Espaces de Hölder $L^{\mathsf{p}}(\mathbb{R}^d)$

François DE MARÇAY

Département de Mathématiques d'Orsay Université Paris-Saclay, France

Dans ce chapitre, l'hypothèse d'intégrabilité quadratique sera remplacée par celle de l'intégrabilité de $\left|f(x)\right|^{p}$. L'analyse de ces classes de fonctions jettera une lumière toute particulière sur l'avantage spécial dont bénéficie l'exposant p=2. F. RIESZ, 1910

Les espaces de fonctions intégrables sur \mathbb{R}^d , notamment les espaces L^1 , L^2 , L^p , jouent un rôle central dans de nombreuses questions de l'Analyse Mathématique. L'importance toute particulière des espaces $L^p(\mathbb{R}^d)$ provient du fait qu'ils offrent une généralisation partielle, mais utile, des espaces de Hilbert $L^2(\mathbb{R}^d)$ de fonctions de carré intégrable sur \mathbb{R}^d .

Dans l'ordre de simplicité logique, l'espace $L^1(\mathbb{R}^d)$ vient en première position, puisqu'il décrit l'espace des fonctions Lebesgue-intégrables. Par dualité, l'espace $L^\infty(\mathbb{R}^d)$ des fonctions mesurables bornées apparaît naturellement, et ce n'est qu'une généralisation de l'espace $\mathscr{C}^0(\mathbb{R}^d)$ des fonctions continues bornées sur \mathbb{R}^d munies de la norme du supremum $\|\cdot\|_{\mathscr{C}^0(\mathbb{R}^d)}$.

Mais c'est l'espace de Hilbert $L^2(\mathbb{R}^d)$ qui présente l'intérêt le plus élevé, en tant qu'il plonge les racines de son origine dans l'acte de naissance de la théorie des séries de Fourier sur le cercle unité $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$.

Les espaces de Hölder $L^p(\mathbb{R}^d)$ de fonctions de puissance p-ème intégrables, avec $1 et <math>p \neq 2$, pourraient sembler quelque peu artificiels, mais les résultats structuraux fondamentaux que nous allons démontrer dans ce court chapitre vont nous convaincre du contraire.

1. Espaces
$$L^p$$
 pour $0 \le p \le \infty$

Dans tout ce qui va suivre, en dimension $d \geqslant 1$ quelconque, l'espace euclidien \mathbb{R}^d sera muni de la mesure de Lebesgue, notée $dx = dx_1 \cdots dx_d$, les sous-ensembles dits mesurables $E \subset \mathbb{R}^d$ ayant été définis dans un chapitre qui précède.

Définition 1.1. Pour un exposant p satisfaisant :

$$1 \leqslant p < \infty$$
,

l'espace $L^{\mathsf{p}}(\mathbb{R}^d)$ est constitué des fonctions mesurables de puissance p-ème intégrable :

$$L^{\mathbf{p}}(\mathbb{R}^d) \,:=\, \bigg\{f\colon\, \mathbb{R}^d\,\longrightarrow\, \mathbb{C}\colon\, f \,\,\text{est mesurable et satisfait}\,\, \int_{\mathbb{R}^d}\, \big|f(x)\big|^{\mathbf{p}}\, dx \,<\, \infty\bigg\}.$$

Lorsque p = 1, on retrouve bien entendu l'espace, noté dans un chapitre qui précède :

$$L^1(\mathbb{R}^d),$$

des fonctions dites Lebesgue-intégrables. Nous avons alors démontré que la quantité :

$$||f||_{L^1(\mathbb{R}^d)} := \int_{\mathbb{R}^d} |f(x)| dx$$

définit une norme sur l'espace vectoriel $L^1(\mathbb{R}^d)$, et que $\left(L^1(\mathbb{R}^d), \|\cdot\|_{L^1}\right)$ est un espace vectoriel normé complet, pourvu seulement qu'on s'accorde pour dire que deux fonctions sont égales lorsqu'elles prennent les mêmes valeurs sauf éventuellement sur un sous-ensemble de mesure nulle.

De même, nous allons établir, lorsque p = 2, que l'espace :

$$L^2(\mathbb{R}^d) \,:=\, \bigg\{f\colon\, \mathbb{R}^d\,\longrightarrow\, \mathbb{C}\colon\, f \text{ est mesurable et satisfait } \int_{\mathbb{R}^d}\, \big|f(x)\big|^2\, dx \,<,\infty\bigg\},$$

est un espace vectoriel normé complet. Une structure supplémentaire très importante enrichit $L^2(\mathbb{R}^d)$, à savoir la structure d'un espace de Hilbert pour le produit scalaire :

$$\langle f, g \rangle_{L^2} := \int_{\mathbb{R}^d} f(x) \, \overline{g(x)} \, dx.$$

On peut aussi définir les espaces L^p pour $p=\infty$, sans utiliser d'intégrale, mais nous verrons dans la Section 4 que les L^p tendent en un certain sens naturel vers L^∞ lorsque $p \longrightarrow \infty$.

Définition 1.2. L'espace des $L^{\infty}(\mathbb{R}^d)$ des fonctions essentiellement bornées sur \mathbb{R}^d est :

$$L^{\infty}(\mathbb{R}^d):=\Big\{f\colon\,\mathbb{R}^d\longrightarrow\mathbb{C}\colon\,f\text{ est mesurable et il existe une constante }0\leqslant C<\infty\Big\}$$

telle que
$$|f(x)| \leqslant C$$
 pour presque tout $x \in \mathbb{R}^d$.

On définit alors la norme L^{∞} de f:

$$||f||_{L^{\infty}(\mathbb{R}^d)} := \inf C,$$

comme étant l'infimum de ces constantes C, lorsqu'il en existe au moins une, et l'on a alors en presque tout point $x \in \mathbb{R}^d$:

$$|f(x)| \leqslant ||f||_{L^{\infty}(\mathbb{R}^d)}.$$

Démonstration. En effet, en introduisant l'ensemble :

$$E := \{ x \in \mathbb{R}^d \colon |f(x)| > ||f||_{L^{\infty}} \},$$

et en introduisant, pour $n \in \mathbb{N}_{\geq 1}$, les ensembles :

$$E_n := \{ x \in \mathbb{R}^d \colon |f(x)| > ||f||_{L^{\infty}} + 1/n \},$$

on a
$$m(E_n) = 0$$
 pour tout n et $E = \bigcup E_n$, d'où $m(E) = 0$.

Parfois, on appelle $||f||_{L^{\infty}}$ le supremum essentiel de f. Il est clair que cette norme généralise la norme du supremum sur les fonctions continues $g: \mathbb{R}^d \longrightarrow \mathbb{C}$:

$$\|g\|_{\mathscr{C}^0(\mathbb{R}^d)} \,:=\, \sup_{x\in\mathbb{R}^d} \big|g(x)\big|.$$

Mais revenons aux « vrais » espaces $L^p(\mathbb{R}^d)$ avec $1 \leqslant p < \infty$ de fonctions dont la puissance p-ème est intégrable sur \mathbb{R}^d .

Comme dans les cas déjà connus de $L^1(\mathbb{R}^d)$ et de $L^2(\mathbb{R}^d)$, il est naturel de convenir que les fonctions sont définies à un ensemble de mesure nulle près, et donc que l'on a :

$$\|f\|_{L^{\mathbf{p}}} = 0,$$

lorsque et seulement lorsque f=0 presque partout, où la quantité « norme L^P » d'une fonction $f \in L^p(\mathbb{R}^d)$ devrait, comme on doit s'y attendre, être naturellement définie par :

$$\|f\|_{L^{\mathbf{p}}(\mathbb{R}^d)} := \left(\int_{\mathbb{R}^d} |f(x)|^{\mathbf{p}} dx \right)^{\frac{1}{\mathbf{p}}},$$

la puissance $\frac{1}{p}$ garantissant l'homogénéité par dilatation que toute norme doit satisfaire :

$$\|\lambda f\|_{L^{\mathbf{p}}(\mathbb{R}^d)} = |\lambda| \cdot \|f\|_{L^{\mathbf{p}}(\mathbb{R}^d)} \tag{$\lambda \in \mathbb{C}$}.$$

Toutefois, cette idée de définir une telle norme ne pourrait avoir de sens que si on parvenait à prouver que $L^p(\mathbb{R}^d)$ jouit d'une structure d'espace vectoriel, et heureusement, les raisonnements qui vont suivre vont nous faire parvenir à un tel résultat.

Lorsque l'exposant p satisfait $0 , on constate (Exercice 2) qu'une inégalité du triangle ne peut pas être satisfaite, ce qui justifie, pour bénéficier d'une structure naturelle d'espace vectoriel, de se restreindre à supposer <math>1 \le p < \infty$. Dans cette circonstance, c'est l'inégalité dite de Hölder généralisant l'inégalité de Cauchy-Schwarz (cas p = 2) qui constitue l'outil principal de toute la théorie, et elle servira à démontrer l'inégalité de Minkowski, établissant que $L^p(\mathbb{R}^d)$ est bien un espace vectoriel.

2. Inégalités de Hölder et de Minkowski

Soit donc un exposant réel p, et supposons qu'il est éventuellement égal à l'infini :

$$1 \leqslant p \leqslant \infty$$
.

Définition 2.1. L'exposant conjugué de p est l'unique nombre réel p' satisfaisant :

$$\frac{1}{\mathsf{p}} + \frac{1}{\mathsf{p}'} = 1.$$

Autrement dit:

$$p' = \frac{1}{1 - \frac{1}{p}}$$
$$= \frac{p}{p - 1},$$

ce qui montre que :

$$1 \iff $1 < p' < \infty$.$$

Bien entendu ici, on convient que:

$$\frac{1}{\infty} = 0$$
 et que : $\frac{1}{0} = \infty$,

d'où (exercice visuel):

$$\infty' = 1$$
 et $1' = \infty$.

Observation 2.2. L'exposant p = 2, et seulement lui, est auto-conjugué :

$$2 = p = p' = 2.$$

Théorème 2.3. [Inégalité de Hölder] Étant donné un exposant p quelconque satisfaisant :

$$1 ,$$

pour toute paire de fonctions appartenant à des espaces conjugués :

$$f \in L^{\mathsf{p}}(\mathbb{R}^d)$$
 et $g \in L^{\mathsf{p}'}(\mathbb{R}^d)$,

le produit f g appartient à $L^1(\mathbb{R}^d)$ et l'on a l'inégalité :

$$||fg||_{L^1(\mathbb{R}^d)} \leqslant ||f||_{L^p(\mathbb{R}^d)} \cdot ||g||_{L^{p'}(\mathbb{R}^d)},$$

à savoir on a:

$$\int_{\mathbb{R}^d} \left| f(x) g(x) \right| dx \leqslant \left(\int_{\mathbb{R}^d} \left| f(x) \right|^{\mathsf{p}} dx \right)^{\frac{1}{\mathsf{p}}} \left(\int_{\mathbb{R}^d} \left| g(x) \right|^{\mathsf{p}'} dx \right)^{\frac{1}{\mathsf{p}'}}.$$

L'Exercice 3 propose de caractériser simplement le cas d'égalité ci-dessus.

En particulier, pour p = p' = 2, on retrouve l'inégalité de Cauchy-Schwarz :

$$\left\| f \, \overline{g} \right\|_{L^1(\mathbb{R}^d)} \, \leqslant \, \| f \|_{L^2(\mathbb{R}^d)} \cdot \| g \|_{L^2(\mathbb{R}^d)},$$

que l'on a déjà démontrée par d'autres voies.

De plus, pour $p = \infty$, d'où p' = 1, nous affirmons que l'inégalité est encore valable :

$$||fg||_{L^1(\mathbb{R}^d)} \le ||f||_{L^\infty(\mathbb{R}^d)} \cdot ||g||_{L^1(\mathbb{R}^d)},$$

ce qui est essentiellement évident, puisqu'il suffit de majorer dans l'intégrale la fonction f par son supremum essentiel :

$$\begin{split} \int_{\mathbb{R}^d} \, \left| f(x) \, g(x) \right| dx \, \leqslant \, \sup_{\mathbb{R}^d} |f| \, \int_{\mathbb{R}^d} \, \left| g(x) \right| dx \\ &= \, \|f\|_{L^\infty(\mathbb{R}^d)} \cdot \|g\|_{L^1(\mathbb{R}^d)}. \end{split}$$

Démonstration. Pour ce qui est du cas le plus fréquent 1 , commençons par généraliser l'inégalité évidente (exercice!) :

$$ts \leqslant \frac{t^2 + s^2}{2},$$

satisfaite par deux nombres réels $t, s \ge 0$ quelconques.

Lemme 2.4. Pour tout exposant θ avec $0 \le \theta \le 1$, deux nombres réels $t, s \ge 0$ quelconques satisfont toujours :

$$t^{\theta} s^{1-\theta} \leqslant \theta t + (1-\theta) s.$$

Démonstration. En effet, puisqu'on a gratuitement $0 \le 0$ lorsque s=t=0, on peut supposer que $(s,t) \ne (0,0)$. Ensuite, grâce au fait que l'inégalité à établir est symétrique à travers les échanges simultanés :

$$\theta \longleftrightarrow (1 - \theta)$$
 $s \longleftrightarrow t$,

on peut supposer que $s \neq 0$.

Or puisque l'ensemble des couples $(t,s) \in \mathbb{R}_+ \times \mathbb{R}_+^*$ est le même que l'ensemble des couples (ts,s) avec $s \neq 0$, nous sommes ramenés à établir :

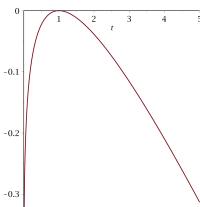
$$(ts)^{\theta} s^{1-\theta} \stackrel{?}{\leqslant} \theta ts + (1-\theta) s,$$

ce qui, après division par s, et disparition de s, devient :

$$t^{\theta} \stackrel{?}{\leqslant} \theta t + 1 - \theta.$$

On a donc affaire ici à la fonction d'une seule variable $t \in \mathbb{R}_+$:

$$f(t) := t^{\theta} - \theta t - 1 + \theta,$$



partant de la valeur négative $f(0) = -1 + \theta$, dont la fonction dérivée :

$$f'(t) = \theta t^{\theta - 1} - \theta$$
$$= \theta \left(\frac{1}{t^{1 - \theta}} - 1 \right),$$

est $\geqslant 0$ pour $0 \leqslant t \leqslant 1$, puis $\leqslant 0$ pour $1 \leqslant t < \infty$, ce qui force f à atteindre son maximum au point t = 1, où elle vaut :

$$f(1) = 0,$$

et donc f prend toujours des valeurs ≤ 0 , ce qui établit l'inégalité désirée.

Maintenant, nous pouvons raisonner comme suit pour obtenir l'inégalité de Hölder.

Si l'on a soit $||f||_{L^p} = 0$, soit $||g||_{L^{p'}} = 0$, il vient soit f = 0 soit g = 0 presque partout, et donc dans les deux cas f g = 0 presque partout, et enfin, l'inégalité de Hölder se réduit à l'inégalité triviale $0 \le 0$.

Nous pouvons donc supposer que:

$$||f||_{L^{\mathbf{p}}} \neq 0$$
 et $||g||_{L^{\mathbf{p}'}} \neq 0$.

Divisons alors f et g par leurs normes :

$$f\,\longmapsto\,\frac{f}{\|f\|_{L^{\mathbf{p}}}}\qquad\qquad \text{et}\qquad\qquad g\,\longmapsto\,\frac{g}{\|g\|_{L^{\mathbf{p}'}}},$$

afin de nous ramener, dans l'inégalité à établir, au cas où f et g sont toutes deux de norme unité :

$$\|f\|_{L^{\mathbf{p}}} = 1$$
 et $\|g\|_{L^{\mathbf{p}'}} = 1$.

En un point fixé $x \in \mathbb{R}^d$, appliquons alors le lemme qui précède aux deux nombres réels :

$$t := |f(x)|^{p}$$
 et $s := |g(x)|^{p'}$,

avec l'exposant:

$$\theta := \frac{1}{\mathsf{p}}$$
 d'où $1 - \theta = \frac{1}{\mathsf{p}'},$

ce qui nous donne :

$$\left| f(x) g(x) \right| \leqslant \frac{1}{\mathsf{p}} \left| f(x) \right|^{\mathsf{p}} + \frac{1}{\mathsf{p}'} \left| g(x) \right|^{\mathsf{p}'}.$$

Pour terminer, une simple intégration de cette inégalité apporte sur un plateau doré le jeu d'(in)égalités suivantes :

$$||fg||_{L^{1}} \leq \frac{1}{p} (||f||_{L^{p}})^{p} + \frac{1}{p'} (||g||_{L^{p'}})^{p'}$$

$$= \frac{1}{p} \cdot 1^{p} + \frac{1}{p'} \cdot 1^{p'}$$

$$= 1$$

$$= ||f||_{L^{p}} \cdot ||g||_{L^{p'}},$$

qui conclut les hostilités.

Nous sommes maintenant prêts pour établir l'inégalité du triangle dans l'espace $L^p(\mathbb{R}^d)$.

Théorème 2.5. [Minkowski] Étant donné un exposant p quelconque satisfaisant :

$$1 \leqslant p \leqslant \infty$$
,

pour toute paire de fonctions dans le même espace de Hölder :

$$f \in L^{\mathsf{p}}(\mathbb{R}^d)$$
 et $g \in L^{\mathsf{p}}(\mathbb{R}^d)$,

on a:

$$||f+g||_{L^{p}(\mathbb{R}^{d})} \leqslant ||f||_{L^{p}(\mathbb{R}^{d})} + ||g||_{L^{p}(\mathbb{R}^{d})}.$$

Démonstration. Le cas déjà connu p = 1 s'obtient instantanément en intégrant l'inégalité :

$$|f(x) + g(x)| \le |f(x)| + |g(x)|.$$

Le cas $p = \infty$, aisé, est laissé au lecteur en exercice de compréhension.

Maintenant, pour $1< p<\infty$, commençons par vérifier que $f+g\in L^p$ lorsque $f,g\in L^p$.

 $\grave{\mathsf{A}}$ cet effet, comme en tout point $x \in \mathbb{R}^d$ on a soit :

$$|f(x)| \le |g(x)|,$$
 soit $|g(x)| \le |f(x)|,$

on a toujours soit:

$$\left|f(x) + g(x)\right|^{\mathsf{p}} \leqslant 2^{\mathsf{p}} \left|g(x)\right|^{\mathsf{p}}, \quad \text{soit} \quad \left|f(x) + g(x)\right|^{\mathsf{p}} \leqslant 2^{\mathsf{p}} \left|f(x)\right|^{\mathsf{p}},$$

d'où toujours:

$$|f(x) + g(x)|^{\mathsf{p}} \le 2^{\mathsf{p}} |f(x)|^{\mathsf{p}} + 2^{\mathsf{p}} |g(x)|^{\mathsf{p}},$$

ce qui démontre bien, en intégrant cette dernière inégalité, que $f+g\in L^{\rm p}$ avec l'estimation :

$$\left(\|f+g\|_{L^{\mathsf{p}}}\right)^{\mathsf{p}} \leqslant 2^{\mathsf{p}} \left(\|f\|_{L^{\mathsf{p}}}\right)^{\mathsf{p}} + 2^{\mathsf{p}} \left(\|g\|_{L^{\mathsf{p}}}\right)^{\mathsf{p}},$$

qui est moins bonne que l'inégalité de Minkowski désirée à cause de la constante $2^p > 1$, donc il reste du travail.

En fait, comme p > 1, on peut écrire :

$$|f(x) + g(x)|^{p} = |f(x) + g(x)| \cdot |f(x) + g(x)|^{p-1}$$

$$\leq |f(x)| \cdot |f(x) + g(x)|^{p-1} + |g(x)| \cdot |f(x) + g(x)|^{p-1}.$$

Or si p' est l'exposant conjugué de p :

$$p' = \frac{p}{p-1},$$

qui satisfait donc :

$$(\mathsf{p}-1)\,\mathsf{p}'\,=\,\mathsf{p},$$

nous voyons que la fonction $(f+g)^{p-1}$ qui apparaît deux fois dans l'inégalité ci-dessus appartient à l'espace $L^{p'}(\mathbb{R}^d)$, donc nous pouvons appliquer deux fois l'inégalité de Hölder et chercher ensuite à faire ré-apparaître les normes L^p :

$$(\|f+g\|_{L^{p}})^{p} \leq \||f| \cdot |f+g|^{p-1}\|_{L^{1}} + \||g| \cdot |f+g|^{p-1}\|_{L^{1}}$$

$$\leq \|f\|_{L^{p}} \cdot \||f+g|^{p-1}\|_{L^{p'}} + \|g\|_{L^{p}} \cdot \||f+g|^{p-1}\|_{L^{p'}}$$

$$= \|f\|_{L^{p}} \cdot \left(\int_{\mathbb{R}^{d}} \left(|f+g|^{p-1}\right)^{p'}\right)^{\frac{1}{p'}} + \|g\|_{L^{p}} \cdot \left(\int_{\mathbb{R}^{d}} \left(|f+g|^{p-1}\right)^{p'}\right)^{\frac{1}{p'}}$$

$$= \|f\|_{L^{p}} \cdot \left(\int_{\mathbb{R}^{d}} |f+g|^{p}\right)^{\frac{1}{p}} + \|g\|_{L^{p}} \cdot \left(\int_{\mathbb{R}^{d}} |f+g|^{p}\right)^{\frac{1}{p}}$$

$$= \|f\|_{L^{p}} \cdot \left(\|f+g\|_{L^{p}}\right)^{\frac{p}{p'}} + \|g\|_{L^{p}} \cdot \left(\|f+g\|_{L^{p}}\right)^{\frac{p}{p'}}$$

$$= \|f\|_{L^{p}} \cdot \left(\|f+g\|_{L^{p}}\right)^{\frac{p}{p'}} + \|g\|_{L^{p}} \cdot \left(\|f+g\|_{L^{p}}\right)^{\frac{p}{p'}}$$

ce qui donne en factorisant :

$$(\|f+g\|_{L^p})^p \leqslant (\|f+g\|_{L^p})^{\frac{p}{p'}} \{\|f\|_{L^p} + \|g\|_{L^p}\}.$$

Pour terminer, dans l'inégalité de Minkowski à démontrer, on peut bien sûr supposer que $||f + g||_{L^p} > 0$ (exercice mental), et donc en simplifiant à gauche et à droite par la bonne puissance de $||f + g||_{L^p}$, grâce au fait « miraculeux » (exercice) que :

$$\mathsf{p} - \frac{\mathsf{p}}{\mathsf{p}'} \, = \, 1,$$

on obtient bien l'inégalité de Minkowski :

$$(\|f+g\|_{L^p})^{\mathsf{p}-\frac{\mathsf{p}}{\mathsf{p}'}} \leqslant \|f\|_{L^p} + \|g\|_{L^p}.$$

3. Complétude de $L^{\mathsf{p}}(\mathbb{R}^d)$

Taking limits is a necessity in many problems, and the L^p spaces would be of little use if they were not complete. Elias STEIN, 2002

En adaptant la démonstration que $L^1(\mathbb{R}^d)$ est complet, on démontre plus généralement que tous les espaces $L^p(\mathbb{R}^d)$ sont complets.

Théorème 3.1. [Riesz-Fischer] Pour $1 \leq p \leq \infty$, le \mathbb{C} -espace vectoriel $L^p(\mathbb{R}^d, \mathbb{C})$ muni de la métrique dérivée de sa norme :

$$d(f,g) := \left(\int_{\mathbb{R}^d} |f - g|^{\mathbf{p}} \right)^{\frac{1}{\mathbf{p}}},$$

est complet.

La démonstration dans le cas $p=\infty$, plus élémentaire que celle des cas $1\leqslant p<\infty$, est suggérée en exercice (utiliser la Théorie de la mesure).

4. Espaces $L^{p}(E)$

Naturellement, les espaces $L^{\rm p}$ ont un sens sur les sous-ensembles mesurables quelconques de \mathbb{R}^d .

Définition 4.1. Si $E \subset \mathbb{R}^d$ est un sous-ensemble mesurable, pour un exposant $1 \leq \mathsf{p} < \infty$, l'espace $L^\mathsf{p}(E)$ est constitué des fonctions mesurables sur E de puissance p-ème intégrable :

$$L^{\mathsf{p}}(E) := \Big\{ f \colon E \longrightarrow \mathbb{C} \colon f \text{ est mesurable et satisfait } \int_{E} \big| f(x) \big|^{\mathsf{p}} \, dx < \infty \Big\}.$$

On peut aussi définir $L^{\infty}(E)$, en mimant la définition de $L^{\infty}(\mathbb{R}^d)$.

Lorsque $m(E)<\infty$ est de mesure (de Lebesgue) finie, les espaces $L^{\rm p}(E)$ peuvent être comparés entre eux.

Proposition 4.2. Si $E \subset \mathbb{R}^d$ est mesurable avec $m(E) < \infty$, pour tout couple d'exposants :

$$1 \leqslant p \leqslant q \leqslant \infty$$

on a les inclusions inversées :

$$L^{1}(E) \supset L^{\mathsf{p}}(E) \supset L^{\mathsf{q}}(E) \supset L^{\infty}(E),$$

et lorsque de plus :

$$1 \leqslant p \leqslant q < \infty$$
,

on a les inégalités normiques :

$$\frac{1}{m(E)^{\frac{1}{p}}} \|f\|_{L^{p}(E)} \leqslant \frac{1}{m(E)^{\frac{1}{q}}} \|f\|_{L^{q}(E)}.$$

Démonstration. Le cas où $q=\infty$ étant laissé au lecteur-étudiant, nous pouvons alors bien entendu supposer que :

$$1 \leqslant p < q < \infty$$
.

Si donc une fonction quelconque $f \in L^{q}(E)$ est donnée, il s'agit de faire voir que cette fonction appartient automatiquement à $L^{p}(E)$, et pour ce faire, nous devons chercher à majorer :

$$\int_{E} |f|^{\mathsf{p}},$$

sachant que seule l'intégrabilité de la puissance q-ème de f est connue, et alors une astuce simple et artificielle mais omniprésente dans toute la théorie consiste à faire apparaître un facteur 1 implicite afin d'appliquer l'inégalité de Hölder :

$$\int_{E} |f|^{\mathbf{p}} \cdot 1 \leqslant \left(\int_{E} \left(|f|^{\mathbf{p}} \right)^{\mathbf{p}_{1}} \right)^{\frac{1}{\mathbf{p}_{1}}} \underbrace{\left(\int_{E} 1^{\mathbf{p}_{1}'} \right)^{\frac{1}{\mathbf{p}_{1}'}}}_{\substack{\text{quantité finie} \\ \text{puisque } m(E) < \infty}},$$

en choisissant des exposants conjugués :

$$\frac{1}{p_1} + \frac{1}{p_1'} = 1,$$

afin que l'exposant de |f| soit justement égal à q :

$$p p_1 = q$$
,

ce qui impose le choix unique :

$$\mathsf{p}_1 \, := \, \frac{\mathsf{q}}{\mathsf{p}} \qquad \quad \mathsf{d'où} \qquad \quad \frac{1}{\mathsf{p'}_1} \, = \, 1 - \frac{\mathsf{p}}{\mathsf{q}}.$$

L'inégalité obtenue devient alors :

$$\left(\|f\|_{L^{\mathbf{p}}(E)}\right)^{\mathbf{p}} \leqslant \left(\int_{E} |f|^{\mathbf{q}}\right)^{\frac{\mathbf{p}}{\mathbf{q}}} \cdot \left(m(E)\right)^{1-\frac{\mathbf{p}}{\mathbf{q}}}
= \left(\|f\|_{L^{\mathbf{q}}(E)}\right)^{\mathbf{p}} \cdot \left(m(E)\right)^{1-\frac{\mathbf{p}}{\mathbf{q}}}
< \infty,$$

ce qui montre tout d'abord bien que $f \in L^p(E)$, et ensuite, après prise de racine p-ème, offre l'inégalité annoncée. \Box

Toutefois, lorsque la mesure $m(E) = \infty$ de E est infinie, ces inclusions cessent d'être vraies en général, cf. l'Exercice 4.

Pour conclure ce bref chapitre, voici un énoncé qui montre que l'espace $L^{\infty}(E)$ est un cas-limite des espaces $L^{p}(E)$.

Proposition 4.3. Sur un ensemble $E \subset \mathbb{R}^d$ de mesure $m(E) < \infty$, pour toute fonction :

$$f \in L^{\infty}(E),$$

d'où par la Proposition 4.2, pour tout $1 \leq p \leq \infty$:

$$f \in L^{\mathsf{p}}(E),$$

on a:

$$||f||_{L^{\mathsf{p}}(E)} \longrightarrow ||f||_{L^{\infty}(E)},$$

lorsque $p \longrightarrow \infty$.

Démonstration. Si $||f||_{L^{\infty}} = 0$, on a f = 0 presque partout, donc $||f||_{L^{p}} = 0$ pour tout p, et $0 \to 0$ gratuitement. De même, lorsque m(E) = 0, il n'y a rien à vérifier.

En supposant donc que m(E) > 0 et que $||f||_{L^{\infty}} > 0$, majorons :

$$||f||_{L^{\mathbf{p}}} = \left(\int_{E} |f(x)|^{\mathbf{p}} dx \right)^{\frac{1}{\mathbf{p}}}$$

$$\leq \left(\int_{E} \left(||f||_{L^{\infty}} \right)^{\mathbf{p}} \right)^{\frac{1}{\mathbf{p}}}$$

$$\leq ||f||_{L^{\infty}} \cdot \left(m(E) \right)^{\frac{1}{\mathbf{p}}}.$$

Or comme $a^{\frac{1}{p}} \longrightarrow 1$ pour tout nombre réel a > 0, on déduit :

$$\limsup_{\mathbf{p} \to \infty} \|f\|_{L^{\mathbf{p}}} \, \leqslant \, \|f\|_{L^{\infty}}.$$

D'un autre côté, étant donné $\varepsilon>0$ arbitrairement petit, on doit avoir d'après la Définition 1.2 du supremum essentiel :

$$m\Big(\big\{x\in E\colon |f(x)|\geqslant \|f\|_{L^{\infty}}-\varepsilon\big\}\Big)\geqslant \delta>0,$$

pour un certain $\delta = \delta(\varepsilon)$ strictement positif, d'où (exercice mental) :

$$\int_{E} |f(x)|^{\mathsf{p}} dx \ge \delta \cdot (\|f\|_{L^{\infty}} - \varepsilon)^{\mathsf{p}}.$$

Après prise de la racine p-ème de cette inégalité, nous déduisons :

$$\liminf_{\mathbf{p}\to\infty}\|f\|_{L^{\mathbf{p}}}\,\geqslant\,\|f\|_{L^{\infty}}-\varepsilon,$$

et comme $\varepsilon > 0$ était arbitraire :

$$\liminf_{\mathsf{p}\to\infty}\|f\|_{L^\mathsf{p}}\ \geqslant\ \|f\|_{L^\infty}$$

La comparaison visuelle entre les deux inégalités concernant les limites supérieure et inférieure montre que le résultat tombe du ciel. \Box

5. Séparabilité de $L^{p}(E)$

Comme $L^1(\mathbb{R}^d)$, les espaces $L^p(E)$ sont séparables.

Théorème 5.1. Sur tout ensemble mesurable $E \subset \mathbb{R}^d$ et pour tout exposant $1 \leq p < \infty$, l'espace $L^p(E)$ des fonctions de puissance p-ème intégrable sur E est séparable :

$$\exists \left(\varphi_n\right)_{n=1}^{\infty} \in L^{\mathsf{p}}(E) \quad \forall \, g \in L^{\mathsf{p}}(E) \quad \forall \, \varepsilon > 0 \quad \exists \, \mathsf{N}(\varepsilon) \gg 1 \quad \left\|g - \varphi_{\mathsf{N}(\varepsilon)}\right\|_{L^{\mathsf{p}}(E)} \, \leqslant \, \varepsilon.$$

Démonstration. Fixons $1 \leq p < \infty$. En multipliant les fonctions impliquées par la fonction indicatrice $\mathbf{1}_E$ de E, tout revient à considérer des fonctions $g, \varphi_n \in L^p(\mathbb{R}^d)$, et nous pouvons donc travailler avec $E := \mathbb{R}^d$.

Comme dans la démonstration du fait que $L^1(\mathbb{R}^d)$ est séparable, on regarde la famille des fonctions de la forme $\lambda_{\mathbb{Q}} \cdot \mathbf{1}_{R_{\mathbb{Q}}}$, où $\lambda_{\mathbb{Q}} \in \mathbb{Q} + i \mathbb{Q}$ est un nombre complexe à composantes rationnelles, et où :

$$R_{\mathbb{Q}} = \prod_{1 \le i \le d} \left[a_{i,\mathbb{Q}}, b_{i,\mathbb{Q}} \right]$$
 (1 \le i \le d),

est un rectangle de \mathbb{R}^d à coordonnées rationnelles.

Affirmation 5.2. Les sommes finies de ce type de fonctions sont denses dans $L^{p}(\mathbb{R}^{d})$.

Démonstration. Soient donc $g \in L^p(\mathbb{R}^d)$ quelconque et $\varepsilon > 0$ arbitraire. Pour des grands entiers $K \gg 1$, tronquons :

$$g_{\mathtt{K}}(x) \, := \, \begin{cases} g(x) & \quad \text{lorsque} \ |x| \leqslant \mathtt{K} \ \text{ et } \ |g(x)| \leqslant \mathtt{K}, \\ 0 & \quad \text{autrement.} \end{cases}$$

Alors comme l'intégrabilité $\int |g|^p < \infty$ garantit que $|g(x)| < \infty$ presque partout, on a la convergence ponctuelle :

$$g_{\mathbf{K}}(x) \underset{\mathbf{K} \to \infty}{\longrightarrow} g(x)$$
 (pour presque tout $x \in \mathbb{R}^d$).

De plus, par $|g_K| \leq |g|$, on a la majoration uniforme :

$$|g - g_{\mathsf{K}}|^{\mathsf{p}} \leqslant 2^{\mathsf{p}} |g|^{\mathsf{p}},$$

donc le théorème de convergence dominée offre :

$$0 = \lim_{K \to \infty} \|g - g_{\mathbf{K}}\|_{L^{\mathbf{p}}(\mathbb{R}^d)},$$

6. Exercices

et donc, il existe $K(\varepsilon) \gg 1$ assez grand pour que :

$$\|g - g_{\mathsf{K}(\varepsilon)}\|_{L^{\mathsf{p}}(\mathbb{R}^d)} \leqslant \frac{\varepsilon}{2}.$$

En notant de manière abrégée $g_{\mathbf{K}(\varepsilon)} =: h$, on est maintenant ramené à approximer en norme L^{p} une fonction $h \in L^{\mathsf{p}}(\mathbb{R}^d)$ qui est de plus *bornée* et à support *bornée*. Or ceci garantit qu'on a de surcroît :

$$h \in L^1(\mathbb{R}^d)!$$

Et donc, le théorème de séparabilité de $L^1(\mathbb{R}^d)$ fournit, pour tout $\varepsilon'>0$ — qui sera choisi dans un instant —, l'existence d'une fonction-type :

$$arphi = \sum_{\mathsf{finie}} \lambda_{\mathbb{Q}} \cdot \mathbf{1}_{R_{\mathbb{Q}}},$$

telle que:

$$||h - \varphi||_{L^1(\mathbb{R}^d)} \leqslant \varepsilon'.$$

Or un examen de la construction de cette approximante φ montre qu'on peut aisément supposer que sa taille et son support ne débordent pas trop de celui de h:

- $|\varphi(x)| \leqslant 2 \sup |h| \leqslant 2 \mathrm{K}$;
- $\operatorname{supp} \varphi \subset \{|x| \leqslant 2 \, \mathrm{K}\}.$

Si donc nous choisissons:

$$0 < \varepsilon' \leqslant \frac{1}{(3 \,\mathrm{K})^{\mathrm{p}-1}} \left(\frac{\varepsilon}{2}\right)^{\mathrm{p}},$$

il vient par une majoration élémentaire :

$$\int_{\mathbb{R}^d} |h - \varphi|^{\mathbf{p}} \leq \sup_{|x| \leq 2K} |h - \varphi|^{\mathbf{p} - 1} \int_{\mathbb{R}^d} |h - \varphi|
\leq (K + 2K)^{\mathbf{p} - 1} \varepsilon'
= \left(\frac{\varepsilon}{2}\right)^{\mathbf{p}},$$

à savoir $\|h-\varphi\|_{L^p}\leqslant \frac{\varepsilon}{2}$, et enfin $\|g-\varphi\|_{L^p}\leqslant \|g-h\|_{L^p}+\|h-\varphi\|_{L^p}\leqslant \varepsilon$.

Comme dans le cas de $L^1(\mathbb{R}^d)$, on vérifie que cet ensemble *dense* dans $L^p(\mathbb{R}^d)$ de fonctions-type $\sum_{\text{finie}} \lambda_{\mathbb{Q}} \cdot \mathbf{1}_{R_{\mathbb{Q}}}$ est dénombrable, donc peut être organisé en une certaine suite $(\varphi_n)_{n=1}^{\infty}$ telle qu'on l'a notée dans l'énoncé du théorème.

Pour terminer ce chapitre, une adaptation (exercice) d'un théorème de densité déjà vu dans l'espace $L^1(\mathbb{R}^d)$ des fonctions Lebesgue-intégrables offre un énoncé extrêmement utile au-delà dans de nombreux contextes.

Théorème 5.3. Soit $E \subset \mathbb{R}^d$ un sous-ensemble mesurable, et soit un exposant $1 \leq p < \infty$. Dans l'espace $L^p(\mathbb{R}^d)$ des fonctions mesurables de puissance p-ème intégrable, les trois familles suivantes de fonctions sont denses pour la norme $\|\cdot\|_{L^p(E)}$:

- (i) les fonctions étagées;
- (ii) les fonctions en escalier;
- (iii) les fonctions continues à support compact.

6. Exercices

Exercice 1. Montrer que $L^{\infty}(\mathbb{R}^d, \mathbb{C})$, l'espace des fonctions mesurables bornées presque partout en valeur absolue, n'est pas séparable. Indication: En dimension d=1, utiliser la famille non dénombrable de fonctions :

$$\sum_{n\in\mathbb{Z}}\lambda_n\cdot\mathbf{1}_{]n,n+1[},$$

où $\lambda_n \in \{0,1\}$ pour tout n, et en dimension $d \ge 2$, imiter cette famille avec des cubes au lieu d'intervalles.

Exercice 2. On considère les espaces $L^p(\mathbb{R}^d)$ pour 0 . Montrer que si l'on a :

$$||f+g||_{L^p} \leqslant ||f||_{L^p} + ||g||_{L^p}$$

pour toutes fonctions $f, g \in L^p(\mathbb{R}^d)$, alors nécessairement $p \geqslant 1$.

Exercice 3. Si $f \in L^p(\mathbb{R}^d)$ et $g \in L^{p'}(\mathbb{R}^d)$ avec $\frac{1}{p} + \frac{1}{p'} = 1$ ne sont pas toutes deux nulles presque partout, montrer qu'on a égalité dans l'inégalité de Hölder du Théorème 2.3 :

$$||fg||_{L^1(\mathbb{R}^d)} = ||f||_{L^p(\mathbb{R}^d)} ||g||_{L^{p'}(\mathbb{R}^d)},$$

si et seulement s'il existe deux constantes réelles a>0 et b>0 telles que :

$$a |f(x)|^{\mathsf{p}} = b |g(x)|^{\mathsf{p}'}$$
 (presque partout).

Indication: Examiner l'inégalité $\left|f(x)g(x)\right|\leqslant \frac{1}{\mathsf{p}}\left|f(x)\right|^{\mathsf{p}}+\frac{1}{\mathsf{p}'}\left|g(x)\right|^{\mathsf{p}'}$ dans la démonstration du Théorème 2.3.

Exercice 4. Sur \mathbb{R}^d muni de la mesure de Lebesgue, on considère l'espace $L^p(\mathbb{R}^d)$. Soit la première fonction :

$$f_0(x) \,:=\, egin{cases} rac{1}{|x|^{lpha}} & \quad ext{lorsque} \ |x| < 1 \ 0 & \quad ext{lorsque} \ |x| \geqslant 1, \end{cases}$$

et soit la deuxième fonction :

- (a) Montrer que $f_0 \in L^p(\mathbb{R}^d)$ si et seulement si $p \alpha < d$.
- **(b)** Montrer que $f_{\infty} \in L^{p}(\mathbb{R}^{d})$ si et seulement si d .
- (c) Qu'arrive-t-il si on considère la première fonction modifiée :

$$f_0(x) \, := \, \begin{cases} \frac{1}{|x|^\alpha \log\left(\frac{2}{|x|}\right)} & \quad \text{lorsque } |x| < 1 \\ 0 & \quad \text{lorsque } |x| \geqslant 1, \end{cases}$$

et si on considère la deuxième fonction modifiée :

$$f_{\infty}(x) \, := \, \begin{cases} 0 & \text{lorsque } |x| < 1 \\ \frac{1}{|x|^{\alpha} \log(2 \, |x|)} & \text{lorsque } |x| \geqslant 1 \, ? \end{cases}$$

Exercice 5. Soient $f,g\colon\mathbb{R}_+\longrightarrow\mathbb{R}$ deux fonctions mesurables, avec $|g|^3$ intégrable. On introduit, pour $t\in\mathbb{R}$:

$$F(t) \,:=\, \int_0^\infty \, \frac{\arctan\left(t\,f(x)\right)}{(1+x)^{\frac34}} \, g(x) \, dx.$$

- (a) Montrer que F est à valeurs finies continue sur \mathbb{R} . Indication: Penser à utiliser l'inégalité de Hölder.
- (b) Montrer que $\lim_{t\to\infty} F(t)$ existe, et en déterminer une expression.
- (c) Montrer que F est \mathscr{C}^1 sur $\mathbb{R}\setminus\{0\}$.

6. Exercices 13

Exercice 6. Soit $f:[0,1] \longrightarrow \mathbb{R}$ une fonction mesurable de carré intégrable, i.e. $f \in L^2([0,1],\mathbb{R})$.

(a) Montrer, pour tout $n \ge 1$, l'inégalité :

$$\int_0^1 x^n |f(x)| dx \leqslant \frac{1}{\sqrt{2n+1}} ||f||_{L^2}.$$

(b) Montrer la finitude de :

$$\int_0^1 \left(\sum_{n=1}^\infty \frac{x^n}{n} \left| f(x) \right| \right) dx < \infty.$$

(c) En déduire la formule :

$$\sum_{n=1}^{\infty} \int_{0}^{1} \frac{x^{n}}{n} f(x) dx = \int_{0}^{1} f(x) \log \left(\frac{1}{1-x}\right) dx.$$

Exercice 7. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}_+$ une fonction positive mesurable. Pour $\lambda \geqslant 0$ réel, on regarde les ensembles de sur-niveau de f:

$$E_{\lambda} := \{ x \in \mathbb{R} \colon f(x) > \lambda \}.$$

- (a) Vérifier que ces E_{λ} sont mesurables.
- **(b)** Montrer que l'application $\lambda \longmapsto m(E_{\lambda})$ est mesurable.
- (c) Soit un exposant $1 \le p < \infty$. Établir la formule :

$$\int_{\mathbb{R}} (f(x))^{\mathsf{p}} dx = \mathsf{p} \int_{0}^{\infty} \lambda^{\mathsf{p}-1} m(E_{\lambda}) d\lambda.$$

Exercice 8. Soit une fonction $f \in L^p(\mathbb{R}, \mathbb{C})$ pour un certain exposant $1 \leq p < \infty$. Pour tout $x \in \mathbb{R}$, on introduit:

$$F(x) := \int_{x}^{x+1} f(t) dt.$$

- (a) Montrer que F prend des valeurs finies, et qu'elle est continue sur \mathbb{R} .
- (b) Montrer que:

$$0 = \lim_{M \to \infty} \int_{-\infty}^{-M} |f(t)|^{\mathbf{p}} dt = \lim_{M \to \infty} \int_{M}^{\infty} |f(t)|^{\mathbf{p}} dt.$$

(c) En déduire que :

$$0 = \lim_{|x| \to \infty} F(x).$$

Exercice 9. Soient trois paramètres réels $0 < \kappa < 1$, $\beta > 1$, $\alpha < \beta$, et soient les deux suites de fonctions $(f_n)_{n=1}^{\infty}$ et $(g_n)_{n=1}^{\infty}$ de $\mathbb R$ à valeurs dans $\mathbb R_+$ définies par :

$$f_n(x) \,:=\, rac{n^{lpha}}{(n+|x|)^{eta}} \qquad \quad ext{et} \quad \ g_n(x) \,:=\, rac{n^{\kappa}}{e^{n|x|}}.$$

- (a) Montrer que $f_n \in L^p(\mathbb{R})$ pour tout exposant $1 \leqslant p \leqslant \infty$, et calculer $||f_n||_{L^p(\mathbb{R})}$.
- (b) Étudier le comportement de la suite $(\|f_n\|_{L^p})_{n=1}^{\infty}$ suivant les valeurs de p.
- (c) Montrer que $g_n \in L^p(\mathbb{R})$ pour tout exposant $1 \leqslant p \leqslant \infty$, et calculer $||g_n||_{L^p(\mathbb{R})}$.
- (d) Étudier le comportement de la suite $(\|g_n\|_{L^p})_{n=1}^{\infty}$ suivant les valeurs de p.
- (e) Déduire de ce qui précède que pour toute paire d'exposants distincts :

$$1 \leqslant p < q \leqslant \infty$$
,

les deux topologies induites sur :

$$L^{\mathsf{p}}(\mathbb{R}) \cap L^{\mathsf{q}}(\mathbb{R})$$

par les deux normes $\|\cdot\|_{L^p}$ et $\|\cdot\|_{L^q}$ ne sont pas comparables.

(f) On note $\ell^p_{\mathbb{C}}$ l'ensemble des suites $(x_n)_{n=1}^\infty$ de nombres complexes $x_n \in \mathbb{C}$ tels que $\sum_{n=1}^\infty |x_n|^p < \infty$. Toujours pour $1 \leqslant p < q \leqslant \infty$, comparer $\ell^p_{\mathbb{C}}$ et $\ell^q_{\mathbb{C}}$.