lattice where we

add connections between sites whose dual faces share a vertex. This is known as the star-lattice

in the case of Zd . We call it face′ percolation in the sequel.

Theorem 11 (Dual face percolation thresholds)

Suppose that both eq and gq are finite, then the percolation threshold for face’ percolation
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is pc, face′ = 1 − pc, face = (eq − 1)/(2eq). Furthermore there is no percolation at criticality.

The proof is the same as for Theorem 10 once we designed the proper peeling algorithm. The

only change here is that we need to peel the edge which is immediately on the left of the left-most

edge of the boundary of the infinite hole which is adjacent to an inner face of the explored map

and part of the cluster of the root face. See Fig. 6.4. In this case the drift of the random walk

cluster explored so far

edge to peel

end of the exploration

Figure 6.4: Illustration of the peeling algorithm use in the case of face’ percolation.

associated to the length of the black component is δ = peq − gq hence the critical threshold is

gq/eq =
eq−1
2eq .

6.2.3 The heavy tailed case

If q is of type a ∈ [3/2; 2] then the mean gulp is infinite so we cannot apply directly the above

considerations to study the face percolation. However, going through the proof of Theorem 10,

it only suffices to study the random walk Sp whose increments are given by

∆Sp (n) = −2k with proba 1
2ν (−k ), k ≤ −1

∆Sp (n) = 2k with proba p × ν (k ), k ≥ 0
∆Sp (n) = −1 otherwise.

If a ∈ [3/2, 2) we are in the regime where the value of Sp (n) is of the same order of magnitude

as its maximal jump so we deduce that the walk Sp oscillates no matter the value of p ∈ (0, 1).
In this regime we even have a more dramatic effect: the root face is separated from infinity by

infinitely many cut faces, hence to percolate all these cut faces must have the same color which

happens with probability 0 as long as p ∈ (0, 1), see Proposition ?? for a similar phenomenon on

the full plane.

When q is of type 2 a more interesting phenomenon appears. Recall that in this case we

know explicitly the probability measure ν from (5.13) and that ν (k ) = (4k2 − 1)−11k,0. Looking

at the above transitions for the walk Sp we see that the tails are unbalanced if p , 1/2 and
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balanced if and only if p = 1/2. Unfortunately, as pointed to us by Timothy Budd, even in the

unbalanced case these walks are always oscillating and so there is never percolation as soon as

p , 1.

6.3 Bond percolation

We now move to bond percolation on random maps. Before giving the exploration process

which may seem strange at first glance we start with a recreational section where we compute

heuristically the bond percolation threshold using the face’ percolation process. This might help

the reader digest the next section.

6.3.1 A heuristic before the proof: adding faces of degree 2

Let q be an admissible weight sequence. Notice that from the admissibility criterion of Propo-

sition 5 we must have q1 < 1. We will now create a new planar map model by increasing the

number of faces of degree 2. More precisely for α ∈ (0, 1) we put the new weight sequence q̃
given by




q̃k = α
kqk for k ≥ 2,

q̃1 = α · q1 + (1 − α ).

It is a straightforward calculation to see that this new weight sequence is again admissible (and

critical if the former was) and the corresponding (smallest) solution to fq̃ (x ) = 1− 1
x is cq̃ = cq/α .

We also claim that the partition functionsW (`)
q (we stress the dependance in q here) are changed

into into W (`)
q̃ = W (`)

q α−` for ` > 0. One convenient way to see this is to express the partition

function W by summing over skeletons: If m is a (bipartite rooted) planar map with an external

face of degree 2` we write < m > for the skeleton of the map which is obtained after contracting

all the faces of degree 2 of the map m (except the external face if ` = 1), see Fig. 6.5. We denote

Figure 6.5: A planar bipartite map (on the right) and its skeleton (on the left).

by S(`) the set of all (bipartite rooted) maps with external face of degree 2` having no inner faces

of degree 2. Using the above skeleton reduction we can write for any admissible weight sequence
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q

W (`)
q =

∑
m∈M(`)

∏
f ∈Faces(m)\{fr }

qdeg(f )/2 =
∑
s∈M(`)

∑
m∈M(`) :<m>=s

wq (m)

=
∑
s∈M(`)

wq (s)
∑

m∈M(`) :<m>=s

q
#Inner Faces of degree 2
1

=
∑
s∈M(`)

wq (s) (
1

1 − q1
)#Edges(s) .

Writing the above display for the case of q̃ we deduce that

W (`)
q̃ =

∑
s∈M(`)

wq̃ (s) (
1

1 − q̃1
)#Edges(s) =

∑
s∈M(`)

wq (s)α
#Edges(s)−` (

1
α

1
1 − q1

)#Edges(s) =W (`)α−` .

From the above calculations we deduce that the step probability ν driving our favorite random

walk is transformed into

ν̃ (k ) = αν (k ) if k , 0, ν̃ (0) = ν (0) + (1 − α ) otherwise.

Actually when q1 = 0 the Boltzmann random maps with weight sequence q̃ have a nice proba-

bilistic interpretation in terms of the q-Boltzmann ones:

Proposition 32 (Adding faces of degree 2). Let m be distributed according to either P(`)q ,P
(`)
•,q,P

(`)
∞,q

or P(∞)
q where the admissible weight sequence q is such that q1 = 0. Then split independently each

edge of m into a body of K ≥ 0 parallel faces of degree 2 where K is distributed as a geometric

variable of parameter (1 − α ). Then the resulting map in distributed according to the respective

measure but with weight sequence q̃.

Proof. The proposition is easy to prove under the Boltzmann measure the other cases are

obtained by passing to the limit. Indeed, from the above calculation, we see that under P(`)q̃ the

skeleton < m > is distributed according to P(`)q and the number of faces of degree 2 attached to

each edge of < m > are independent geometric variable with probability distribution {α (1−α )k :
k ≥ 0}. �

Now we will use this construction to (heuristically at least) compare face and bond percola-

tion. Imagine that m is a fixed planar map (without faces of degree 2). For α ∈ (0, 1) we split

all the edges of m into bodies of independent number of parallel faces of degree 2 distributed as

geometric variables of parameter (1 − α ). Denote by m(α ) the resulting map. We then perform

a face’ percolation (the dual of face percolation) on m(α ) with parameter p ∈ (0, 1). We now

assume that the parameters α and p tend to 0 such that

p/α = β > 0.

Then each face f ∈ Faces(m) is more and more unlikely to be colored black in the resulting

percolation and so eventually, the only way to build a cluster in the map is to use the additional

71



faces of degree 2 (recall that in the face’ percolation model, two faces of the same color which

share a vertex are in the same cluster). With our fine tuning of the parameters α and p, since

each edge of m is first split into a geometric number of parallel faces and each of them is colored

in black with probability p, the probability that none of the faces of degree 2 offspring of a given

edge of m is black is
∞∑
k=0

α (1 − α )k (1 − p)k =
α

α + p + αp
−→

1
1 + β

.

Hence we can state the following rough statement:

“ Face’ percolation with parameter p on m(α ) as α ,p → 0 with pα = β > 0 asymptotically looks

like bond percolation on m with parameter 1 − 1
1+β .”

Now if we perform this procedure for a random map m under the law P(∞)
q carrying a bond

percolation with parameter x > 0. By the above trick and Proposition 32, we relate this model

to a face’ percolation on a map with law P(∞)
q̃ and a parameter p satisfying

p/α = β, with
β

1 + β
= x .

The mean exposure eq̃ of this model is easily calculated and equals

eq̃ = (1 − α ) + αeq.

Performing the easy algebra we can use Theorem 11 to see that there is no infinite cluster in

this face’ model if and only if we have p ≤
eq̃−1
2eq̃ and as α → 0 this condition becomes

x

1 − x
≤

eq − 1
2

⇐⇒ x ≤
eq − 1
eq + 1

.

We can thus guess that the critical percolation threshold for bond percolation is simply pc,bond =
eq−1
eq+1 and this is indeed the content of the main result of the next section.

Exercise 12. Use the above discrete relations between face’ and bond percolation to actually

prove that the critical percolation threshold pc,bond is equal to
eq−1
eq+1 (the upper bound is easy, the

lower bound a bit harder, but showing that there is no percolation at the critical point seems

hard with this approach).

6.3.2 The true proof: give the edges a width!

In order to study bond percolation on random planar maps and to use the peeling process we

shall need to see this process in a rather weird fashion at first sight. But the reader who has

gone through the last section may find it more natural. Let m be a planar map and consider its

dual m†. We will imagine that each edge of m† is actually a real segment of length given by an

exponential variable of parameter 1 and that these lengths are independent for each edge of m†.

Once this “random dilation” of the edges has been done, we throw a Poisson point process on
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the union of those dual edges with intensity λ > 0. That means that each dual edge of length

x > 0 carries an independent number of “crosses” distributed according to a Poisson variable of

mean λx . We say that the map m is “decorated” and denote by P̃(∞),λ its law. This decoration

induces a bond percolation on m: We will say that an edge of the primal lattice is black if its

dual edge, carries a cross. By our construction, the probability that a given edge is white is thus∫ ∞

0
dx e−xe−λx =

1
1 + λ

,

and the colors of the edges of m are independent. Since these color are independent we are

in front of a bond percolation model on m with parameter p = λ
1+λ whose law we denote by

Pp,bondm (dη). This trick of declaring an edge black if the dual edge carries a cross, enables us to

know for sure the color of an edge without discovering the faces to which it is adjacent. This

will be key in the forthcoming peeling exploration. Actually, to be able to start the exploration

we will force the root edge to be black which amount to put a cross at the origin of the dual

root edge. As in the last section we write C for the cluster of the origin where two edges are in

the same cluster when they are of the same color and share a common vertex.

Theorem 12 (Bond percolation thresholds)

Let q be a admissible critical weight sequence for which both eq and gq are finite. Then the

percolation threshold for bond percolation on under P(∞) is pc,bond =
eq−1
eq+1 , that is we have

∫
P(∞) (dm)

∫
Pp,bondm (dη)1{ |C |=∞} =




0 if p ≤ pc,bond,

1 if p > pc,bond.

Proof. As expected, to prove the above theorem we will design a particular peeling algorithm

that explores the underlying map to discover the cluster of the origin. This exploration will

run on the decorated map m of law P̃(∞),λ with p = λ
1+λ . More precisely, we will explore the

stretched version of the dual m†. Imagine that after the first few steps of the exploration we

have discovered a submap en ⊂ m which has the following form:

(H): The status of all (dual) edges on the boundary is unknown, except for a

connected segment of black edges. This means that a part of the corresponding

dual edges has been explored and that we found a cross. We assume that the

unexplored region is conditionally independent and distributed as P̃(∞),λ .

More precisely, when doing the gluing operation with en , one must glue also the parts of the dual

edges which have been partially explored. The process then goes as follows: We explore the first

dual edge whose status is unknown on the left of the black component. By doing so, we do not

always trigger a peeling step, but just explore its dual edge until we find a cross. If we find a

cross “inside” the dual edge, that means that the edge we where exploring is actually black and

so we move on to the edge on its left. Notice that by the properties of exponential variables and

Poisson process, the part of the dual edge which we have not yet explored is again of random
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length given by an exponential variable and decorated with a Poisson process of crosses. Hence

our current exploration satisfies (H ) again. If on the contrary we do not encounter a cross during

this exploration, that means we have explored entirely the dual edge. In this case only, we trigger

a peeling step which may lead to different possibilities as displayed in Fig. 6.6.

STOP!

Exploration of the edge

Triggering a peeling step

Figure 6.6: Illustration of the peeling process used in the case of bond percolation.

Sometimes, we do not trigger a peeling step and just explore“the interior”of an edge to

know more on its color.

In all the cases, the boundary conditions and the law of the unexplored map again satisfies

(H ) and so that we can continue the exploration. The process finishes if during such a peeling

step we swallow entirely the black component.

It is easy to see that the above process goes on forever if and only if the cluster of the root

edge in the bond percolation is infinite. As in Theorem 7 we thus look at the random process

74



given by the length of the black boundary. It is again a random walk stopped when reaching Z≤0

whose increments have expectation δ = p − (1 − p)gq. We then conclude as in the above proofs

that the black boundary is eventually absorbed if and only if δ ≤ 0 ⇐⇒ p ≤ (eq−1)/(eq+1). �

Exercise 13. Let q be an admissible sequence for which the mean gulp and exposure are not nec-

essarily finite. Show that the critical point for bond percolation under P(∞)
q is 1 (with percolation

at criticality ,) as soon as gq = ∞.

Open question. Can one similarly find a peeling algorithm to explore site percolation in the same

spirit as [56]?

6.4 The case of P(1)∞

We now use the result of the preceding section together with the scaling limit of the perimeter

process to prove that the percolation thresholds in the case of the infinite Boltzmann map of

the plane are the same as those of the half plane and that there is no percolation at criticality.

Theorem 13 (Percolation thresholds in the plane)

Let q be an admissible and critical weight sequence and suppose that eq < ∞ and gq < ∞.

Then the percolation threshold for face and bond percolation respectively almost surely are

pc, face and pc,bond. Furthermore, there is no percolation at criticality.

[To be done.]

Bibliographical notes. Percolation on random maps was first studied in the pioneer work of

Angel [4] where he proved that the critical threshold for site percolation on the UIPT is 1
2 . These

results have then been extended to the case of bond and face percolations on triangulations and

quadrangulations in [6]. Already in the work [6] a “universal” formula was found which is easily

seen to match those of Theorem 10 and Theorem 12 although the under random map model

and the peeling process considered in that work are different from the one we deal with in these

pages. The critical value for site percolation on random quadrangulations remained unknown

until the recent work of Richier [56].
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Chapter VII : Metric explorations

In this chapter, we only deal with random maps of the plane.

In this chapter we study the geometry of the duals of the random maps sampled according

to the measure P(1)∞ in the case when q is a weight sequence of type a ∈ (3/2; 5/2] (in particular

critical). We will see that the geometry of those maps are different depending on:

• when a ∈ (3/2; 2), the so-called dilute case, we will see that the volume growth in m† is

polynomial in the radius with exponent a−1/2
a−2 ,

• when a ∈ (2; 5/2), the so-called dense case, this volume growth changes dramatically and

is exponential in the radius (or even blows up in the case of the FPP distances),

More precisely we will study both the usual graph distance d†gr on m† and the distance induced

by a first-passage percolation with exponential edge weights on m†. The two approaches follow

roughly the same lines, but we start with the second one which is technically simpler.

Figure 7.1: Two representations of the neighborhood of the root in infinite Boltzmann

maps with large degree vertices in the dilute case (left) and dense case (right). The root

is represented by a green ball, while the high degree vertices are represented by blue balls

of size proportional to the degree. The boundary is colored red.
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7.1 Eden model: exponential FPP distances on the dual

We first define the Eden model on a general map and link it to the uniform peeling. As in

Section 6.3.2 the properties of the exponential law will be crucial in this section. Let m be an

(finite or infinite) planar map. On the dual map m† of m we sample independent weights xe for

each edge e ∈ Edges(m†) distributed according to the exponential law E(1) = e−xdx1x>0. These

weights can be used to modify the usual dual graph metric on m† by considering the first-passage

percolation distance: for f1, f2 ∈ Faces(m)

dfpp ( f1, f2) = inf
∑
e ∈γ

xe ,

where the infimum is taken over all paths γ : f1 → f2 in the dual map m†. We denote by Pfppm
the law of the (xe )e ∈Edges(m). This model (first-passage percolation with exponential edge weights

on the dual graph) is often referred to as the Eden model on the primal map m. As in the last

chapter, it is convenient in this section to view the edges of the map m† as real segments of

length xe for e ∈ Edges(m†) glued together according to incidence relations of the map. This

operation turns m† into a continuous length space (but we keep the same notation) and the

distance dfpp extends easily to all the points of this space.

Definition 21 (Fpp ball). For t > 0 we denote by

Ballfppt (m)

the submap of m whose associate connected subset of dual edges
(
Ballfppt (m)

)◦
in m† is the set of all

dual edges which have been fully-explored by time t > 0, i.e. whose points are all at fpp-distance

less than t from the origin of m† (the root-face of m). We put Ballfpp0 (m) = fr.

As usual, if m is given with a distinguished point or is infinite and one ended, we can consider

the hull Ball
fpp
t (m) of Ballfppt (m) obtained by filling-in the finite components of its complement in

m expect for the hole containing the distinguished point/infinity.

7.1.1 Uniform peeling

It is easy to see that there are jump times 0 = T0 < T1 < T2 < · · · for the process Ball
fpp
t (m) and

that almost surely (depending on the randomness of the xe) the map Ball
fpp
Ti+1 (m) is obtained from

Ball
fpp
Ti (m) by the peeling of one edge and by filling-in the finite component possibly created. The

following proposition only relies the randomness of the weights, the map m is fixed.

Proposition 33 (Eden model and uniform peeling). If m is an infinite map of the plane then

under Pfppm we have:

• the law of (Ball
fpp
Ti (m))i≥0 is that of a uniform filled-in peeling e0 ⊂ · · · ⊂ en ⊂ · · · ⊂ m:

conditionally on the past exploration, the next edge to peel is a uniform edge on the boundary

of the explored part ei ;
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• conditionally on (Ball
fpp
Ti (m))i≥0 the variables ∆Ti = Ti+1 − Ti are independent and dis-

tributed as exponential variables of parameter given by the perimeter (that is twice the

half-perimeter) of unique hole of ei .

Notice that the above uniform peeling, is of the type discussed in Section 6.1.1. Hence, when

the underlying planar map m is sampled according to P(`)∞ the transitions of the chain en are

those of Section 4.2.1.

Proof. Fix m and let us imagine the situation at time Ti for i ≥ 0. We condition on the sigma-

field Fi generated by all the exploration up to time Ti . Let us examine the edges in m† which

are dual to the boundary of ei = Ball
fpp
Ti (m). These come in two types: type-1 edges that are

adjacent to a new face in the unexplored part (that is, if we peel one of those edges we have an

event C), and type-2 edges that link two faces adjacent to the boundary of the explored part

(that is, if we peel one of these edges we have an event Gk1,k2). See Fig. 7.2.

Figure 7.2: Illustration of the proof of Proposition 33. The edges of the first type are

in orange and those of the second type are in green. Regardless of their number and

locations, the next edge to peel can be taken uniformly on the boundary and the increase

of time is given by an exponential variable of parameter given by the perimeter.

Let us consider an edge e (1) of the first type and denote by e (1)− its extremity in the explored

region. Since this edge has not been fully explored at time Ti , it follows that its weight xe (1) sat-

isfies xe (1) > Ti −dfpp (e
(1)
− , fr) and furthermore by properties of exponential variables conditionally

on Fi

ye (1) := xe (1) −
(
Ti − dfpp (e

(1)
− , fr)

)
has the law E(1) of an exponential variable of parameter 1. Let us now examine the situation

for an edge e (2) of the second type. We denote by e (2)− and e (2)+ its endpoints. Since e (2) is

being explored from both sides but has not been fully explored by time Ti , we have that xe (2) >(
Ti − dfpp (e

(2)
− , fr)

)
+

(
Ti − dfpp (e

(2)
+ , fr)

)
and by the same argument as above conditionally on Fi

ye (2) := xe (2) −
(
Ti − dfpp (e

(2)
− , fr)

)
−

(
Ti − dfpp (e

(2)
+ , fr)

)
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is again exponentially distributed. Of course, an edge of the second type is dual to two edges of

the boundary of ei . Apart from this trivial identification, the variables ye where e runs over the

edges dual to the boundary of ei are, conditionally on Fi , independent of each other. Now, the

time it takes until a new edge is fully explored is equal to

Ti+1 −Ti = inf {ye : e of the first type} ∧
1
2
inf {ye : e of the second type},

where the factor 1/2 again comes from the fact that edges of the second type are explored from

both sides. By the above independence property, Ti+1 −Ti is thus distributed as an exponential

variable of parameter

Ti+1 −Ti
(d )
= E(#{edges of the �rst type} + 2#{edges of the second type}) = E(2`)

where 2` is the perimeter of the hole of ei . That proves the second part of the proposition. To

see that conditionally on Fi the next edge to peel is uniform on the boundary, we may replace

for each edge e (2) of the second type the variable 1
2ye (2) of law E(2) by the minimum of two

independent exponential variables ỹe (2)1
and ỹe (2)2

of law E(1) which we attach on the two edges

dual to e (2) on the boundary of ei . Finally, everything boils down to assigning to each edge

of the boundary of the explored map an independent exponential variable of parameter 1; the

next edge to peel is the one carrying the minimal weight which is then uniform as desired. This

completes the proof. �

By the above proposition the algorithm A which we use to discover m along the first-passage

percolation distance can clearly be written under the form A(e,ω) for an independent source of

randomness ω which can be used to retrieve the information on the exponential weights. Hence

under P(`)∞ (dm)Pfppm the exploration ei = Ball
fpp
Ti indeed has the law of a filled-in peeling exploration

as described in Section 4.2.1.

7.1.2 The dilute case

We can now apply our results on the scaling limit of filled-in peeling processes (Proposition 9 to

study the geometry of the balls of increasing radius for the fpp-distance on infinite Boltzmann

maps of the plane.

Proposition 34 (Distances in the uniform peeling). Let (en )n≥0 by the filled-in peeling exploration

associated to the fpp-distance on m† and recall the notation Tn. If q is of type a ∈ (2; 5/2] then

under P(1)∞ (dm)Pfppm we have the following convergence in distribution for the Skorokhod topology(
|∂e[nt ] |

n
1

a−1
,
|e[nt ]]

n
a−1/2
a−1
,
T[nt ]

n
a−2
a−1

)
t ≥0

(d )
−−−−→
n→∞

*
,

*
,
ϒ↑a , bqVa (ϒ

↑),
1
2pq

∫ ·

0

du
ϒ↑a (u)

+
-
(pqt )+

-t ≥0
.

The above result can easily be translated in geometric terms. Since for the above algorithm

we have ei = BallfppTi
(m) from Section 7.1, if we denote by |Ball

fpp
r (m) | and |∂Ball

fpp
r (m) | respectively

the size (number of inner vertices) and the half-perimeter of the unique hole of Ball
fpp
r (m). Then
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the above result shows that we have the following convergence in distribution in the sense of

Skorokhod under P(`)∞ (dm)Pfppm

*.
,

|∂Ball
fpp
[tn] (m) |

n
1

a−2
,
|Ball

fpp
[tn] (m) |

n
a−1/2
a−2

+/
-t ≥0

(d )
−−−−→
n→∞

((
ϒ↑a , bq · Va (ϒ

↑
a )

)
(ϑ2pqt )

)
t ≥0
, (7.1)

where for t ≥ 0 we have put ϑt = inf {s ≥ 0 :
∫ s
0

du
ϒ↑a (u )

≥ t }.

Remark 12. In the case when a = 5
2 since ϒ5/2 has no positive jumps, the first Lamperti transform

ϒ↑a (ϑt ) has the same distribution as a the time-reversal of a branching process with branching

mechanism ϕ (λ) = cλ3/2 started from −∞ and conditioned to die at 0. See [35, Section 4.4]. This

is not true for other values of a since the process ϒa has positive and negative jumps.

Proof of Proposition 34. The joint convergence of the first two components is given by Theorem

9. We now prove the convergence of the third component jointly with the first two. To simplify

notation we again write Pn = |∂en | and Vn = |en |. By Proposition 33 we known that conditionally

on (Pi ,Vi )i≥0 we have

Tn =
n−1∑
i=0

ei
2Pi
,

where ei are independent exponential variables of expectation 1. By the convergence of the first

component in the proposition, we have

n−
a−2
a−1

[nt ]∑
i=[ns]+1

1
Pi
=

∫ n−1 ([nt ]+1)

n−1 ([ns]+1)

du
n
−1
a−1P[nu]

(d )
−−−−→
n→∞

∫ t

s

du
ϒ↑a (pqu)

,

and, on the other hand,

E


(
n−

a−2
a−1

[nt ]∑
i=[ns]+1

ei
Pi
− n−

a−2
a−1

[nt ]∑
i=[ns]+1

1
Pi

)2 ������
(Pk )k≥0



= n−
2a−4
a−1

[nt ]∑
i=[ns]+1

1
(Pi )2

=
1
n

∫ n−1 ([nt ]+1)

n−1 ([ns]+1)

du
(n

−1
a−1P[nu])2

converges to 0 in probability as n → ∞. It easily follows that(
n−

a−2
a−1

(
T[nt ] −T[nε]

))
t ≥ε

(d )
−−−−→
n→∞

*
,

1
2pq

∫ pqt

pqε

du
ϒ↑a (u)

+
-t ≥ε
, (7.2)

and this convergence holds jointly with the first two components considered in the proposition.

Hence, to finish the proof of the proposition, it suffices to see that for any δ > 0 we have

lim
ε→0

sup
n≥1
P

(
n−

a−2
a−1 ·T[nε] > δ

)
= 0 and lim

ε→0
P *

,

∫ ε

0

du
ϒ↑a (u)

> δ+
-
= 0,

so that we could harmlessly let ε → 0 in (7.2). To prove the first claim we use the estimate (7.6)

below to get

E[T[nε]] = E

E



[nε]∑
i=0

ei
2Pi

�������
(Pi )i≥0




=

[nε]∑
i=0
E

[
1
2Pi

]
≤

(7.6)
C (εn)

a−2
a−1 ,
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for some constant C > 0. The desired result follows from an application of Markov’s inequality.

The second statement just follows from the fact that (ϒ↑a (t ))
−1 is almost surely integrable around

0+ since a > 2. One cheap way to see this is to take expectations in (7.2) and using Fatou’s

lemma together with the last calculation to get

1
2pq
E



∫ 1

ε

du
ϒ↑a (u)


≤ C (1 + ε

a−2
a−1 ).

Sending ε → 0 we deduce that indeed (ϒ↑a (u))
−1 is almost surely integrable around 0. �

As seen in the above proof it is key to estimate the expectation of (S↑n )
−1 where we recall

that S↑ is the walk S conditioned to stay positive and has the same distribution as the half-

perimeter process of filled-in exploration under P(`)∞ . We write Pp and Ep for the probability and

expectation under which S,S↑ and S↓ are started from p ≥ 1.

Lemma 35. Suppose that q is critical. For any p ≥ 1 and n ≥ 0 we have

Ep



1
S↑n


=
Pp (S

↓
n > 0)
p

. (7.3)

In particular,

E1



1
S↑n


= 2

∞∑
k=n+1

1
k
P1 (Sk = 0) and

∞∑
n=0
E1



1
S↑n


= 2

∞∑
k=1
P1 (Sk = 0). (7.4)

Proof. The equality (7.3) follows directly from the definition of the h↑-transform and the exact

forms of h↑ and h↓:

Ep



1
S↑n


=

∞∑
k=1

1
k
Pp (S

↑
n = k ) =

∞∑
k=1

1
k

h↑(k )

h↑(p)
Pp (Si > 0 for 1 ≤ i < n, Sn = k )

=
h↓(p)

h↑(p)

∞∑
k=1

h↑(k )

kh↓(k )
Pp (S

↓
n = k ) =

1
p

∞∑
k=1
Pp (S

↓
n = k ) =

1
p
Pp (S

↓
n > 0),

which gives the first claim. For the remaining statements it suffices to consider p = 1. Since

inf {i : S↓i = 0} is a.s. finite, we may identify

E


1
S↑n


= P1 (S

↓
n > 0) =

1
h↓(1)

∞∑
k=n+1

P1 (Si > 0 for 1 ≤ i < k, Sk = 0). (7.5)

We now use the cycle lemma to re-interpret the probabilities in the sum (see [1, display before

(1.7)]): For fixed k > n ≥ 0 we can construct another sequence (S̃i )i≥0 by setting S̃i = 1+Sn −Sn−i
for i ≤ n, S̃i = Sn + Sk − Sn+k−i for n < i < k, and S̃i = Si for i ≥ k. Then clearly (S̃i )i≥0 is equal

in distribution to (Si )i≥0 while the event Si > 0, 1 ≤ i < k, Sk = 0, is equivalent to S̃k = 0 and the

last maximum before time k occurring at time n. Since the probability of the former event does

not involve n in its S-description, conditionally on S̃k = 0 the probability of the latter is equal

for each n ∈ {0, 1, . . . ,k − 1}, and therefore

P1 (Si > 0 for 1 ≤ i < k, Sk = 0) =
1
k
P1 (Sk = 0).
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Together with (7.5) and h↓(1) = 1/2 this implies the first equality in (7.4), while the second one

follows from interchanging the sums over n and k. �

Now if q is of type a ∈ (3/2; 5/2] the local limit estimates (5.15) together with the second

point of the above lemma shows that for some constant C > 0 we have for any n ≥ 1

E1[1/S↑n] ≤ Cn−1/(a−1) . (7.6)

7.1.3 The dense case

We now focus on the study of the dense phase corresponding to a ∈ (3/2; 2). As we will see the

geometry of the fpp-distances in this phase is much different since we show that distance from

the origin to infinity in the map is finite! Recall that dfpp (·, ·) is the first-passage percolation

metric on m† for which its edges are endowed with i.i.d. exponential weights. As usual fr denotes

the root face of m which is the origin of m†.

Proposition 36. When q is of type a ∈ (3/2; 2) then under P(1)∞ we have

E
[
dfpp ( fr,∞)

]
= E[N0] < ∞,

where dfpp ( fr,∞) is the infimum of the fpp-length of all infinite paths in m†, and N0 is the number

of times the random walk (Si )i≥0 started at 1 visits 0.

Proof. We do the filled-in peeling process on m with the algorithm of Proposition 33 and recall

the notation (Ti )i≥0 of Section 7.1. The proposition boils down to computing the expectation

of T∞ = limi→∞Ti . By Proposition 34, conditionally on the perimeter process (Pi )i≥0 during

the exploration, the increments Ti+1 −Ti are independent exponential variables of mean 1/(2Pi ).
Hence we have

E[T∞] =
∞∑
i=0
E

[
1
2Pi

]
=

Lem. 35

∞∑
k=1
P1 (Sk = 0) = E[N0].

From the local limit theorem [41, Theorem 4.2.1] we have P1 (Sk = 0) ∼ C0 k
−1/(a−1) as k → ∞

for some constant C0 > 0 and so when a ∈ (3/2; 2) we have E[N0] < ∞ (in other words the walk

(Si )i≥0 is transient whenever a < 2). �

7.1.4 The border case a = 2

[To be done.]

7.2 Graph distances on the dual

It does not seem easy to use the peeling process to systematically study the graph metric on

the primal m (this is because the degree of the faces are not bounded and so when discovering a

new large face, one cannot a priori know what are the distances to the root of all of its incident

vertices). However, as in [2, 35] for the face-peeling process it is still possible to use the peeling
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process in order to study the graph metric on the dual map m†. Specifically on the dual m† we

denote by d†gr the dual graph distance and if f ∈ Faces(m) the dual distance to the root face

d†gr ( f , fr) is called the height of f in m.

Definition 22 (Ball for d†дr ). We define the dual ball of radius r by

Ball†r (m),

the map made by keeping only the faces of m that are at height less than or equal to r and

cutting along all the edges which are adjacent on both sides to faces at height r . Equivalently,

the corresponding connected subset (
Ball†r (m)

)◦
of dual edges in m† is given by those edges of m† which contain at least one endpoint at height

strictly less than r . By convention we also put Ball†0 (m) to be the root face of m.

Figure 7.3: The ball of radius 0, 1, 2 and 3 is some underlying planar map m.

Also, when m is pointed or one-ended we write Ball
†

r (m) for the hull of these balls, which are

obtained by filling-in all the holes of Ball†r (m) inside m which do not contain the distinguished

point (or infinity).

7.2.1 Peeling along layers

We now define a peeling algorithm L† which explore the dual metric in m. Let e ⊂ m be a

submap of m and suppose that:

(H ): There exists an integer h ≥ 0 such all the inner faces adjacent to the holes of e

are at height h or h + 1 in m. Suppose furthermore that the faces adjacent to a same

hole in e and which are at height h form a connected part on the boundary of that

hole.

For simplicity below, we will say that the height of an edge of Active(e) is the height of its

incident inner face. If e does not satisfy (H ) then we put L† (e) = †, otherwise the next edge to

peel L† (e) is chosen as follows:
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• If all edges on the boundaries of the holes of e are at height h then L† (e) is a deterministic

edge on the boundary of one of its hole,

• Otherwise L† (e) is a deterministic edge at height h such that the next edge in clockwise

order around its hole is at height h + 1.

Figure 7.4: Illustration of the peeling using algorithm L†.

It is easy to check by induction that if one uses the above algorithm starting at step i = 0
to peel the edges of m, then for every i ≥ 0 the explored map ei satisfies the hypothesis (H ) and

so the peeling process goes is never stopped before the map is entirely explored. Let us give a

geometric interpretation of this peeling exploration. We denote by H(ei ) the minimal height in

m of an edge of Active(e) and we put θr = inf {i ≥ 0 : H(ei ) = r } for r ≥ 0. With Definition 22 in

mind, we easily prove by induction on r ≥ 0 that:

eθr = Ball†r (m). (7.7)

Also if (ei )i≥0 is the filled-in version of the peeling algorithm then we have

eθr = Ball
†

r (m). (7.8)

7.2.2 Dilute phase

We turn the analogous of Proposition 34. In particular, recall the definition of gq from Definition

20.

Theorem 14 (Distances in the peeling by layers)

Let (en )n≥0 by the filled-in peeling exploration with algorithm L† recall the notation H(en ).

If q is of type a ∈ (2; 5/2] then under P(1)∞ (dm)Pfppm we have the following convergence in
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distribution for the Skorokhod topology(
|∂e[nt ] |

n
1

a−1
,
|e[nt ]]

n
a−1/2
a−1
,
H(e[nt ])

n
a−2
a−1

)
t ≥0

(d )
−−−−→
n→∞

*
,

*
,
ϒ↑a , bqVa (ϒ

↑),
1 + gq
2pq

∫ ·

0

du
ϒ↑a (u)

+
-
(pqt )+

-t ≥0
.

Let us again give a more geometric interpretation of the above result. Recall from (7.7) that

the peeling process using algorithm L† discovers balls for the dual graph distance on B∞ and we

denote by |Ball
†

r (B∞) | and |∂Ball
†

r (B∞) | respectively the size (number of inner vertices) and the

half-perimeter of its unique hole of the hull of the ball of radius r for the dual distance. Then

with the same notation as in (7.1) the above result implies the convergence in distribution in

the sense of Skorokhod

*.
,

|∂Ball
†

[tn] (B∞) |

n
1

a−2
,
|Ball

†

[tn] (B∞) |

n
a−1/2
a−2

+/
-t ≥0

(d )
−−−−→
n→∞

((
ϒ↑a , bq · Va (ϒ

↑
a )

)
(ϑ2pqt/(1+gq) )

)
t ≥0
. (7.9)

[More soon...]
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Chapter VIII : Simple and self-avoiding random walks

In this chapter we study the simple random walks on Boltzmann planar maps. We first recall

the application of the circle packing theory to the Benjamini & Schramm theorem on recurrence

of local limits of uniformly pointed maps. This theorem and its extension by Gurel-Gurevich

& Nachmias theorem shows that under P(1)∞ the random map of the plane m is almost surely

recurrent. However the case of its dual is largely open and we present some partial results using

the peeling process. The later is also a tool to measure the rate of escape the “subdiffusivity”

exponent of the simple random walk.

8.1 Recurrence of the primal via circle packings

Let us start by giving a proper definition of simple random walk:

Definition 23. If m is a finite or infinite planar map, a simple random walk on m is a Markov

process taking values in the space of oriented edges of m, starting with the root edge, and such

that if ~e is the current state then the next oriented edges is chosen uniformly among all the

oriented edges outgoing from the target vertex of ~e independently of the past path. We denote by

SRWm its law.

This definition is equivalent to a walk on the vertices which jumps to a uniform neighbor in the

case of simple maps. In general, the presence of loops and multiple edges makes the transitions

between vertices a little bit more complicated. The goal of this section is to explain the following

result which is due to Bjornberg & Stefansson [18]:

Theorem 15 (Recurrence of the primal map.)

If q is a critical weight sequence then almost surely under P(1)∞ the map m is recurrent for the

simple random walk.

Actually, this theorem is a simple corollary of Theorem 8 (which was initially proved by Bjornberg

and Stefansson) and a result of Gurel-Gurevich & Nachmias [39] which itself builds upon the

Benjamini & Schramm theorem [11]. More precisely Benjamini & Schramm showed that any

local limit of random finite planar maps such that the root edge is uniformly distributed on the

map is recurrent provided that we have a uniform bound on the degrees of the vertices in the

maps. Notice that the maps under P(1)n are indeed finite, the root edge is indeed distributed

uniformly on the map1, but the bounded degree condition is never true. This was the only

1after having glued the two edges of the root face together
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obstruction to apply the Benjamini–Schramm theorem to the law P(1)∞ . This problem has been

solved by Gurel-Gurevich & Nachmias who showed that is suffices that the degree of the origin

in the limit map has an exponential tail to apply the result. As an easy exercise we can check

that this is indeed the case under P(1)∞ using the peeling process:

Proposition 37. Let q be a critical weight sequence. Then there exists some c ∈ (0, 1) such that

if ρ denotes the origin vertex of m

P
(1)
∞ (deg(ρ) ≥ k ) ≤ ck .

Proof. We explore the neighborhood of the origin vertex using a peeling exploration that always

peels the edge of the active boundary adjacent on the left of the origin vertex until it becomes

an interior vertex. Each peeling step at most adds one unit to the degree of the origin and at

each step there is a positive probability bounded from below by c > 0 that an event of type

Gk,0 occurs. On this event the origin vertex becomes an inner vertex of the explored map. The

bound on the tail follows. �

Without giving the details, let us say a bit more on the proof by Benjamini & Schramm. At

its core we find the theory of circle packing. We already mention this in Section 1.5 but this time

one needs to deal with infinite circle packings. The Koebe–Andreev–Thurston theorem becomes

an alternative in the case of infinite maps of the plane (recall Definition 4). In the following

theorem due to He & Schramm [40], if P is an infinite circle packing in the plane the carrier of

P is the subset of the plane made of the union of all the circles as well as the interstices between

them.

Theorem 16 (Infinite circle packing theorem)

Let m be a infinite simple map of the plane. Then we have one of the mutually excluding

alternatives:

• Parabolic case: either there is a circle packing whose carrier is R2 representing t,

• Hyperbolic case: or there is a circle packing whose carrier is D representing t.

If furthermore m is a triangulation then in the first case the packing is unique up to rotation,

translation and dilation, whereas in the second case it is unique up to Möbius transformation

preserving the unit disk. Furthermore, if the vertex degrees of m are bounded, the above

dichotomy corresponds to the case when m is recurrent (packing in R2) or transient (packing

in D).

The above theorem can be seen as a discrete counter-part to the dichotomy for simple

connected Riemann surfaces homeomorphic to the disk: either such a surface is conformally

equivalent to the disk (and Brownian motion on the surface is transient) or it is conformally

equivalent to the plane (and Brownian motion on the surface is recurrent). By the above theorem,

the Benjamini & Schramm result boils down to showing that almost surely the circle packing of

a limit of finite random map where the root edges is uniform is almost surely carried by R2.
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(a) (b)

(c) (d)

S2

D D

(a) (b)

(c) (d)

S2

D D

Figure 8.1: llustration of Theorem 16: the 7-regular infinite triangulation is circle-

packed in the disk (and is transient) whereas the 6-regular infinite triangulation is circle-

packed in the plane (and is recurrent). Images of Kenneth Stephenson.

8.2 Simple random walk on the dual maps

The above discussion however leaves the question of the recurrent or transient of the dual

map m† under P(1)∞ . Indeed, since we must perform the identification of the two faces of the root

face to get a map where the root edge is uniformly distributed over all oriented edges, the degree

of the origin in m† sometimes does not have an exponential tail... In fact we show that these

dual maps can actually be transient.

8.2.1 Transience of the dual maps in the dense case

We will see as a corollary of the study of the fpp-distance on m† that these graphs are almost

surely transient. The proof uses the method of random paths.

Corollary 38. When q is of type a ∈ (3/2; 2) the random lattice m† distributed according to P(1)∞

is almost surely transient (for the simple random walk).

Proof. We use the method of the random path [50, Section 2.5 page 41]. More precisely, the

fpp model on m† enables us to distinguish an infinite oriented path ~Γ : fr → ∞ in m† which is

the shortest infinite path starting from the origin for the fpp-distance (almost sure uniqueness

of this path is easy to prove under P(1)∞ (dm)Qfpp
m (d(xe ))). From this path ~Γ one constructs a unit

flow θ on the directed edges with source at fr by putting for any oriented edge ~e of m†

θ (~e ) = Qfpp
m (~e ∈ ~Γ) − Qfpp

m ( ~e ∈ ~Γ).

To show that the energy of this flow is finite, we compare it to the expected fpp-length of ~Γ

which is almost surely finite under P(1)∞ (dm)Qfpp
m (d(xe )) by Proposition 36. More precisely, if xe0

denotes the exponential weight of a given edge e0, and if Efppm denotes the expectation under Qfpp
m ,

we just remark that there exists a constant C > 0 such that for any event A we have

Efppm [xe01A] ≥ C Qfpp
m (A)2.
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Indeed, if δ = Qfpp
m (A) we have Efppm [xe1A] ≥ Efppm [xe1A1xe ≥δ /2] ≥ δ/2 Pfppm (A ∩ {xe ≥

δ
2 }) and use

the fact that Pfppm (A ∩ {xe ≥
δ
2 }) ≥ Pfppm (A) + Pfppm (xe ≥

δ
2 ) − 1 = δ + e−δ /2 − 1 ≥ δ/2. Using this we

can write ∑
~e ∈
−−−−→
Edges(m†)

θ (~e )2 ≤ 4
∑

e ∈Edges(m†)

Pfppm (e ∈ Γ)2 ≤
4
C

∑
e ∈Edges(m†)

Efppm [1e ∈Γxe ]

=
4
C
Efppm [Lengthfpp (Γ)] < ∞ a.s .

This proves almost sure transience of the lattice as desired. �

Open question. Let q be of type a ∈ [2; 5/2), it is the case that m† is transient under P(1)∞ ?

8.2.2 Intersection and recurrence of SRW

Recall that a infinite graph g has the intersection property if for any two vertices x and y of the

graph, the trajectories of two independent simple random walks started from x and y intersect

(if so, then they intersect infinitely many often). In particular if a graph has the intersection

property then it does not possess non trivial bounded harmonic function: it has the Liouville

property.

Theorem 17 (Intersection property)

Let q be a weight sequence of type a ∈ [3/2; 5/2] then m† almost surely has the intersection

property under P(`)∞ . In particular it is almost surely Liouville.

To prove this theorem we will use a peeling exploration along the simple random walk on

m. Under SRWm we write by (~En )n≥0 the oriented edges visited by the walk then this induces a

peeling exploration we setting e◦n = {~Ek : 0 ≤ k ≤ n}. This is not exactly a peeling exploration

since it might be that en = en+1 if the edge ~En has already been previously visited by the walk.

However, erasing the repetitions this indeed defines a peeling exploration whose filled-in version

(under P(1)∞ ) is as usual denoted by

e0 ⊂ e1 ⊂ · · · ⊂ m.

The algorithm we used to define this exploration is randomized, but it is easy to see that we can

encode all the randomness part of the simple random walk into a variable ω independent of m

such that the above exploration is indeed a filled-in peeling process for the randomized algorithm

that we denote by Awalk (e,ω). Geometrically, if θn is the number of steps of the walk inside the

explored map en then the former correspond to the hull of the trace of the walk up to time

θn . Yet, otherwise said, we let the simple random walk move freely and when it is necessary to

trigger a new peeling step to discover the edge it wants to go through we do so and immediately

fill-in the finite hole we may create on the way.

Proof of Theorem 17. Under P(1)∞ (dm)SRWm (d(~en )n≥0) we explore the map m using a filled-in

peeling exploration under algorithm Awalk. Since q is of type a ∈ (3/2; 5/2], by Corollary 27 we
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know that ⋃
n≥0
en = m almost surely.

With the geometric interpretation of en in term of the random walk (~en )n≥0 this means that the

hull of the trace {~en : n ≥ 0} almost surely equal to the full map. In particular the complement

of the vertices visited by the walk is made of finite components only and so any other random

walk must intersect the vertex-trajector of (~en )n≥0 almost surely. �

As corollary here is a special case of Benjamini–Schramm theorem:

Corollary 39. If q is critical and finitely supported then m† is a.s. recurrent under P(1)∞ .

Proof. It is known by an older result of Benjamini & Schramm [10] that a planar graph with

bounded vertex degrees is recurrent if and only if it has no bounded harmonic functions. Clearly

if q is finitely supported then m has bounded vertex degrees under P(1)∞ and is Liouville by the

above result (a finitely supported critical weight sequence is necessarily of type 5/2). Hence it

must be almost surely recurrent. �

[Much more soon...]
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Chapter I : Coding of bipartite maps with labeled trees

In this section we quickly present the coding of (bipartite) planar maps via labeled trees, based

on a variant of the construction of Schaeffer and Bouttier–Di Francesco–Guitter. This coding

enables a quick proof of Proposition 5 and Theorem 6 which were the key enumerative inputs

in these lecture notes.

A.1 Bouttier–Di Francesco – Guitter coding of bipartite maps

A.1.1 From maps to trees

Let m• = (m, ρ) be a pointed bipartite planar map with a external face of degree 2` and perform

the following operations:

1. Draw a vertex in each face of m (including the external face). The new vertices are

considered black (•) and the old ones white (◦). Label each white vertex by its distance

to the distinguished vertex ρ. Since the map is bipartite, the labels of any two adjacent

vertices differ exactly by one.

2. For a face f of m and a white vertex adjacent to f , link the white vertex to the black

vertex inside f if the next white vertex in the clockwise order around f has a smaller label.

3. Remove the edges of m and the vertex ρ. It can be shown that the resulting graph is a

tree [21].

4. Let v0 be the black vertex corresponding to the external face of m. By removing v0 and

its adjacent edges, we obtain a forest of cyclically ordered trees, rooted at the neighbors

of v0. Finally, we choose uniformly at random one of the trees to be the first one, subtract

the labels by a constant so that the label of the root vertex of this first tree becomes zero.

With a moment of thought on the Step 2 of the above construction, one observes that

(i) Each internal face of degree 2k in m gives rise to a black vertex of degree k in the forest,

and the forest is composed of p trees.

(ii) Given a black vertex of degree k, the possible labels on its (white) neighbors are exactly

those which, when read in the clockwise order around the black vertex, can decrease at

most by 1.
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Figure A.1: Illustration of the construction of a forest of ` mobiles from a pointed

bipartite planar map with a boundary of perimeter 2`. The first mobile in the forest is

not specified by the map and is chosen uniformly at random among all the mobiles.

Remark 13. Let v be a black vertex of degree ` and fix the label of one of its neighbor (to 0 say).

Then the number of well-labelings of the white vertices around v is given by the number of walks

in Z which starts at 0, come back at 0 after ` steps, and whose steps are in {−1, 0, 1, 2, 3, 4, ...}.
Up to adding 2 to each increment, this number is given by the number of partitions of 2` into `

positive integers which is classical to compute

N(`) :=
(
2` − 1
` − 1

)
.

A mobile is a rooted plane tree whose vertices at even (resp. odd) generations are white

(resp. black). We say that a forest of mobiles (t1, · · · , tp ) is well-labeled if (a) the root vertex

of t1 has label 0, (b) the labels satisfy the constraint in the observation (ii) above, and (c) the

labels of the roots of t1, · · · , tp satisfy the similar constraint.

The above construction thus associate to m• a forest f of ` well-labeled mobiles (modulo the

addition of randomness needed to chose the first tree in the forest) and we shall denote

f = Mob(m•).

A.1.2 From trees to maps

Let us now present the inverse construction. Start with the forest f of ` mobiles t1, · · · , t` which

we imagine drawn on the plane once grafted in clockwise order on a cycle of length `. We then

perform the usual “Schaeffer construction” by doing the contour of the mobiles and linking any

corner associated to a vertex of label i to the next corner in the contour associated with a vertex

of label i − 1. If i is the minimal label then we link this corner to an additional vertex ρ put
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in the infinite face of the embedding. The edges can be drawn in a non-crossing fashion and

after erasing the embedding of the cycle and the mobiles, we are left with a bipartite map with

a distinguished vertex ρ. The external face of the map is the face that “encloses” the cycle on

which the mobiles have been grafted. The root edge of the map is not prescribed by the forest

and is taken uniformly at random on an edge of the external face of degree 2` (so that the

external face is on its right). We denote by BDG(f) the resulting pointed random map. As usual

in Schaeffer-type constructions, the labeling of the above forest has a geometric interpretation

in terms of the map but since we do not use it we do not bother to enter the details. It should

be clear on a drawing that modulo the rooting of the map we have

m• = BDG(Mob(m•)). (A.1)

A.2 Distribution of the forest of mobiles

Let us now describe the effect of this coding on the Boltzmann measure. Recall from (2.6)

the definition of the measure wq on bipartite planar maps. We now compute the image measure

of wq by the mapping Mob (which has an additional randomness in it for the choice of the root

mobile). But before doing so we first transform a mobile into a simple plane tree by yet another

mapping due to Janson & Stefansson [43].

A.2.1 Janson & Stefansson’s trick

In [43, Section 3], Janson & Stefánsson discovered a mapping which transforms a mobile into a

rooted plane tree by keeping the same set of vertices, but changing the set of edges so that every

white vertex is mapped to a leaf, and every black vertex of degree k is mapped to an internal

vertex with k children. We refer to [34, Section 3.2] for details of this transformation and the

curious reader may have a look at the figure below and try to guess how the bijection works.

We denote by JS this transformation.

Figure A.2: Illustration of the Janson & Stefánsson transformation.
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Proposition 40. Let ` ≥ 1, then the image measure of wq on M
(`)
• by the chain of mappings

JS ◦ ForgetLabels ◦Mob

is the measure on forests of ` trees defined by

w̃q (f) =

(
2` − 1
` − 1

) ∏
u ∈f

q̃ku ,

where q̃` = q`
(
2`−1
`−1

)
and q̃0 = 1 and where ku is the number of children of u in the forest f.

Proof. Let f = (t1, t2, ..., t` ) be ` plane trees. Let us first see which forest of ` mobiles give rise

to such a forest of trees after applying Janson–Stefansson mapping. The unlabeled forest of

mobiles f = (t1, ..., t` ) can be retrieved by applying the inverse Janson–Stefansson mapping and

in particular the degrees of the black vertices are given by the number of children in the forest,

hence by

{ku : u ∈ f},

where ku is the number of children of a vertex u. Now, to such a forest f may correspond a lot

of well-labeled forests. Specifically, using Remark 13 around each black vertex (and around the

origins of the mobiles) since the label of the (white) origin of the first mobile is fixed to 0, there

are exactly

N(`)
∏

v ∈BlackVertices(f)

N(deg(v )) = N(`)
∏
u ∈f

N(ku ),

possible well-labelings of the forest where we put N(0) = 1. Now, fix a labeling of the forest f

and let us see which pointed map m• can give rise to this forest by the Mob construction. By

(A.1), up to the location of the root edge, the pointed map m• can be recovered by applying the

Bouttier–Di Francesco–Guitter construction to the forest of well-labeled mobiles. In particular

since the degree of the inner faces of the map are twice those of the black vertices of the forest

we deduce that the wq weight of such a map (if rooted) is given by∏
v ∈BlackVertices(f)

qdeg(v ) =
∏
u ∈f

qku ,

where we put q0 = 1 by convention. Let us assume first that the unrooted pointed map BDG(f) has

no symmetry, i.e. that rooting the map on each of the 2` edges of its boundary yield 2` different

rooted pointed maps. Then for each of these 2` maps the Mob construction returns f with

probability 1/` (the probability to choose the right mobile as first one). In the case of symmetry,

the fewer number of maps obtained by rooting on the boundary is exactly compensated by the

larger probability to get the forest (since the latter also inherits the symmetries of the map), we

leave the details here to the reader. In total, gathering the above equation we deduce that the

wq weight of all the maps m• such that JS ◦ ForgetLabels ◦Mob(m•) = f is

2` ·
1
`
·
∏
u ∈f

qku · N(`)
∏
u ∈f

N(ku ).

�
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A.2.2 Proof of the enumeration results

Proof of Proposition 5 and Theorem 6. By the above proposition wq (M
(`)
• ) is finite (for one ` ≥ 1

or equivalently for all ` ≥ 1) if and only if we have∑
t∈FinitePlaneTrees

∑
u ∈t

q̃ku < ∞. (A.2)

Checking whether the above sum is finite is standard, call x the potential value of the series and

notice that by a recursive decomposition at the root vertex (a tree is either equal to a single

vertex or a vertex of degree k with k trees attached to them) we should have

x = 1 +
∑
k≥1

q̃kx
k .

This equation is exactly the one considered in Proposition 5, and it is easy to see that (A.2)

is finite if and only if the above equation admits a solution in x ≥ 0. In this case, the weight

sequence q is admissible and the series (A.2) is equal to the smallest of such solutions which we

call Zq (which is also equal to 4cq) and we deduce thanks to the above proposition that

W (`)
• = 2

(
2` − 1
` − 1

)
(Zq)

` = c`qh
↓(`),

which is exactly the statement of Theorem 6. �

A.2.3 Back to criticality

With the notation of the above section, if q is admissible, then it is easy to see that upon

normalizing wq on M
(`)
• to make it a probability measure, the distribution of the ` plane trees

obtained by pushing the last distribution via JS◦ForgetLabels◦Mob is just given by ` independent

Galton–Watson trees whose offspring distribution is given by

µJS (k ) = q̃kZ
k−1
g , k ≥ 0,

where we recall that q̃0 = 1 by convention. The above display indeed defines an offspring

distribution when q is admissible and it is an easy calculus exercise to see that the notion of

criticality for the weight sequence q (Definition 9) is equivalent to criticality for the offspring

distribution µJS i.e. having mean equal to 1. Similarly, we have the following dictionary for the

notions appearing in Section 5.1:

q subcritical µJS of mean < 1.
q critical µJS of mean 1.
q regular critical µJS of mean 1 and some exponential moment.

q is of type a ∈ (3/2; 5/2) µJS of mean 1 and has a polynomial tail of order a.
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Bibliographical notes. The coding of planar maps via label trees first appeared in the sem-

inal work of Cori & Vauquelin [31] and later made clear and popularized by Schaeffer [57].

The coding we used here is an extension of Schaeffer’s initial construction due to Bouttier–Di

Francesco–Guitter [21] and more precisely the variant presented in [16]. The study of the in-

duced distribution of trees is found first in [51]. The presentation here is partially taken from

our work [29]. Notice that the use of bijections with trees is one of the most useful tool to study

geometric properties of random planar maps, but in these lecture notes we prefer not to use it

and focused on the peeling process itself.
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