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ABSTRACT. In this book, we use the framework of mod-φ convergence to prove pre-
cise large or moderate deviations for quite general sequences of real valued random
variables (Xn)n∈N, which can be lattice or non-lattice distributed. We establish precise
estimates of the fluctuations P[Xn ∈ tnB], instead of the usual estimates for the rate of
exponential decay log(P[Xn ∈ tnB]). Our approach provides us with a systematic way
to characterise the normality zone, that is the zone in which the Gaussian approxima-
tion for the tails is still valid. Besides, the residue function measures the extent to which
this approximation fails to hold at the edge of the normality zone.

The first chapters of the book are devoted to a proof of these abstract results and
comparisons with existing results. We then propose new examples covered by this the-
ory and coming from various areas of mathematics. In particular, we complete our the-
ory of precise deviations by a concrete method of cumulants and dependency graphs,
which applies to many examples of sums of “weakly dependent” random variables.
The large number as well as the variety of examples hint at a universality class for sec-
ond order fluctuations.
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Preface

The central limit theorem ([dM56, Lap40, Lya00, Lya01, Lin22, Lév25]) for indepen-
dent and identically distributed (i.i.d.) random variables is one of the most ubiquitous
theorem in probability theory: suitably renormalised, the sum of such variables con-
verges towards a standard normal variable.

We refer to [Fis11] for an historical account of this classical result. Roughly speak-
ing, it shows the universality of fluctuations around the first-order limit given by the
law of large numbers. Although independence is often used as a first approxima-
tion, many natural phenomena exhibit some complex dependency structure. There-
fore, a large body of literature is devoted to relaxing the independence hypothesis.
Thus, central limit theorems have been given for random variables with an underlying
structure such as: martingales ([HH80, Chapter 3]), Markov chains (see e.g. [Cog72,
IL71, GL78], and [Jon04] for a survey), mixing sequences (see [Ros56, Phi69, Dav73,
LL96], and [Bra05] for a survey on mixing conditions), lattice models ([GJL75, EN78,
New80]), m-dependence (cf. [RH48, Dia55, Ber73]), dependency graphs ([PL83, Jan88,
BR89, Mik91]), exchangeable pairs (see [BC05, CGS11, Ros11]), determinantal point
processes (cf. [HKPV09, Section 4.6]), etc.

Concretely, the central limit theorem for Xn expresses the limit of the tail probability
when t is a fixed real number:

lim
n→∞

P[Xn −E[Xn] ≥ tσn] =
1√
2π

∫ +∞

t
e−

s2
2 ds. (1)

Such estimates are crucial in statistics to build confidence intervals. The convergence
in law towards a Gaussian distribution is often complemented by other asymptotic
results:

• the speed of convergence (uniformly in t) in Equation (1) (see [Ber41] and [Fel71,
Chapter XVI]);
• the behaviour of the left-hand side of Eq. (1) when t tends to infinity together

with n (moderate and large deviation results, see [DZ98]);
• a subsequent question is how fast can t grow, so that the limit given in Eq. (1)

is still valid (normality zone);
• in another direction, local limit theorems describe the probability of Xn −E[Xn]

to be in an interval of constant scale (see [Gne48]).
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6 PREFACE

The canonical way to establish the central limit theorem for i.i.d. random variables is to
use characteristic functions and Lévy’s continuity theorem. This is also used in some of
the above-mentioned extensions, in addition to other techniques, mainly based on the
method of moments and Stein’s method (see for instance the first chapters of [Str11]).

In this monograph, we focus on the characteristic function approach, for which
we propose a renormalisation theory — called mod-φ convergence. If the characteris-
tic function converges after a suitable renormalisation, we prove some precise mod-
erate and large deviation results, which enables us to describe the normality zone.
Results for the speed of convergence and local limit theorems will be discussed in a
companion work [FMN16]. The idea of using estimates on characteristic functions to
obtain central limit theorems and deviation probabilities is of course not new, but we
provide here a general framework, together with many examples. These examples
come from various mathematical fields: classical probability theory, number theory
(statistics of additive arithmetic functions), combinatorics (statistics of random permu-
tations), random matrix theory (characteristic polynomials of random matrices in com-
pact Lie groups), graph theory (number of subgraphs in a random Erdős-Rényi graph),
and non-commutative probability theory (asymptotics of random character values of
symmetric groups).
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project and for sharing with us his ideas. We would also like to address special thanks
to Andrew Barbour, Reda Chhaibi and Kenny Maples for many fruitful discussions
which helped us improve some of our arguments.



CHAPTER 1

Introduction

1.1. Mod-φ convergence

The notion of mod-φ convergence has been studied in the articles [JKN11, DKN15,
KN10, KN12, BKN14], in connection with problems from number theory, random ma-
trix theory and probability theory. The main idea was to look for a natural renormali-
sation of the characteristic functions of random variables which do not converge in law
(instead of a renormalisation of the random variables themselves). After this renormal-
isation, the sequence of characteristic functions converges to some non-trivial limiting
function. Here is the definition of mod-φ convergence that we will use throughout this
article (see Section 1.5 for a discussion on the different parts of this definition).

DEFINITION 1.1.1. Let (Xn)n∈N be a sequence of real-valued random variables, and let us
denote by ϕn(z) = E[ezXn ] their moment generating functions, which we assume to all exist
in a strip

S(c,d) = {z, c < Re z < d},
with c < d extended real numbers (we allow c = −∞ and d = +∞). We assume that
there exists a non-constant infinitely divisible distribution φ with moment generating function∫

R
ezx φ(dx) = exp(η(z)) that is well defined on S(c,d), and an analytic function ψ(z) that

does not vanish on the real part of S(c,d), such that locally uniformly in z ∈ S(c,d),

exp(−tn η(z)) ϕn(z)→ ψ(z), (2)

where (tn)n∈N is some sequence going to +∞. We then say that (Xn)n∈N converges mod-φ
on S(c,d), with parameters (tn)n∈N and limiting function ψ. In the following we denote ψn(z)
the left-hand side of (2).

When φ is the standard Gaussian (resp. Poisson) distribution, we will speak of mod-
Gaussian (resp. mod-Poisson) convergence. Besides, unless explicitely stated, we shall
always assume that 0 belongs to the band of convergence S(c,d), i.e., c < 0 < d. Under
this assumption, Definition 1.1.1 implies mod-φ convergence in the sense of [JKN11,
Definition 1.1] or [DKN15, Section 2].

It is immediate to see that mod-φ convergence implies a central limit theorem if the
sequence of parameters tn goes to infinity (see the remark after Theorem 3.3.1). But in
fact there is much more information encoded in mod-φ convergence than merely the
central limit theorem. Indeed, mod-φ convergence appears as a natural extension of
the framework of sums of independent random variables (see Example 2.1.2): many
interesting asymptotic results that hold for sums of independent random variables can
also be established for sequences of random variables converging in the mod-φ sense
([JKN11, DKN15, KN10, KN12, BKN14]). For instance, under some general extra as-
sumptions on the convergence in Equation (2), it is proved in [DKN15, KN12, FMN16]
that one can establish local limit theorems for the random variables Xn. Then the local
limit theorem of Stone appears as a special case of the local limit theorem for mod-φ
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8 1. INTRODUCTION

convergent sequences. But the latter also applies to a variety of situations where the
random variables under consideration exhibit some dependence structure (e.g. the Rie-
mann zeta function on the critical line, some probabilistic models of primes, the wind-
ing number for the planar Brownian motion, the characteristic polynomial of random
matrices, finite fields L-functions, etc.). It is also shown in [BKN14] that mod-Poisson
convergence (in fact mod-φ convergence for φ a lattice distribution) implies very sharp
distributional approximation in the total variation distance (among other distances) for
a large class of random variables. In particular, the total number of distinct prime divi-
sors ω(n) of an integer n chosen at random can be approximated in the total variation
distance with an arbitrary precision by explicitly computable measures.

Besides these quantitative aspects, mod-φ convergence also sheds some new light
on the nature of some conjectures in analytic number theory. Indeed it is shown in
[KN10] that the structure of the limiting function appearing in the moments conjecture
for the Riemann zeta function by Keating and Snaith [KS00b] is shared by other arith-
metic functions and that the limiting function ψ accounts for the fact that prime num-
bers do not behave independently of each other. More precisely, the limiting function
ψ can be used to measure the deviation of the true result from what the probabilistic
models based on a naive independence assumption would predict. One should note
that these naive probabilistic models are usually enough to predict central limit theo-
rems for arithmetic functions (e.g. the naive probabilistic model made with a sum of
independent Bernoulli random variables to predict the Erdös-Kac central limit theo-
rem for ω(n) or the stochastic zeta function to predict Selberg’s central limit theorem
for the Riemann zeta function) but fail to predict accurately mod-φ convergence by a
factor which is contained in ψ. There is another example, where dependence appears
in the limiting function ψ, while we have independence at the scale of central limit
theorem: the log of the characteristic polynomial of a random unitary matrix, as a vec-
tor in R2, converges in the mod-Gaussian sense to a limiting function which is not the
product of the limiting functions of each component considered individually although
when properly normalised it converges to a Gaussian vector with independent com-
ponents [KN12].

1.2. Theoretical results

The goal of this paper is to prove that the framework of mod-φ convergence as
described in Definition 1.1.1 is suitable to obtain precise large and moderate deviation
results for the sequence (Xn)n∈N (throughout the paper, we call precise deviation result
an equivalent of the deviation probability itself and not on its logarithm). Namely, our
results are the following.

• We give equivalents for the quantity P[Xn ≥ tnx], where x is a fixed positive
real number (see Theorem 3.2.2 for a lattice distribution φ and Theorem 4.2.1
for a non-lattice distribution). This can be viewed as an analogue (or an exten-
sion, see Section 4.5.2) of Bahadur-Rao theorem [BR60].

• We also consider probabilities of the kind P[Xn ∈ tnB] where B is a Borelian
set, and we give upper and lower bounds on this probability which coincide at
first order for a nice Borelian set B, see Theorem 6.3.1. This result is an analogue
of Ellis-Gärtner theorem [DZ98, Theorem 2.3.6] (see also the original papers
[Gär77, Ell84]): we have stronger hypotheses than in Ellis-Gärtner theorem,
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but also a more precise conclusion (the bounds involve the probability itself,
not its logarithm).

• Besides, we give an equivalent for the probability P[Xn−E[Xn] ≥ sntn], where
sn = o(1), covering all intermediate scales between central limit theorem and
deviations of order tn (Theorem 3.3.1 in the lattice case, and Theorem 4.3.1 in
the non-lattice case).

We also address the question of normality zone, i.e. the scale up to which the Gaussian
approximation (coming from the central limit theorem) for the tail of the distribution
of Xn is valid. In particular, our methods provide us with a systematic way to detect it
and also explains how this approximation breaks at the edge of this zone; see Chapter
5. The problem of detecting the normality zone for sums of i.i.d. random variables has
received some attention in the literature on limit theorems (originally in [Cra38], see
also [IL71]). Our framework enables an extension of such results, going beyond the
setting of independent random variables:

• we cover more situations, e.g. sums of dependent random variables with a
sparse dependency graph, or integer valued random variables, such as ran-
dom additive functions, satisfying mod-Poisson convergence;
• we describe the correction to the normal approximation needed at the edge of

the normality zone.
An interesting fact in our deviation results is the appearance of the limiting function ψ
in deviations at scale tn. This means that, at smaller scales, a sequence Xn converging
mod-φ behaves exactly as a sum of tn i.i.d. variables with distribution φ. However,
at scale tn, this is not true any more and the limiting function ψ gives us exactly the
correcting factor.

In particular, in the case of mod-Gaussian convergence, the scale tn is the first scale
where the equivalent given by the central limit theorem is not valid anymore. In this
case, one often observes a symmetry breaking phenomenon which is explained by the
appearance of function ψ; see Section 4.4.

A special case of mod-Gaussian convergence is the case where (2) is proved using
bounds on the cumulants of Xn — see Section 5.1. This case is particularly interesting
as:

• it contains a large class of examples, see below in Section 1.3;
• in this setting, one can obtain deviation results at a scale larger that tn (typi-

cally, o((tn)5/4), see Proposition 5.2.1).

The arguments involved in the proofs of our deviation results are standard, but they
nonetheless need to be carefully adapted to the framework of Definition 1.1.1: elemen-
tary complex analysis, the method of change of probability measure or tilting due to
Cramér, or adaptations of Berry-Esseen type inequalities with smoothing techniques.

REMARK 1.2.1. We should here mention the work of Hwang [Hwa96], with some
similarities with ours. Hwang works with hypotheses similar to Definition 1.1.1, ex-
cept that the convergence takes place uniformly on all compact sets contained in a
given disk centered at the origin (while we assume convergence in a strip; thus this
is weaker than our hypothesis, see Remark 4.5.3 for a discussion on this point). Un-
der this hypothesis (and an hypothesis of the convergence speed), Hwang obtains an



10 1. INTRODUCTION

equivalent of the probability P[Xn − E[Xn] ≥ sntn] with sn = o(1), and even gives
some asymptotic expansion of this probability. However, Hwang does not give any
deviation result at the scale tn and hence, none of his results show the role of ψ in
deviation probabilities. Besides, he has no results in the multi-dimensional setting.

1.3. Applications

After proving our abstract results, we provide a large set of (new) examples where
these results can be applied. We have thus devoted the second half of the paper to
examples, from a variety of different areas.

Chapter 7 contains examples where the moment generating function is explicit, or
given as a path integral of an explicit function. First, in Section 7.2, we recover results
of Radziwill [Rad09] on precise large deviations for additive arithmetic functions, by
carefully recalling the principle of the Selberg-Delange method. The next examples
— Sections 7.3 and 7.4 — involve the total number of cycles (resp. rises) for random
permutations. The precise large deviation result in the case of cycles was announced
in a recent paper of Nikeghbali and Zeindler [NZ13], where the mod-convergence was
proved by the singularity analysis method. Finally, in Section 7.5, we compute devia-
tion probabilities of the characteristic polynomial of random matrices in compact Lie
groups. This completes previous results by Hughes, Keating and O’Connell [HKO01]
on large deviations for the characteristic polynomial.

Surprisingly, mod-Gaussian convergence can also be established in some cases,
even if neither the moment generating function nor an appropriate bivariate gener-
ating series is known explicitly. A first example of this situation is given in Chapter
8. We give a criterion based on the location of the zeroes of the probability generating
function, which ensures mod-Gaussian convergence. We then apply this result to the
number of blocks in a uniform random set-partition of size n. As a consequence, we
obtain the normality zone for this statistics, refining the central limit theorem of Harper
[Har67].

Our next examples lie in the framework in which mod-Gaussian convergence is ob-
tained via bounds on cumulants (Section 5.1). In Chapter 9, we show that such bounds
on cumulants typically arise for Xn = ∑Nn

i=1 Yi, where the Y′i s have a sparse dependency
graph (references and details are provided in Chapter 9). With weak hypothesis on
the second and third cumulants, this implies mod-Gaussian convergence of a renor-
malised version of Xn (Theorem 9.5.1). This allows us to provide new examples of
variables converging in the mod-Gaussian sense.

• First, we consider subgraph count statistics Xγ in Erdös-Rényi random graph
G(n, p) (Theorem 10.0.1) for a fixed p between 0 and 1. Moderate deviation
probabilities in this case are given and compared with the literature on the
subject in Chapter 10. We are also able to determine the size of the normality
zone of Xγ.

• In our last application in Chapter 11, we use the machinery of dependency
graphs in non-commutative probability spaces, namely, the algebras CS(n) of
the symmetric groups, all endowed with the restriction of a trace of the infinite
symmetric group S(∞). The technique of cumulants still works and it gives
the fluctuations of random integer partitions under so-called central measures
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in the terminology of Kerov and Vershik. Thus, one obtains a central limit the-
orem and moderate deviations for the values of the random irreducible char-
acters of symmetric groups under these measures.

The variety of the many examples that fall in the seemingly more restrictive setting of
mod-Gaussian convergence makes it tempting to assert that it can be considered as a
universality class for second order fluctuations.

REMARK 1.3.1. The idea of using bounds on cumulants to show moderate devia-
tions for a family of random variable with some given dependency graph is not new —
see in particular [DE13b]. Nevertheless, the bounds we obtain in Theorem 9.1.6 (and
also in Theorem 9.1.7) are stronger than those which were previously known and, as a
consequence, we obtain deviation results at a larger scale. Another advantage of our
method is that it gives estimates of the deviation probability itself, and not only of its
logarithm.

1.4. Forthcoming works

As an intermediate step for our deviation estimates, we give Berry-Esseen estimates
for random variables that converge mod-φ (Proposition 4.1.1). These estimates are op-
timal for this setting, though they can be improved in some special cases, such as sums
of independent or weakly dependent variables. In a companion paper [FMN16], we
establish optimal Berry-Esseen bounds in these cases, providing a mod-φ alternative
to Stein’s method.

In another direction, in [FMN15], we extend some results of this paper to a multi-
dimensional framework. This situation requires more care since the geometry of the
Borel set B, when considering P[Xn ∈ tnB], plays a crucial role.

1.5. Discussion on our hypotheses

The following remarks explain the role of each hypothesis of Definition 1.1.1. As
we shall see later, some assumptions can be removed in some of our results (e.g., the
infinite-divisibility of the reference law), but Definition 1.1.1 provides a coherent set-
ting where all the techniques presented in the paper do apply without further verifica-
tion.

REMARK 1.5.1 (Analyticity). The existence of the relevant moment generating func-
tion on a strip is crucial in our proof, as we consider in Chapter 4 the Fourier transform
of X̃n, obtained from Xn by an exponential change of measure. We also use respectively
the existence of continuous derivatives up to order 3 for η and ψ on the strip S(c,d), and
the local uniform convergence of ψn and its first derivatives (say, up to order 3) toward
those of ψ. By Cauchy’s formula, the local uniform convergence of analytic functions
imply those of their derivatives, so it provides a natural framework where convergence
of derivatives are automatically verified.

Let us mention however that these assumptions of analyticity are a bit restrictive, as
they imply that the Xn’s and φ have moments of all order; in particular, φ cannot be any
infinitely divisible distribution (for instance the Cauchy distribution is excluded). That
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explains that the theory of mod-φ convergence was initially developed with character-
istic functions on the real line rather than moment generating functions in a complex
domain. With this somehow weaker hypothesis, one can find many examples for in-
stance of mod-Cauchy convergence (see e.g. [DKN15, KNN15]), while the concept of
mod-Cauchy convergence does not even make sense in the sense of Definition 1.1.1.
We are unfortunately not able to give precise deviation results in this framework.

REMARK 1.5.2 (Infinite divisibility and non-vanishing of the terms of mod-φ conver-
gence). The non-vanishing of ψ is a natural hypothesis since evaluations of ψ appear
in many estimates of non-zero probabilities, and also in denominators in fractions, see
for instance Lemma 4.2.5. The assumption that φ is an infinitely divisible distribution
will be discussed in Section 4.5.2.



CHAPTER 2

Preliminaries

2.1. Basic examples of mod-convergence

Let us give a few examples of mod-φ convergence, which will guide our intuition
throughout the paper. In these examples, it will be useful sometimes to precise the
speed of convergence in Definition 1.1.1.

DEFINITION 2.1.1. We say that the sequence of random variables (Xn)n∈N converges mod-
φ at speed O((tn)−v) if the difference of the two sides of Equation (2) can be bounded by
CK (tn)−v for any z in a given compact subset K of S(c,d). We use the analoguous definition
with the o(·) notation.

EXAMPLE 2.1.2. Let (Yn)n∈N be a sequence of centered, independent and identically
distributed real-valued random variables, with E[ezY] = E[ezY1 ] analytic and non-
vanishing on a strip S(c,d), possibly with c = −∞ and/or d = +∞. Set Sn = Y1 + · · ·+
Yn. If the distribution of Y is infinitely divisible, then Sn converges mod-Y towards the
limiting function ψ ≡ 1 with parameter tn = n.

But there is another mod-convergence hidden in this framework (we now drop the
assumption of infinite divisibility of the law of Y). The cumulant generating series of
Sn is

log E[ezSn ] = n log E[ezY] = n
∞

∑
r=2

κ(r)(Y)
r!

zr,

which is also analytic on S(c,d) — the coefficients κ(r)(Y) are the cumulants of the vari-
able Y (see [FW32]). Let v ≥ 3 be an integer such that κ(r)(Y) = 0 for each integer r
strictly between 3 and v − 1, and set Xn = Sn

n1/v . It is always possible to take v = 3,
but sometimes we can also consider higher value of v, for instance v = 4 as soon as
Y is a symmetric random random variable, and has therefore its odd moments and
cumulants that vanish. One has

log ϕn(z) = n
v−2

v
κ(2)(Y)

2
z2 +

κ(v)(Y)
v!

zv +
∞

∑
r=v+1

κ(r)(Y)
r! n

r
v−1

zr,

and locally uniformly on C the right-most term is bounded by C
n1/v . Consequently,

ψn(z) = exp
(
−n

v−2
v

σ2z2

2

)
ϕn(z)→ exp

(
κ(v)(Y)

v!
zv

)
+ O(n−1/v),

that is, (Xn)n∈N converges in the mod-Gaussian sense with parameters tn = σ2 n
v−2

v ,
speed O(n−1/v) and limiting function ψ(z) = exp(κ(v)(Y) zv/v!). Note that this first
example was used in [KNN15] to characterise the set of limiting functions in the setting
of mod-φ convergence.

13



14 2. PRELIMINARIES

Through this article, we shall commonly rescale random variables in order to get
estimates of fluctuations at different regimes. In order to avoid any confusion, we
provide the reader with the following scheme, which details each possible scaling,
and for each scaling, the regimes of fluctuations that can be deduced from the mod-
φ convergence, as well as their scope. We also underline or frame the scalings and
regimes that will be studied in this paper, and give references for the other kinds of
fluctuations.

scaling

Sn

Sn
n1/v

mod-convergence
tn φ

n Y

σ2n1− 2
v NR(0, 1)

Sn
n

Sn
n1−1/(v+1)

Sn
n1−1/v

Sn
n1/2

large deviations
(cf. [BR60, DZ98])

moderate deviations

regime of fluctuations

normality zone

local limit theorem
(cf. [DKN15, KN12, FMN16])

FIGURE 1. Panorama of the fluctuations of a sum of n i.i.d. random variables.

The content of this scheme will be fully explained in Chapter 4 (see in particular Section
4.4).

EXAMPLE 2.1.3. Denote Xn the number of disjoint cycles (including fixed points)
of a random permutation chosen uniformly in the symmetric group S(n). Feller’s
coupling (cf. [ABT03, Chapter 1]) shows that Xn =(law) ∑n

i=1 B(1/i), where Bp denotes
a Bernoulli variable equal to 1 with probability p and to 0 with probability 1− p, and
the Bernoulli variables are independent in the previous expansion. So,

E[ezXn ] =
n

∏
i=1

(
1 +

ez − 1
i

)
= eHn(ez−1)

n

∏
i=1

1 + ez−1
i

e
ez−1

i

where Hn = ∑n
i=1

1
i = log n+γ+O(n−1). The Weierstrass infinite product in the right-

hand side converges locally uniformly to an entire function, therefore (see [WW27]),

E[ezXn ] e−(e
z−1) log n → eγ (ez−1)

∞

∏
i=1

1 + ez−1
i

e
ez−1

i

=
1

Γ(ez)

locally uniformly, i.e., one has mod-Poisson convergence with parameters tn = log n
and limiting function 1/Γ(ez). Moreover, the speed of convergence is a O(n−1), hence,
a o((tn)−v) for any integer v. We shall study generalisations of this example in Section
7.3.
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scaling

Xn

Xn−Hn
(Hn)1/3

mod-convergence
tn φ

Hn P(1)

(Hn)1/3 NR(0, 1)

Xn
Hn
− 1

Xn−Hn
(Hn)3/4

Xn−Hn
(Hn)2/3

Xn−Hn
(Hn)1/2

large deviations
(cf. [Rad09])

moderate deviations

regime of fluctuations

normality zone

local limit theorem

FIGURE 2. Panorama of the fluctuations of the number of cycles Xn of a
random permutation of size n.

Once again, there is another mod-convergence hidden in this example. Indeed, con-
sider Yn = Xn−Hn

(Hn)1/3 . Its generating function has asymptotics

E[ezYn ] = e
Hn

(
e

z
(Hn)1/3 −1

)
−z(Hn)2/3

(1 + o(1)) = e(Hn)1/3 z2
2 exp

(
z3

6

)
(1 + o(1)).

Therefore, one has mod-Gaussian convergence of Yn with parameters tn = (Hn)1/3

and limiting function exp(z3/6).

This is in fact a particular case of a more general phenomenon: every sequence that
converges mod-φ converges with a different rescaling in the mod-Gaussian sense.

PROPOSITION 2.1.4. Assume Xn converges mod-φ with parameters tn and limiting func-
tion ψ, where φ is not the Gaussian distribution. Let

m = min
i≥3
{i | η(i)(0) 6= 0}.

Then, the sequence of random variables Yn = (Xn − tnη′(0))/(tn)1/m converges in the
mod-Gaussian sense with parameters (tn)1−2/mη′′(0) towards the limiting function Ψ(z) =

exp
(
η(m)(0)zm/m!).

PROOF. This follows from a simple computation

E

[
exp

(
z(Xn − tnη′(0))

(tn)1/m

)]

= exp
(−tnη′(0))

(tn)1/m

)
exp

(
tn η

(
z

(tn)1/m

))
ψ

(
z

(tn)1/m

)
(1 + o(1)).

The factor ψ( z
(tn)1/m ) tends to 1 and we do a Taylor expansion of η( z

(tn)1/m ). We get

E

[
exp

(
z(Xn − tnη′(0))

(tn)1/m

)]
= exp

(
(tn)

1−2/mη′′(0)
z2

2
+ η(m)(0)

zm

m!
+ o(1)

)
(1+ o(1)).

�
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Naturally, the mod-φ convergence gives more information than the implied mod-
Gaussian convergence: our deviation results — Theorems 3.2.2 and 4.2.1 — for the for-
mer involve deviation probabilities of Xn at scale O(tn), while with the mod-Gaussian
convergence, we get deviation probabilities of Yn at scale O((tn)1−2/m), that is devia-
tions of Xn at scale O((tn)1−1/m).

2.2. Legendre-Fenchel transforms

We now present the definition and some properties of the Legendre-Fenchel trans-
form, a classical tool in large deviation theory (see e.g. [DZ98, Section 2.2]) that we shall
use a lot in this paper. The Legendre-Fenchel transform is the following operation on
(convex) functions:

DEFINITION 2.2.1. The Legendre-Fenchel transform of a function η is defined by:

F(x) = sup
h∈R

(hx− η(h)).

This is an involution on convex lower semi-continuous functions.

Assume that η is the logarithm of the moment generating series of a random vari-
able. In this case, η is a convex function (by Hölder’s inequality). Then F is always
non-negative, and the unique h maximizing hx − η(h), if it exists, is then defined by
the implicit equation η′(h) = x (note that h depends on x, but we have chosen not to
write h(x) to make notation lighter). This implies the following useful identities:

F(x) = xh− η(h) ; F′(x) = h ; F′′(x) = h′(x) =
1

η′′(h)
.

EXAMPLE 2.2.2. If η(z) = mz + σ2z2

2 (Gaussian variable with mean m and variance
σ2), then

h =
x−m

σ2 ; FNR(m,σ2)(x) =
(x−m)2

2σ2

whereas if η(z) = λ(ez − 1) (Poisson law with parameter λ), then

h = log
x
λ

; FP(λ)(x) =

{
x log x

λ − (x− λ) if x > 0,
+∞ otherwise

.

FN (m,σ2)

+∞

FP(λ)

1

FIGURE 3. The Legendre-Fenchel transforms of a Gaussian law and of a
Poisson law.
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2.3. Gaussian integrals

Some computations involving the Gaussian density are used several times through-
out the paper, so we decided to present them together here.

LEMMA 2.3.1 (Gaussian integrals).

(1) moments:

1√
2π

∫

R
e−

x2
2 x2m dx = (2m− 1)!! = (2m− 1)(2m− 3) · · · 3 1,

and the odd moments vanish.

(2) Fourier transform: with g(x) = e−
x2
2√

2π
, one has

g∗(ζ) =
∫

R
g(x) eixζ dx = e−

ζ2
2 .

More generally, with the Hermite polynomials Hr(x) = (−1)r e
x2
2 ∂r

∂xr (e−
x2
2 ), one

has

(g Hr)
∗(ζ) = (iζ)r e−

ζ2
2 .

(3) tails: if a→ +∞, then

∫ ∞

0
e−

(y+a)2
2 dy =

e−
a2
2

a

(
1− 1

a2 + O
(

1
a4

))

∫ ∞

0
y e−

(y+a)2
2 dy =

e−
a2
2

a2

(
1 + O

(
1
a2

))

∫ ∞

0
y2 e−

(y+a)2
2 dy = O


e−

a2
2

a3




∫ ∞

0
y3 e−

(y+a)2
2 dy = O


e−

a2
2

a2




In particular, the tail of the Gaussian distribution is 1√
2π

∫ ∞
a e−

x2
2 dx ' 1

a
√

2π
e−

a2
2 .

(4) complex transform: for β > 0,

∫

R

e−
β2
2

2π

e−
w2
2

β + iw
dw =

∫ ∞

β

e−
α2
2√

2π
dα = P[NR(0, 1) ≥ β].

PROOF. Recall that the generating series of Hermite polynomials ([Sze75, Chapter
5]) is

∞

∑
r=0

Hr(x)
tr

r!
= e

x2
2

∞

∑
r=0

(−t)r

r!
∂r

∂xr

(
e−

x2
2

)
= e

x2
2 e−

(x−t)2
2 = e−

t2
2 +tx.
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Integrating against g(x) eixζ dx yields
∞

∑
r=0

(g(x) Hr(x))∗(ζ)
tr

r!
=

1√
2π

∫

R
e−

(x−t)2
2 +iζx dx

=
eiζt
√

2π

∫

R
e−

y2
2 +iζy dy = eiζt− ζ2

2 =
∞

∑
r=0

(iζ)re−
ζ2
2

tr

r!

whence the identity (2) for Fourier transforms.

With r = 0, one gets the Fourier transform of the Gaussian g∗(ζ) = e−
ζ2
2 , hence the

moments (1) by derivation at ζ = 0. The estimate of tails (3) is obtained by an integra-
tion by parts; notice that similar techniques yield the tails of distributions xm e−x2/2 dx
with m ≥ 1. Finally, as for the complex transform (4), remark that

F(β) =
∫

R

e−
β2
2

2π

e−
w2
2

β + iw
dw =

1
2iπ

∫

Γ=β+iR

e
(z−β)2−β2

2

z
dz,

the second integral being along the complex curve Γ = β + iR. By standard complex
analysis arguments, this integral is the same along any line Γ′ = β′ + iR (for β′ > 0).
Namely

F(β) =
1

2iπ

∫

Γ′=β′+iR

e
(z−β)2−β2

2

z
dz.

Since limβ→+∞ F(β) = 0,

F(β) = −
∫ ∞

β
F′(α) dα =

∫ ∞

β

(
1

2iπ

∫

Γ′=β′+iR
e
(z−α)2−α2

2 dz
)

dα.

Again, the integration line Γ′ in the second integral can be replaced by Γ = α + iR and
we get

F(β) =
∫ ∞

β

(
1

2iπ

∫

Γ=α+iR
e
(z−α)2−α2

2 dz
)

dα. =
∫ ∞

β

e−
α2
2√

2π
dα,

which is the tail P[NR(0, 1) ≥ β] of a standard Gaussian law. �
Also, there will be several instances of the Laplace method for asymptotics of integrals,
but each time in a different setting; so we found it more convenient to reprove it each
time.



CHAPTER 3

Fluctuations in the case of lattice distributions

3.1. Lattice and non-lattice distributions

If φ is an infinitely divisible distribution, recall that its characteristic function writes
uniquely as

∫

R
eiux φ(dx) = exp

(
imu− σ2u2

2
+
∫

R\{0}

(
eiux − 1− iux

1 + x2

)
Π(dx)

)
, (3)

where Π is the Lévy measure of φ, and is required to integrate 1 ∧ x2 (see [Kal97,
Chapter 13]). If σ2 > 0, then φ has a normal component and its support

supp(φ) =
(
smallest closed subset S of R with φ(S) = 1

)

is the whole real line, since φ can be seen as the convolution of some probability mea-
sure with a non-degenerate Gaussian law. Suppose now σ2 = 0, and, set

γ = m−
∫

R\{0}
x

1 + x2 Π(dx),

which is the shift parameter of φ; note the integral above is not always convergent, so
that γ is not always defined.

LEMMA 3.1.1. [SH04, Chapter 4, Theorem 8.4]
(1) If γ is well-defined and finite, and if Π([−ε, ε] \ {0}) = 0 for some ε > 0, then

supp(φ) = γ + N[supp(Π)],

where N[S] is the semigroup generated by a part S of R (the set of all sums of elements
of S, including the empty sum 0), and N[S] is its closure.

(2) Otherwise, the support of φ is either R, or the half-line [γ,+∞), or the half-line
(−∞, γ].

Recall that an additive subgroup of R is either discrete of type λZ with λ ≥ 0,
or dense in R. We call an infinitely divisible distribution discrete, or of type lattice, if
σ2 = 0, if γ is well-defined and finite, and if the subgroup Z[supp(Π)] is discrete.
Otherwise, we say that φ is a non-lattice infinitely divisible distribution.

PROPOSITION 3.1.2. An infinitely divisible distribution φ is of type lattice if and only if
one of the following equivalent assertions is satisfied:

(1) Its support is included in a set γ + λZ for some parameters γ and λ > 0.

(2) For some parameter λ > 0, the characteristic function has modulus |φ(eiux)| = 1 if
and only if u ∈ 2π

λ Z.

19
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If both hold and if λ is chosen maximal in (1), then the parameters λ in (1) and (2) coincide.

Moreover, an infinitely divisible distribution φ is of type non-lattice if and only if |φ(eiux)| < 1
for all u 6= 0.

PROOF. In the following we exclude the case of a degenerate Dirac distribution
φ = δγ, which is trivial. We can also assume that σ2 = 0: otherwise, φ is of type
non-lattice and with support R, and the inequality |φ(eiux)| < 1 for u 6= 0 is true for
any non-degenerate Gaussian law, and therefore by convolution for every infinitely
divisible law with parameter σ2 6= 0.

Suppose φ of type lattice. Then, since Z[supp(Π)] = λZ for some λ > 0, the semi-
group N[supp(Π)] ⊂ λZ is discrete, and hence closed. It thus follows from Lemma
3.1.1 that

supp(φ) = γ + N[supp(Π)] ⊂ γ + λZ.
Conversely, if supp(φ) is included in a shifted lattice γ + λZ, then the second case of
Lemma 3.1.1 is excluded, so γ is well-defined and finite, and then

supp(φ) = γ + N[supp(Π)].

But supp(φ) ⊂ γ+ λZ, so this forces N[supp(Π)] ⊂ λZ, and therefore Z[supp(Π)] ⊂
λZ. Hence, φ is of type lattice. We have proved that the first assertion is indeed equiv-
alent to the definition of a lattice infinitely divisible distribution.

The equivalence of the two assertions (1) and (2) is then a general fact on probability
measures φ on the real line. If φ is such a measure, let Gφ = {u ∈ R | |φ(eiux)| = 1}.
We claim that Gφ is an additive subgroup of R. Indeed, if u 6= 0, then

u ∈ Gφ ⇐⇒
∣∣∣∣
∫

R
eiuxφ(dx)

∣∣∣∣ = 1

⇐⇒ the phase of eiux is constant φ-almost surely

⇐⇒ φ is supported on a set γu +
2π

u
Z.

Suppose that u 6= 0 and v 6= 0 belong to Gφ. Then,

supp(φ) ⊂
(

γu +
2πZ

u

)
∩
(

γv +
2πZ

v

)
,

and the right-hand side of this formula is again a (shifted) discrete subgroup γw + 2πZ
w ,

with k
u = l

v = 1
w for some non-zero integers k and l. In particular,

(k+ l)w = kw+ lw = u+ v ;
1
w

=
k + l
u + v

; supp(φ) ⊂ γw +
2πZ

w
⊂ γw +

2πZ

u + v
,

so u + v ∈ Gφ and Gφ is indeed a subgroup of R.

If Gφ is discrete and writes as pZ with p > 0, then φ is supported on a lattice γ+λZ

with λ = 2π
p , and |φ(eiu)| = 1 if and only if u ∈ 2πZ

λ . Otherwise, Gφ cannot be a dense
subgroup of R, because then by continuity of u 7→ φ(eiu), we would have Gφ = R,
which implies that φ is a Dirac, and this case has been excluded. So, the only other
possibility is Gφ = 0, which is the last statement of the proposition. �
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In the remaining of this chapter, we place ourselves in the setting of Definition 1.1.1,
and we suppose that the Xn’s and the (non-constant) infinitely divisible distribution φ
both take values in the lattice Z, and furthermore, that φ has period 2π (in other words,
the lattice Z is minimal for φ). In particular, for every u ∈ (0, 2π), | exp(η(iu))| < 1,
since by the previous discussion the period of the characteristic function of a Z-valued
infinitely divisible distribution is also the smallest u > 0 such that |φ(eiux)| = 1. For
more details on (discrete) infinitely-divisible distributions, we refer to the aforemen-
tioned textbook [SH04], and also to [Kat67] and [Fel71, Chapter XVII].

3.2. Deviations at the scale O(tn)

LEMMA 3.2.1. Let X be a Z-valued random variable whose generating function ϕX(z) =
E[ezX] converges absolutely in the strip S(c,d), with c < 0 < d. For k ∈ Z,

∀h ∈ (c, d), P[X = k] =
1

2π

∫ π

−π
e−k(h+iu) ϕX(h + iu) du;

∀h ∈ (0, d), P[X ≥ k] =
1

2π

∫ π

−π

e−k(h+iu)

1− e−(h+iu)
ϕX(h + iu) du.

PROOF. Since
ϕX(h + iu) = ∑

k∈Z

P[X = k] ek(h+iu),

P[X = k] ekh is the k-th Fourier coefficient of the 2π-periodic and smooth function
u 7→ ϕX(h + iu); this leads to the first formula. Then, assuming also h > 0,

P[X ≥ k] =
∞

∑
l=k

P[X = l] =
∞

∑
l=k

1
2π

∫ π

−π
e−l(h+iu) ϕX(h + iu) du,

and the sum of the moduli of the functions on the right-hand side is dominated by the
integrable function e−kh

1−e−h ϕX(h); so by Lebesgue’s dominated convergence theorem,
one can exchange the integral and the summation symbol, which yields the second
equation. �

We now work under the assumptions of Definition 1.1.1, with a lattice infinitely
divisible distribution φ. Furthermore, we assume that the convergence is at speed
O((tn)−v), on a strip S(c,d) containing 0. Note that necessarily η(0) = 0 and ψ(0) = 1.
A simple computation gives also the following approximation formulas:

E(Xn) = ϕ′n(0) = tnη′(0) + ψ′(0) ∼ tnη′(0) = tnη′(0) + O(1);

Var(Xn) = ϕ′′n(0)− (ϕ′n(0))
2 = tnη′′(0) + O(1).

THEOREM 3.2.2. Let x be a real number in the interval (η′(c), η′(d)), and h defined by
the implicit equation η′(h) = x. We assume tnx ∈N.



22 3. FLUCTUATIONS IN THE CASE OF LATTICE DISTRIBUTIONS

(1) The following expansion holds:

P[Xn = tnx] =
exp(−tnF(x))√

2πtnη′′(h)

(
ψ(h) +

a1

tn
+

a2

(tn)2 + · · ·+ av−1

(tn)v−1 + O
(

1
(tn)v

))

= exp(−tnF(x))

√
F′′(x)
2πtn

(
ψ(F′(x)) +

a1

tn
+ · · ·+ av−1

(tn)v−1 + O
(

1
(tn)v

))
,

for some numbers ak.

(2) Similarly, if x is a real number in the range of η′|(0,d), then

P[Xn ≥ tnx] =
exp(−tnF(x))√

2πtnη′′(h)
1

1− e−h

(
ψ(h) +

b1

tn
+ · · ·+ bv−1

(tn)v−1 + O
(

1
(tn)v

))
,

for some numbers bk.

Both ak and bk are rational fractions in the derivatives of η and ψ at h, that can be computed
explicitly — see Remark 3.2.5.

PROOF. With the notations of Definition 1.1.1, the first equation of Lemma 3.2.1
becomes

P[Xn = tnx] =
1

2π

∫ π

−π
e−tnx (h+iu) ϕn(h + iu) du

=
1

2π

∫ π

−π
e−tnxh etn(η(h+iu)−iux) ψn(h + iu) du

=
e−tnF(x)

2π

∫ π

−π
etn(η(h+iu)−η(h)−iuη′(h)) ψn(h + iu) du. (4)

The last equality uses the facts that xh = F(x) + η(h) and x = η′(h). We perform
the Laplace method on (4), and to this purpose we split the integral in two parts. Fix
δ > 0, and denote qδ = maxu∈(−π,π)\(−δ,δ) | exp(η(h + iu) − η(h))|. This is strictly
smaller than 1, since

exp(η(h + iu)− η(h)) =
E[e(h+iu)X]

E[ehX]
= EQ[eiuX]

is the characteristic function of X under the new probability dQ(ω) = ehX(ω)

E[ehX ]
dP(ω)

(and X has minimum lattice Z). Note that Lemma 3.3.3 hereafter is a more precise
version of this inequality.

As a consequence, if I(−δ,δ) and I(−δ,δ)c denote the two parts of (4) corresponding to∫ δ
−δ and

∫ −δ
−π +

∫ π
δ , then

|I(−δ,δ)c | ≤ e−tnF(x)

2π

∫

(−δ,δ)c
(qδ)

tn |ψn(h + iu)| du ≤ 2 (e−F(x) qδ)
tn max

u∈(−π,π)
|ψ(h + iu)|

for n big enough, since ψn converges uniformly towards ψ on the compact set K =

h + i[−π, π]. Since qδ < 1, for any δ > 0 fixed, I(−δ,δ)c etnF(x) goes to 0 faster than
any negative power of tn, so I(−δ,δ)c is negligible in the asymptotics (recall that F(x) is
non-negative by definition, as η(0) = 0).
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As for the other part, we can first replace ψn by ψ up to a (1 +O((tn)−v)), since the
integral is taken on a compact subset of S(c,d). We then set u = w√

tnη′′(h)
:

I(−δ,δ) =
e−tnF(x)

(
1 + O

(
1

(tn)v

))

2π
√

tnη′′(h)

∫ δ
√

tnη′′(h)

−δ
√

tnη′′(h)
ψ

(
h +

iw√
tnη′′(h)

)
etn∆n(w)−w2

2 dw, (5)

where ∆n(w) is the Taylor expansion

η (h + iu)− η(h)− η′(h) (iu)− η′′(h)
2

(iu)2

=
2v+1

∑
k=3

η(k)(h)
k!

(
iw√

tnη′′(h)

)k

+ O
(

1
(tn)v+1

)

=
1
tn


− w2

η′′(h)

2v−1

∑
k=1

η(k+2)(h)
(k + 2)!

(
iw√

tnη′′(h)

)k

+ O
(

1
(tn)v

)
 .

We also replace ψ by its Taylor expansion

ψ

(
h +

iw√
tnη′′(h)

)
=

2v−1

∑
k=0

ψ(k)(h)
k!

(
iw√

tnη′′(h)

)k

+ O
(

1
(tn)v

)
.

Thus, if one defines αk by the equation

fn(w) :=




2v−1

∑
k=0

ψ(k)(h)
k!

(
iw√

tnη′′(h)

)k

 exp


− w2

η′′(h)

2v−1

∑
k=1

η(k+2)(h)
(k + 2)!

(
iw√

tnη′′(h)

)k



=
2v−1

∑
k=0

αk(w)

(tn)k/2 + O
(

1
(tn)v

)
,

then one can replace ψ(h + iu) etn∆n(w) by fn(w) in Equation (5). Moreover, observe
that each coefficient αk(w) writes as

αk(w) = αk,0(h)

(
w√

η′′(h)

)k

+ αk,1(h)

(
w√

η′′(h)

)k+2

+ · · ·+ αk,r(h)

(
w√

η′′(h)

)k+2r

with the αk,r(h)’s polynomials in the derivatives of ψ and η at point h. So,

I(−δ,δ) =

(
1 + O

(
1

(tn)v

))
e−tnF(x)

√
2πtnη′′(h)




2v−1

∑
k=0

∫ δ
√

tnη′′(h)

−δ
√

tnη′′(h)

αk(w)

(tn)k/2
e−

w2
2√

2π
dw


 .

For any power wm,
∣∣∣∣∣∣

∫ ∞

−∞
wm e−

w2
2√

2π
dw−

∫ δ
√

tnη′′(h)

−δ
√

tnη′′(h)
wm e−

w2
2√

2π
dw

∣∣∣∣∣∣
is smaller than any negative power of tn as n goes to infinity (see Lemma 2.3.1, (3)
for the case m = 0): indeed, by integration by parts, one can expand the difference
as e−δ2 tnη′′(h)/2 Rm(

√
tn), where Rm is a rational fraction that depends on m, h, δ and

on the order of the expansion needed. Therefore, one can take the full integrals in the
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previous formula. On the other hand, the odd moments of the Gaussian distribution
vanish. One concludes that

P[Xn = tnx] =
e−tnF(x)

√
2πtnη′′(h)




v−1

∑
k=0

1
(tn)k



∫

R
α2k(w)

e−
w2
2√

2π
dw


+ O

(
1

(tn)v

)
 ,

and each integral
∫

R
α2k(w) e−

w2
2√

2π
dw is equal to

α2k,0(h) (2k− 1)!!
(η′′(h))k + · · ·+ α2k,r(h) (2k + 2r− 1)!!

(η′′(h))k+r

where (2m − 1)!! is the 2m-th moment of the Gaussian distribution (cf. Lemma 2.3.1,
(1)). This ends the proof of the first part of our Theorem, the second formula coming
from the identities h = F′(x) and η′′(h) = 1

F′′(x) . The second part is exactly the same,
up to the factor

1
1− e−h−iu =

1
1− e−h


 1− e−h

1− e
−h− iw√

tnη′′(h)




in the integrals. �

REMARK 3.2.3. For x > η′(0), the first term of the expansion

exp(−tnF(x))√
2πtnη′′(h)

is the leading term in the asymptotics of P[Ytn = tnx], where (Yt)t∈R+ is the Lévy
process associated to the analytic function η(z). Thus, the residue ψ measures the
difference between the distribution of Xn and the distribution of Ytn in the interval
(tnη′(0), tnη′(d)).

REMARK 3.2.4. If the convergence is faster than any negative power of tn, then one
can simplify the statement of the theorem as follows: as formal power series in tn,

√
2πtnη′′(h) exp(tnF(x))P[Xn = tnx] =

∫

R
fn(w) e−

w2
2 dw,

i.e., the expansions of both sides up to any given power O
(

1
(tn)v

)
agree.

REMARK 3.2.5. As mentioned in the statement of the theorem, the proof also gives
an algorithm to obtain formulas for ak and bk. More precisely, denote

∆n(w) = tn

(
η

(
h +

iw√
tnη′′(h)

)
− η(h)− η′(h)

iw√
tnη′′(h)

+
w2

2tn

)

fn(w) = ψ

(
h +

iw√
tnη′′(h)

)
exp(tn∆n(w)) =

∞

∑
k=0

αk(w)

(tn)k/2 ,

the last expansion holding in a neighbourhood of zero. The coefficient α2k(w) is an
even polynomial in w with valuation 2k and coefficients which are polynomials in the
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derivatives of ψ and η at h, and in 1
η′′(h) . Then,

ak =
∫

R
α2k(w)

e−
w2
2√

2π
dw,

and in particular,

a0 = ψ(h);

a1 = −1
2

ψ′′(h)
η′′(h)

+
1

24
ψ(h) η(4)(h) + 4 ψ′(h) η(3)(h)

(η′′(h))2 − 15
72

ψ(h) (η(3)(h))2

(η′′(h))3 .

the bk’s are obtained by the same recipe as the ak’s, but starting from the power series

gn(w) =
1− exp(−h)

1− exp
(
−h− iw√

tnη′′(h)

) fn(w).

EXAMPLE 3.2.6. Suppose that (Xn)n∈N is mod-Poisson convergent, that is to say
that η(z) = ez − 1. The expansion of Theorem 3.2.2 reads then as follows:

P[Xn = tnx] =
etn(x−1−x log x)
√

2πxtn

(
ψ(h) +

ψ′(h)− 3ψ′′(h)− ψ(h)
6xtn

+ O
(

1
(tn)2

))

with h = log x. For instance, if Xn is the number of cycles of a random permutation in
S(n), then the discussion of Example 2.1.3 shows that for x > 0 such that x log n ∈N,

P[Xn = x(log n)] =
n−(x log x−x+1)
√

2πx log n
1

Γ(x)
(
1 + O(1/ log n)

)
.

Similarly, for x > 1 such that x log n ∈N, one has

P[Xn ≥ x(log n)] =
n−(x log x−x+1)
√

2πx log n
x

x− 1
1

Γ(x)
(
1 + O(1/ log n)

)
.

As the speed of convergence is very good in this case, precise expansions in 1/ log n to
any order could also be given.

3.3. Central limit theorem at the scales o(tn) and o((tn)2/3)

The previous paragraph has described in the lattice case the fluctuations of (Xn)n∈N

in the regime O(tn), with a result akin to large deviations. In this section, we establish
in the same setting an extended central limit theorem, for fluctuations of order up to
o(tn). In particular, for fluctuations of order o((tn)2/3), we obtain the usual central
limit theorem. Hence, we describe the panorama of fluctuations drawn on Figure 1.

THEOREM 3.3.1. Consider a sequence (Xn)n∈N that converges mod-φ, with a reference
infinitely divisible law φ that is a lattice distribution. Assume y = o((tn)1/6). Then,

P

[
Xn ≥ tnη′(0) +

√
tnη′′(0) y

]
= P[NR(0, 1) ≥ y] (1 + o(1)) .
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order of fluctuations

large deviations (η′(0) < x):

extended central limit

central limit theorem (y� (tn)1/6):

theorem ((tn)1/6 . y� (tn)1/2):

P[Xn
tn
≥ x] ' exp(−tn F(x))√

2πtnη′(x)
1

1−e−F′(x) ψ(F′(x));

P[Xn−tnη′(0)√
tn η′′(0)

≥ y] ' exp(−tn F(x))
F′(x)
√

2πtnη′(x)
;

P[Xn−tnη′(0)√
tn η′′(0)

≥ y] ' P[NR(0, 1) ≥ y].

O(tn)

O((tn)2/3)

O((tn)1/2)

FIGURE 1. Panorama of the fluctuations of a sequence of random vari-
ables (Xn)n∈N that converges modulo a lattice distribution (with x =
η′(0) +

√
η′′(0)/tn y).

On the other hand, assuming y � 1 and y = o((tn)1/2), if x = η′(0) +
√

η′′(0)/tn y and h
is the solution of η′(h) = x, then

P

[
Xn ≥ tnη′(0) +

√
tnη′′(0) y

]
=

e−tnF(x)

h
√

2πtn η′′(h)
(1 + o(1));

=
e−tnF(x)

y
√

2π
(1 + o(1)). (6)

REMARK 3.3.2. The case y = O(1), which is the classical central limit theorem, fol-
lows immediately from the assumptions of Definition 1.1.1, since by a Taylor expansion
around 0 of η the characteristic functions of the rescaled r.v.

Yn =
Xn − tnη′(0)√

tnη′′(0)

converge pointwise to e−
ζ2
2 , the characteristic function of the standard Gaussian dis-

tribution. In the first statement, the improvement here is the weaker assumption
y = o((tn)1/6).

As we shall see, the ingredients of the proof are very similar to the ones in the
previous paragraph. We start with a technical lemma of control of the module of the
Fourier transform of the reference law φ.

LEMMA 3.3.3. Consider a non-constant infinitely divisible law φ, of type lattice, and with
convergent moment generating function

∫
ezx φ(dx) = eη(z) on a strip S(c,d) with c < 0 < d.

We assume without loss of generality that φ has minimal lattice Z. Then, there exists a constant
D > 0 only depending on φ, and an interval (−ε, ε) ⊂ (c, d), such that for all h ∈ (−ε, ε)
and all δ small enough,

qδ = max
u∈[−π,π]\(−δ,δ)

| exp(η(h + iu)− η(h))|
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is smaller than 1− D δ2.

PROOF. Denote X a random variable under the infinitely divisible distribution φ.
We claim that there exist two consecutive integers n and m = n− 1 with P[X = n] 6= 0
and P[X = m] 6= 0. Indeed, under our hypotheses, if Π is the Lévy measure of φ, then

Z = Z[supp(Π)] = N[supp(Π)]−N[supp(Π)],

so there exist a and b in N[supp(Π)] such that b− a = 1. However, supp(φ) = γ +
N[supp(Π)] for some γ ∈ Z, so n = γ + b and m = γ + a satisfy the claim.

Now, we have seen that exp(η(h + iu) − η(h)) can be interpreted as the charac-
teristic function of X under the new probability measure dQ = ehX

E[ehX ]
dP. So, for any

u,

| exp(η(h + iu)− η(h))|2 =
∣∣∣EQ[eiuX]

∣∣∣
2
= ∑

n,m∈Z

Q[X = n]Q[X = m] eiu(n−m)

= ∑
k∈Z

(
∑

n−m=k
Q[X = n]Q[X = m]

)
cos ku.

Fix two integers n and m = n− 1 such that P[X = n] 6= 0 and P[X = m] 6= 0. Then
one also has Q[X = n] 6= 0, Q[X = m] 6= 0, and there exists D > 0 such that

Q[X = n]Q[X = m] ≥ 15 D > 0

for h small enough (Q tends to P for h→ 0). As cos u ≤ 1− u2

5 for all u ∈ (−π, π),

| exp(η(h + iu)− η(h))|2 ≤ 1 + 15 D (cos u− 1) ≤ 1− 3 D u2;

qδ ≤
√

1− 3 D δ2 ≤ 1− D δ2 for δ small enough.

This concludes the proof of the Lemma. �

PROOF OF THEOREM 3.3.1. Notice that η′′(0) 6= 0 since this is the variance of the
law φ, assumed to be non-trivial. Set x = η′(0) + s, and assume s = o(1). The analogue
of Equation (4) reads in our setting

P[Xn ≥ tnx] =
e−tnF(x)

2π

∫ π

−π

etn(η(h+iu)−η(h)−iuη′(h))

1− e−h−iu ψn(h + iu) du. (7)

Since h′(x) = 1
η′′(x) , one has h = s

η′′(0) + O(s2). The same argument as in the proof

of Theorem 3.2.2 shows that the integral over (−δ, δ)c is bounded by C δ (qδ)
tn , where

qδ < 1, and C δ (with C a constant independent from s and δ) comes from the compu-
tation of

max
u∈(−δ,δ)c

∣∣∣∣
ψ(h + iu)
1− e−h−iu

∣∣∣∣ .

In the following we shall need to make δ go to zero sufficiently fast, but with δ
√

tnη′′(0)
still going to infinity. Thus, set δ = (tn)−2/5, so that in particular (tn)−1/2 � δ �
(tn)−1/3. Notice that I(−δ,δ)c etnF(x) still goes to zero faster than any power of tn; indeed,

(qδ)
tn ≤

(
1− D

(tn)4/5

)tn

≤ e−D (tn)1/5
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by Lemma 3.3.3. The other part of (7) is

e−tnF(x)

2π
√

tnη′′(h)

∫ δ
√

tnη′′(h)

−δ
√

tnη′′(h)
ψ

(
h +

iw√
tnη′′(h)

)
etn∆n(w) e−

w2
2

1− e
−h− iw√

tnη′′(h)
dw,

up to a factor (1 + o(1)). Let us analyze each part of the integral:

• The difference between ψ

(
h + iw√

tnη′′(h)

)
and ψ(0) is bounded by

max
z∈[−s,s]+i[−δ,δ]

|ψ(z)− ψ(0)| = o(1)

by continuity of ψ, so one can replace the term with ψ by the constant ψ(0) = 1,
up to factor (1 + o(1)).

• The term ∆n(w) has for Taylor expansion

η(3)(h)
6

(
iw√

tnη′′(h)

)3

+ O
(

1
(tn)2

)
,

so tn ∆n(w) is bounded by a O(tn δ3), which is a o(1) since δ � (tn)−1/3. So
again one can replace etn∆n(w) by the constant 1.

• The Taylor expansion of
(

1− e
−h− iw√

tnη′′(h)
)−1

is 1
h+ iw√

tnη′′(h)
(1 + o(1)). Hence,

P
[
Xn ≥ tn(η

′(0) + s)
]
=

e−tnF(x)

2π



∫

R

e−
w2
2√

tnη′′(h) h + iw
dw


(1 + o(1)

)

= e−tnF(x)+ h2 tn η′′(h)
2 P

[
NR(0, 1) ≥ h

√
tnη′′(h)

] (
1 + o(1)

)
.

Indeed, setting β = h
√

tn η′′(h), this leads directly to the computation done in
Lemma 2.3.1, (4).

Hence, we have shown so far that

P
[
Xn ≥ tn(η

′(0) + s)
]
= e−tnF(η′(0)+s) e

β2
2 P[NR(0, 1) ≥ β]

(
1 + o(1)

)
, (8)

with β = h
√

tn η′′(h).

We now set y = s
√

tn/η′′(0) = o(t1/2
n ), and we consider the following regimes.

If y � 1 (and a fortiori if y is of order bigger than O(tn)1/6), then s � (tn)−1/2, so
h � (tn)−1/2 and β � 1. We can then use Lemma 2.3.1, (3) to replace in Equation (8)
the function of β by the tail-estimate of the Gaussian:

P

[
Xn ≥ tnη′(0) +

√
tn η′′(0)y

]
=

e−tn F(x)

h
√

2πtn η′′(h)
(1 + o(1)). (9)

Recall that h = s
η′′(0) (1 + O(s)), so that the denominator above can be approximated

as follows:

h
√

tn η′′(h) =
s

η′′(0)
(1 + O(s))

√
tn (η′′(0) + O(s)) = y (1 + O(s)) = y(1 + o(1)).
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This completes the proof of the second part of the theorem.

Suppose on the opposite that y = o((tn)1/6), or, equivalently, s = o((tn)−1/3). Let
us then see how everything is transformed.

• By making a Taylor expansion around η′(0) of the Legendre-Fenchel trans-
form, we get (recall that x = η′(0) implies h = 0)

F(x) = F(η′(0)) + F′(η′(0)) s +
F′′(η′(0))

2
s2 + O(s3) =

y2

2tn
+ o((tn)

−1), (10)

so e−tnF(η′(0)+s) ' e−
y2
2 .

• As above,

β = h
√

tn η′′(h) = y (1 + O(s)) = y (1 + o((tn)
−1/3))

Consequently, β2 = y2(1 + o((tn)−1/3)) = y2 + o(1), so e
β2
2 can be replaced

safely by e
y2
2 , which compensates the previous term.

• Finally, fix y, and denote Fy(λ) = P[NR(0, 1) ≥ λy]. Then, for |λ| say between
1
2 and 2,

|F′y(λ)| =
∣∣∣∣

y√
2π

e−
λ2y2

2

∣∣∣∣ ≤ max
y∈R

∣∣∣∣
y√
2π

e−
y2
8

∣∣∣∣ = C < +∞;

as a consequence,

|P[NR(0, 1) ≥ β]−P[NR(0, 1) ≥ y]| =
∣∣∣Fy(1 + o((tn)

−1/3))− Fy(1)
∣∣∣

≤ C
(tn)1/3 = o(1).

This ends the proof of Theorem 3.3.1. �

REMARK 3.3.4. Equation (8) is the probabilistic counterpart of the number-theoretic
results of [Kub72, Rad09], see in particular Theorems 2.1 and 2.2 in [Rad09]. In Section
7.2, we shall explain how to recover the precise large deviation results of [Rad09] for
arithmetic functions whose Dirichlet series can be studied with the Selberg-Delange
method.

The following corollary gives a more explicit form of Theorem 3.3.1, depending on
the order of magnitude of y.

COROLLARY 3.3.5. If y = o((tn)1/4), then one has

P
[
Xn ≥ tnη′(0) +

√
tnη′′(0) y

]
=

(1 + o(1))
y
√

2π
e−

y2
2 exp

(
η′′′(0)

6 (η′′(0))3/2
y3
√

tn

)
. (11)

More generally, if y = o((tn)1/2−1/m), then one has

P
[
Xn ≥ tnη′(0) +

√
tnη′′(0) y

]
=

(1 + o(1))
y
√

2π
exp

(
−

m−1

∑
i=2

F(i)(η′(0))
i!

(η′′(0))i/2 yi

(tn)(i−2)/2

)
.

(12)
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PROOF. As above in Equation (10), we write s = y
√

η′′(0)/tn and x = η′(0) + s
and do a Taylor expansion of F around η′(0):

F(x) =
m−1

∑
i=0

F(i)(η′(0))
i!


y

√
η′′(0)

tn




i

+ O(sm).

Note that F(η(0)) = F′(η′(0)) = 0. Because of the hypothesis y = o((tn)1/2−1/m), we
have tnO(sm) = o(1). Therefore, plugging the equation above in Equation (6), we get
(12).

Observing that F′′(η′(0)) = 1/η′′(0) and F′′′(η′(0)) = −η′′′(0)
η′′(0)3 , we get the first equation.

�
To summarise, in the lattice case, mod-φ convergence implies a large deviation prin-

ciple (Theorem 3.2.2) and a precised central limit theorem (Theorem 3.3.1), and these
two results cover a whole interval of possible scalings for the fluctuations of the se-
quence (Xn)n∈N. As we shall see in the next Chapter 4, the same holds for non-lattice
reference distributions.



CHAPTER 4

Fluctuations in the non-lattice case

In this chapter, we prove the analogues of Theorems 3.2.2 and 3.3.1 when φ is not
lattice-distributed; hence, by Proposition 3.1.2, |eη(iu)| < 1 for any u 6= 0. In this set-
ting, assuming φ absolutely continuous w.r.t. the Lebesgue measure, there is a formula
equivalent to the one given in Lemma 3.2.1, namely,

P[X ≥ x] = lim
R→∞

(
1

2π

∫ R

−R

e−x(h+iu)

h + iu
ϕX(h + iu) du

)
(13)

if ϕX(h) = E[ehX] < +∞ for h > 0 (see [Fel71, Chapter XV, Section 3]). However, in
order to manipulate this formula as in Chapter 3, one would need strong additional
assumptions of integrability on the characteristic functions of the random variables
Xn. Thus, instead of Equation (13), our main tool will be a Berry-Esseen estimate (see
Proposition 4.1.1 hereafter), which we shall then combine with techniques of tilting of
measures (Lemma 4.2.5) similar to those used in the classical theory of large deviations
(see [DZ98, p. 32]).

4.1. Berry-Esseen estimates

As explained above, we start by establishing some Berry-Esseen estimates in the
setting of mod-φ convergence.

PROPOSITION 4.1.1 (Berry-Esseen expansion). We place ourselves under the assump-
tions of Definition 1.1.1, with φ non-lattice infinitely divisible law, and the strip S(c,d) that
contains 0. Denote

g(y) =
1√
2π

e−y2/2

the density of a standard Gaussian variable, and Fn(x) = P[Xn ≤ tnη′(0) +
√

tnη′′(0) x].
One has

Fn(x) =
∫ x

−∞

(
1 +

ψ′(0)√
tnη′′(0)

y +
η′′′(0)

6
√

tn(η′′(0))3
(y3 − 3y)

)
g(y) dy + o

(
1√
tn

)

with the o(·) uniform on R.

PROOF. We use the same arguments as in the proof of [Fel71, Theorem XVI.4.1],
but adapted to the assumptions of Definition 1.1.1. Given an integrable function f , or
more generally a distribution, its Fourier transform is f ∗(ζ) =

∫
R

eiζx f (x) dx. Consider
a probability law F(x) =

∫ x
−∞ f (y) dy with vanishing expectation ( f ∗)′(0) = 0; and

G(x) =
∫ x
−∞ g(y) dy a m-Lipschitz function with g∗ continuously differentiable and

(g∗)′(0) = 0 ; lim
y→−∞

G(y) = 0 ; lim
y→+∞

G(y) = 1.

31
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Then Feller’s Lemma [Fel71, Lemma XVI.3.2] states that, for any x ∈ R and any T > 0,

|F(x)− G(x)| ≤ 1
π

∫ T

−T

∣∣∣∣
f ∗(ζ)− g∗(ζ)

ζ

∣∣∣∣ dζ +
24m
πT

.

Notice that this is true even when f is a distribution. Define the auxiliary variables

Yn =
Xn − tnη′(0)√

tnη′′(0)
.

We shall apply Feller’s Lemma to the functions

Fn(x) = cumulative distribution function of Yn;

Gn(x) =
∫ x

−∞

(
1 +

ψ′(0)√
tnη′′(0)

y +
η′′′(0)

6
√

tn(η′′(0))3
(y3 − 3y)

)
g(y) dy.

Note that each Gn is clearly a Lipschitz function (with a uniform Lipschitz constant,
i.e. that does not depend on n). Besides, by Lemma 2.3.1, (2), the Fourier transform
corresponding to the distribution function Gn is, setting z = i ζ,

g∗n(ζ) = e
z2
2

(
1 +

ψ′(0) z√
tnη′′(0)

+
η′′′(0) z3

6
√

tn(η′′(0))3

)
. (14)

Consider now f ∗n (ζ): if z = i ζ, then

f ∗n (ζ) = E

[
e

z
(

Xn−tnη′(0)√
tnη′′(0)

)]
= exp

(
−z

√
tn

η′′(0)
η′(0)

)
× ϕn

(
z√

tnη′′(0)

)

= exp

(
tn

(
η

(
z√

tnη′′(0)

)
− η′(0)

z√
tnη′′(0)

))
× ψn

(
z√

tnη′′(0)

)

But

ψn

(
z√

tnη′′(0)

)
=

(
1 +

ψ′n(0) z√
tnη′′(0)

+ o
(

z√
tn

))
=

(
1 +

ψ′(0) z√
tnη′′(0)

+ o
(

z√
tn

))

where the o is uniform in n because of the local uniform convergence of the analytic
functions ψn to ψ (and hence, of ψ′n and ψ′′n to ψ′ and ψ′′). Thus

f ∗n (ζ) = exp

(
z2

2
+

η′′′(0) z3

6
√

tn(η′′(0))3
+ |z|2 o

(
z√
tn

))
×
(

1 +
ψ′(0) z√
tnη′′(0)

+ o
(

z√
tn

))

= e
z2
2

(
1 +

ψ′(0) z√
tnη′′(0)

+
η′′′(0) z3

6
√

tn(η′′(0))3
+ (1 + |z|2) o

(
z√
tn

))
. (15)

Beware that in the previous expansions, the o(·) is

o
(

z√
tn

)
=
|z|√

tn
ε

(
z√
tn

)
with lim

t→0
ε(t) = 0.

In particular, z might still go to infinity in this situation. To make everything clear
we will continue to use the notation ε(t) in the following. Fix 0 < δ < ∆ and take
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T = ∆
√

tn. Comparing (14) and (15) and using Feller’s lemma, we get:

|Fn(x)− Gn(x)| ≤ 1
π

∫ ∆
√

tn

−∆
√

tn

∣∣∣∣
f ∗n (ζ)− g∗n(ζ)

ζ

∣∣∣∣ dζ +
24m

∆π
√

tn

≤ 1
π
√

tn

∫ δ
√

tn

−δ
√

tn
e−

ζ2
2 (1 + |ζ|2) ε

(
ζ√
tn

)
dζ +

24m
∆π
√

tn

+
1

πδ
√

tn

∫

[−∆
√

tn,∆
√

tn]\[−δ
√

tn,δ
√

tn]
| f ∗n (ζ)− g∗n(ζ)| dζ. (16)

In the right-hand side, the first part is of the form ε′(δ)√
tn

when limδ→0 ε′(δ) = 0, while

the second part is smaller than M
∆
√

tn
for some constant M.

Let us show that the last integral goes to zero faster than any power of tn. Indeed,
for |ζ| ∈ [δ

√
tn, ∆
√

tn],

| f ∗n (ζ)| =
∣∣∣∣∣ϕn

(
iζ√

tnη′′(0)

)∣∣∣∣∣ ≤
∣∣∣∣∣ψn

(
iζ√

tnη′′(0)

)∣∣∣∣∣×
∣∣∣∣∣exp

(
tn η

(
iζ√

tnη′′(0)

))∣∣∣∣∣

The first part is bounded by a constant K(∆) because of the uniform convergence of ψn
towards ψ on the complex segment [−i∆/

√
η′′(0), i∆/

√
η′′(0)]. The second part can

be bounded by

 max

δ√
η′′(0)

≤|u|≤ ∆√
η′′(0)

| exp(η(iu))|



tn

,

but the maximum is a constant qδ,∆ strictly smaller than 1, because η is not lattice
distributed. This implies that in the domain [−∆

√
tn, ∆
√

tn] \ [−δ
√

tn, δ
√

tn], one has
the bound

| f ∗n (ζ)| ≤ K(∆)(qδ,∆)
tn .

The explicit expression (14) shows that the same kind of bound holds for |g∗n(ζ)|. We
shall use the notation K̃(∆) and q̃δ,∆ for constants valid for both | f ∗n (ζ)| and |g∗n(ζ)|.
Thus the third summand in the bound (16) is bounded by

4∆
πδ

K̃(∆) (q̃δ, 1
δ
)tn .

Fix ε > 0, then δ such that ε(δ) < ε and Mδ < ε. Take ∆ = 1
δ ; we get

|Fn(x)− Gn(x)| ≤ 2ε√
tn

+
4

πδ2 K̃(δ−1) (q̃δ,∆)
tn ≤ 3ε√

tn

for tn large enough. This completes the proof of the proposition. �

REMARK 4.1.2. Proposition 4.1.1 gives an approximation for the Kolmogorov dis-
tance between the law µn and the normal law. Indeed, assume to simplify that the
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reference law φ is the Gaussian law. Then, η′′(0) = 1 and η′′′(0) = 0, and one com-
putes

dKol(µn, NR(0, 1)) =
1√
tn

sup
x∈R

∣∣∣∣
∫ x

−∞
ψ′(0) y g(y) dy

∣∣∣∣+ o
(

1√
tn

)

=
|ψ′(0)|√

2πtn
+ o
(

1√
tn

)
.

This makes explicit the bound given by Theorem 1 in [Hwa98]. If ψ′(0) 6= 0 (e.g.,
as in Lemma 4.2.5), we get an equivalent of the Kolmogorov distance. However, if
ψ′(0) = 0, then the estimate dKol = o(1/

√
tn) may not be optimal. Indeed, in the case

of a scaled sum of i.i.d. random variables, tn = n1/3 and one obtains the bound

dKol

(
1√
n

n

∑
i=1

Yi, NR(0, 1)

)
= o

(
1

n1/6

)
,

which is not as good as the classical Berry-Esseen estimate O( 1
n1/2 ). There is a way

to modify the arguments in order to get such optimal estimates, by controlling the
zone of mod-convergence. We refer to [FMN16], where such "optimal" computations
of Kolmogorov distances is performed.

4.2. Deviations at scale O(tn)

THEOREM 4.2.1. Suppose φ non-lattice, and consider as before a sequence (Xn)n∈N that
converges mod-φ on a band S(c,d) with c < 0 < d. If x ∈ (η′(0), η′(d)), then

P[Xn ≥ tnx] =
exp(−tnF(x))
h
√

2πtnη′′(h)
ψ(h) (1 + o(1))

where as usual h is defined by the implicit equation η′(h) = x.

REMARK 4.2.2. By applying the result to (−Xn)n∈N, one gets similarly

P[Xn ≤ tnx] =
exp(−tnF(x))
|h|
√

2πtnη′′(h)
ψ(h) (1 + o(1))

for x ∈ (η′(c), η′(0)), with h defined by the implicit equation η′(h) = x.

REMARK 4.2.3. Our Theorem 4.2.1 should be compared with [Hwa96, Theorem 1],
which studies another regime of deviations in the mod-φ setting, namely, when h goes
to zero (or equivalently, x → η′(0)). We shall also look at this regime in our Theorem
4.3.1.

REMARK 4.2.4. The main difference between Theorems 3.2.2 and 4.2.1 is the replace-
ment of the factor ψ(h)/(1− e−h) by ψ(h)/h; the same happens with Bahadur-Rao’s
estimates when going from lattice distributions to non-lattice distributions.
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LEMMA 4.2.5. Let (Xn)n∈N be a sequence of random variables that converges mod-φ with
parameters (tn)n∈N and limiting function ψ, on a strip S(c,d) that does not necessarily contain
0. For h ∈ (c, d), we make the exponential change of measure

Q[dy] =
ehy

ϕXn(h)
P[Xn ∈ dy],

and denote X̃n a random variable following this law. The sequence (X̃n)n∈N converges mod-φ̃,
where φ̃ is the infinitely divisible distribution with characteristic function eη(z+h)−η(h). The
parameters of this new mod-convergence are again (tn)n∈N, and the limiting function is

ψ̃(z) =
ψ(z + h)

ψ(h)
.

The new mod-φ̃ convergence occurs in the strip S(c−h,d−h).

PROOF. Obvious since ϕX̃n
(z) = ϕXn(z + h)/ϕXn(h). �

PROOF OF THEOREM 4.2.1. Fix h ∈ (c, d), and consider the sequence (X̃n)n∈N of
Lemma 4.2.5. All the assumptions of Proposition 4.1.1 are satisfied, so, the distribution
function Fn(u) of

X̃n − tnη′(h)√
tnη′′(h)

is

Gn(u) =
∫ u

−∞

(
1 +

ψ′(h)
ψ(h)

√
tnη′′(h)

y +
η′′′(h)√

tn(η′′(h))3
(y3 − 3y)

)
g(y) dy

up to a uniform o(1/
√

tn). Then,

P[Xn ≥ tnη′(h)] =
∫ ∞

y=tnη′(h)
ϕXn(h) e−hy Q(dy)

= ϕXn(h)
∫ ∞

u=0
e−h

(
tnη′(h)+

√
tnη′′(h) u

)
dFn(u)

= ψn(h) e−tnF(x)
∫ ∞

u=0
e−h
√

tnη′′(h) u dFn(u), (as F(x) = hη′(h)− η(h)).

To compute the integral I, we choose the primitive Fn(u)− Fn(0) of dFn(u) that van-
ishes at u = 0, and we make an integration by parts. Notice that we now need h > 0
(hence, x > η′(0)) in order to manipulate some of the terms below:

I = h
√

tnη′′(h)
∫ ∞

u=0
e−h
√

tnη′′(h) u (Fn(u)− Fn(0)) du

= h
√

tnη′′(h)
∫ ∞

u=0
e−h
√

tnη′′(h) u
(

Gn(u)− Gn(0) + o
(

1√
tn

))
du
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' h
√

tnη′′(h)
∫∫

0≤y≤u
e−h
√

tnη′′(h) u

(
1 +

ψ′(h) y
ψ(h)

√
tnη′′(h)

+
η′′′(h) (y3 − 3y)√

tn(η′′(h))3

)
g(y) dy du

'
∫ ∞

y=0
e−h
√

tnη′′(h) y

(
1 +

ψ′(h)
ψ(h)

√
tnη′′(h)

y +
η′′′(h)√

tn(η′′(h))3
(y3 − 3y)

)
g(y) dy

' e
h2 tnη′′(h)

2√
2π

∫ ∞

y=0
e−

(y+h
√

tnη′′(h))2
2

(
1 +

ψ′(h)
ψ(h)

√
tnη′′(h)

y +
η′′′(h)√

tn(η′′(h))3
(y3 − 3y)

)
dy,

where on the three last lines the symbol ' means that the remainder is a o((tn)−1/2).
By Lemma 2.3.1, (3), the only contribution in the integral that is not a o((tn)−1/2) is

e
h2 tnη′′(h)

2√
2π

∫ ∞

y=0
e−

(y+h
√

tnη′′(h))2
2 dy =

1
h
√

2πtnη′′(h)
+ o
(

1√
tn

)
.

This ends the proof since ψn(h)→ ψ(h) locally uniformly. �

4.3. Central limit theorem at the scales o(tn) and o((tn)2/3)

As in the lattice case, one can also prove from the hypotheses of mod-convergence
an extended central limit theorem:

THEOREM 4.3.1. Consider a sequence (Xn)n∈N that converges mod-φ with limiting dis-
tribution ψ and parameters tn, where φ is a non-lattice infinitely divisible law that is absolutely
continuous w.r.t. Lebesgue measure. Let y = o((tn)1/6). Then,

P

[
Xn ≥ tnη′(0) +

√
tnη′′(0) y

]
= P[NR(0, 1) ≥ y] (1 + o(1)) .

On the other hand, assume y � 1 and y = o((tn)1/2). If x = η′(0) +
√

η′′(0)/tn y and h is
the solution of η′(h) = x, then

P

[
Xn ≥ tnη′(0) +

√
tnη′′(0) y

]
=

e−tn F(x)

h
√

2πtn η′′(h)
(1 + o(1)) =

e−tn F(x)

y
√

2π
(1 + o(1)) .

As in the proof of Theorem 3.3.1, we need to control the modulus of the Fourier
transform of the reference law φ. Thus, let us state the non-lattice analogue of Lemma
3.3.3:

LEMMA 4.3.2. Consider a non-constant infinitely divisible law φ, of type non-lattice, with
a convergent moment generating function in a strip S(c,d) with c < 0 < d. We also assume that
φ is absolutely continuous w.r.t. the Lebesgue measure. Then, there exists a constant D > 0
only depending on φ, and an interval (−ε, ε) ⊂ (c, d), such that for all h ∈ (−ε, ε), and all δ
small enough,

qδ = max
u∈R\(−δ,δ)

| exp(η(h + iu)− η(h))| ≤ 1− D δ2.

REMARK 4.3.3. One can give a sufficient condition on the Lévy-Khintchine repre-
sentation of φ to ensure the absolute continuity with respect to the Lebesgue measure;
cf. [SH04, Chapter 4, Theorem 4.23]. Hence, it is the case if σ2 > 0, or if σ2 = 0 and if
the absolutely continuous part of the Lévy measure Π has infinite mass.
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REMARK 4.3.4. Let us explain why we need to add the assumption of absolute
continuity with respect to Lebesgue measure, which is a strictly stronger hypothesis
than being non-lattice. The hypotheses on the infinitely divisible law φ imply that it has
finite variance, and therefore, that the Lévy-Khintchine representation of the Fourier
transform given by Equation (3) can be replaced by a Kolmogorov representation. This
representation actually holds for the complex moment generating function (see [SH04,
Chapter 4, Theorem 7.7]):

η(z) = mz + σ2
∫

R

ezx − 1− zx
x2 K(dx)

where K is a probability measure on R, and where the fraction in the integral is ex-
tended by continuity at x = 0 by the value − z2

2 . As a consequence,

| exp(η(h + iu)− η(h))| = exp

(
σ2
∫

R

ehx (cos ux− 1)
x2 K(dx)

)
≤ 1.

This expression can be expanded in series of u as

1− σ2u2

2

∫

R
ehx K(dx) + Oh(u3).

Therefore, Lemma 4.3.2 holds as soon as one can show that

sup
h∈(−ε,ε)

lim sup
|u|→∞

| exp(η(h + iu)− η(h))| < 1,

because one has a bound of type 1− D u2 in a neighbourhood of zero. Unfortunately,
for general probability measures, the Riemann-Lebesgue lemma does not apply, and
even for h = 0, it is unclear whether for a general exponent η the Cramér condition (C)

lim sup
|u|→∞

| exp(η(iu))| < 1

is satisfied (see [Pet95] for more discussion and references on condition (C)). We refer
to [Wol83, Theorem 2], where it is shown that decomposable probability measures enjoy
this property. This difficulty explains why one has to restrict oneself to absolutely
continuous measures in the non-lattice case, in order to use the Riemann-Lebesgue
lemma. In the following we provide an ad hoc proof of Lemma 4.3.2 in the absolutely
continuous cases, that does not rely on the Kolmogorov representation.

PROOF OF LEMMA 4.3.2. We shall adapt the arguments of Lemma 3.3.3 from the
discrete to the continuous case. Though the density f cannot be supported on a com-
pact segment (cf. Lemma 3.1.1 and the classification of the possible supports of an in-
finitely divisible law), one can work as if it were the case, thanks to the following
calculation:

| exp(η(h + iu)− η(h))| =
∣∣∣∣∣
φ(e(h+iu)x)

φ(ehx)

∣∣∣∣∣

=
|φ<a(e(h+iu)x) +

∫ b
a e(h+iu)x f (x) dx + φ>b(e(h+iu)x)|

φ<a(ehx) +
∫ b

a ehx f (x) dx + φ>b(ehx)

≤ φ<a(ehx) + φ>b(ehx) + |
∫ b

a e(h+iu)x f (x) dx|
φ<a(ehx) + φ>b(ehx) +

∫ b
a ehx f (x) dx
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where φ<a (respectively, φ>b) is the measure 1x<a φ(dx) (resp., 1x>b φ(dx)). Therefore,
it suffices to show:

max
u∈(−δ,δ)c

|
∫ b

a e(h+iu)x f (x) dx|
∫ b

a ehx f (x) dx
≤ 1− D δ2

for δ and h small enough. This reduction to a compact support will be convenient later
in the computations.

Set gh(x) = ehx f (x)∫ b
a ehx f (x) dx

and

F(h, u) =
∣∣∣∣
∫ b

a
gh(x) eiux dx

∣∣∣∣
2

=
∫∫

[a,b]2
gh(x)gh(y) eiu(x−y) dx dy

=
∫∫

[a,b]2
gh(x)gh(y) cos(u(x− y)) dx dy

=
∫ b−a

t=−(b−a)

(∫ min(b,t+b)

x=max(a,t+a)
gh(x)gh(x− t) dx

)
cos ut dt.

The problem is to show that

sup
h∈(−ε,ε)

sup
u∈(−δ,δ)c

F(h, u) ≤ 1− D δ2

for some constant D. With h fixed, by the Riemann-Lebesgue lemma applied to the
integrable function

m(t) =
∫ min(b,t+b)

x=max(a,t+a)
gh(x)gh(x− t) dx,

the limit as |u| goes to infinity of F(h, u) is 0. On the other hand, if u 6= 0, then
F(h, u) < F(h, 0) = 1. Indeed, suppose the opposite: then cos ut = 1 almost surely
w.r.t. the measure m(t) dt. This means that this measure m(t) dt is concentrated on the
lattice 2π

|u| Z, which is impossible for a measure continuous with respect to the Lebesgue
measure. Combining these two observations, one sees that for any δ > 0,

sup
u∈(−δ,δ)c

F(h, u) ≤ C(h,δ) < 1

for some constant C(h,δ). Since all the terms considered depend smoothly on h, for h
small enough, one can even take a uniform constant Cδ:

∀δ > 0, ∃Cδ < 1 such that sup
h∈(−ε,ε)

sup
u∈(−δ,δ)c

F(h, u) ≤ Cδ. (17)

On the other hand, notice that

∂F(h, u)
∂u

= −
∫∫

[a,b]2
gh(x)gh(y) (x− y) sin(u(x− y)) dx dy.

However, if u(b − a) ≤ π
2 , then (x − y) sin(u(x − y)) ≥ 2u

π (x − y)2 over the whole
domain of integration, so,

∂F(h, u)
∂u

≤ −2Bh
π

u
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where Bh =
∫∫

[a,b]2 gh(x)gh(y) (x− y)2 dx dy. By integration,

F(h, u) ≤ 1− Bh
π

u2 for all u ≤ π

2(b− a)
.

Again, by continuity of the constant Bh w.r.t. h, one can take a uniform constant :

∃B > 0 such that for all u ≤ π

2(b− a)
, sup

h∈(−ε,ε)
F(h, u) ≤ 1− B u2. (18)

The two assertions (17) (with δ = π
2(b−a) ) and (18) enable one to conclude, with

D = inf
(

B,
1− Cδ

δ2

)
, where δ =

π

2(b− a)
. �

We also refer to [Ess45, Theorem 6] for a general result on the Lebesgue measure of the
set of points such that the characteristic function of a distribution is larger in absolute
value than 1− δ2.

PROOF OF THEOREM 4.3.1. The proof is now exactly the same as in the lattice case
(Theorem 3.3.1). Indeed, the conclusions of the technical Lemma 4.3.2 hold, and on
the other hand, the equivalents for P[Xn ≥ tnx] in the lattice and non-lattice cases
(Theorems 3.2.2 and 4.2.1) differ only by the fact that 1− e−h is replaced by h. But in
the proof of Theorem 3.3.1, the quantity 1− e−h is approximated by h, so everything
works the same way as in the non-lattice case. �

As in the non-lattice case, we have the following corollary (with the exact same
statement and proof):

COROLLARY 4.3.5. If y = o((tn)1/4), then one has

P
[
Xn ≥ tnη′(0) +

√
tnη′′(0) y

]
=

(1 + o(1))
y
√

2π
e−

y2
2 exp

(
η′′′(0)

6 (η′′(0))3/2
y3
√

tn

)
. (19)

More generally, if y = o((tn)1/2−1/m), then one has

P
[
Xn ≥ tnη′(0) +

√
tnη′′(0) y

]
=

(1 + o(1))
y
√

2π
exp

(
−

m−1

∑
i=2

F(i)(η′(0))
i!

(η′′(0))i/2 yi

(tn)(i−2)/2

)
.

(20)

Hence, one can again describe all the fluctuations of Xn from order O(
√

tn) up to
order O(tn), see Figure 1.

To conclude this paragraph, let us mention an application that looks similar to the
law of the iterated logarithm, and that also works in the lattice case. Consider a se-
quence (Xn)n∈N converging mod-φ with parameters tn such that tn � (log n)3. We
also assume that the random variables Xn are defined on the same probability space,
and we look for sequences γn such that almost surely,

lim sup
n→∞

(
Xn − tnη′(0)

γn

)
≤ 1.
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order of fluctuations

large deviations (η′(0) < x):

extended central limit

central limit theorem (y� (tn)1/6):

theorem ((tn)1/6 . y� (tn)1/2):

P[Xn
tn
≥ x] ' exp(−tn F(x))

F′(x)
√

2πtnη′(x)
ψ(F′(x));

P[Xn−tnη′(0)√
tn η′′(0)

≥ y] ' exp(−tn F(x))
F′(x)
√

2πtnη′(x)
;

P[Xn−tnη′(0)√
tn η′′(0)

≥ y] ' P[NR(0, 1) ≥ y].

O(tn)

O((tn)2/3)

O((tn)1/2)

FIGURE 1. Panorama of the fluctuations of a sequence of random vari-
ables (Xn)n∈N that converges modulo an absolutely continuous distribu-
tion (with x = η′(0) +

√
η′′(0)/tn y).

Unlike in the usual law of the iterated logarithm, we do not make any assumption of
independence. Such assumptions are common in this setting, or at least some con-
ditional independence (for instance, a law of the iterated logarithm can be stated for
martingales); see the survey [Bin86] or [Pet75, Chapter X].

On the one hand we have a less precise result: we only obtain an upper bound,
which is not tight in the case of sums of i.i.d. variable since we have a

√
log(n) factor

instead the usual
√

log(log(n)) factor. On the other hand, our result does not depend
at all on the way one realises the random variables Xn. In other words, for every
possible coupling of the variables Xn, the following holds:

PROPOSITION 4.3.6. Let (Xn)n∈N be a sequence that converges mod-φ with parameters
tn, where φ is either a non-constant lattice distribution, or a non-lattice distribution that is
absolutely continuous with respect to the Lebesgue measure. We assume

lim
n→∞

tn

(log n)3 = +∞.

Then,

lim sup
n→∞

Xn − tnη′(0)√
2η′′(0) tn log n

≤ 1 almost surely.

PROOF. Notice the term log n instead of log log n for the usual law of iterated loga-
rithm. One computes

P
[
Xn − tnη′(0) ≥

√
2(1 + ε) η′′(0) tn log n

]
.

Set y =
√

2(1 + ε) log n. Due to the hypotheses on tn, one has y = o
(
(tn)1/6) and one

can apply Theorem 4.3.1: using the classical equivalent

P[NR(0, 1) ≥ y] ∼ e−y2/2

y
√

2π
,
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we get

P

[
Xn − tnη′(0) ≥

√
2(1 + ε)η′′(0)tn log n

]
' e−(1+ε) log n
√

4π(1 + ε) log n
≤ 1

n1+ε
.

for n large enough. For any ε > 0, this is summable, so by the Borel-Cantelli lemma,
one has almost surely

Xn − tnη′(0) <
√

2(1 + ε) η′′(0) tn log n for n large enough.

Since this is true for every ε, one has (almost surely):

lim sup
n→∞

Xn − tnη′(0)√
2η′′(0) tn log n

≤ 1.

�

4.4. Normality zones for mod-φ and mod-Gaussian sequences

Let (Xn)n∈N be a sequence of random variables that converges mod-φ (we do not
assume φ non-lattice for the moment). Then we have seen that

Yn =
Xn − tnη′(0)√

tnη′′(0)

satisfies a central limit theorem: for all fixed y,

lim
n→∞

P[Yn ≥ y]

(2π)−1/2
∫ ∞

y e−
s2
2 ds

= 1. (21)

The question that we address here is the question of the normality zone: we want to
identify the maximal scale un such that Equation (21) holds for y = o(un). The results
of the previous sections allows to identify this scale and to describe what happens for
y = O(un).

Suppose that φ is a lattice distribution, or a non-lattice distribution that is absolutely
continuous with respect to the Lebesgue measure. From Theorem 3.3.1 or Theorem
4.3.1, we get that if y = o((tn)1/6), then P[Yn ≥ y] is given by the Gaussian distribution.
Assume η′′′(0) 6= 0. Then, the previous result is optimal, because of Equations (11) and
(19): for y = c(tn)1/6 the second factor is different from 1 and the approximation by
the Gaussian tail is no longer valid. Thus, if η′′′(0) 6= 0, then the normality zone for
the sequence (Yn)n∈N is o((tn)1/6). In particular, one has the same asymptotics and
normality zone than in the case of the sum of tn i.i.d. variables of law φ; see [Cra38]
and [Pet54].

The only case where this comparison does not give us the normality zone is the
case of mod-Gaussian convergence, that we shall discuss now.

PROPOSITION 4.4.1. Assume that (Xn)n∈N converges in the mod-Gaussian sense, with
a non-trivial limiting function (i.e., ψ 6≡ 1). Then the normality zone for Yn = Xn/

√
tn is

o(
√

tn).
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PROOF. • Let y = o((tn)1/2). Set x = h = y/
√

tn as in Theorem 4.3.1 in the
mod-Gaussian case. Then, the second part of Theorem 4.3.1 states that

P[Yn ≥ y] = P[Xn ≥ tnx] =
e−

tnx2
2

h
√

2πtn
(1 + o(1)) =

e−
y2
2

y
√

2π
(1 + o(1)).

Thus, the normality zone is at least o(
√

tn) in this case.

• Set now y = x
√

tn for a fixed x > 0. Then, Theorem 4.2.1 states that

P[Yn ≥ y] = P[Xn ≥ tn x] =
e−

y2
2

y
√

2π
ψ(x) (1 + o(1)). (22)

Similarly, if y = −x
√

tn for a fixed x > 0, we get (see Remark 4.2.2)

P[Yn ≤ y] = P[Xn ≤ −tn x] =
e−

y2
2

|y|
√

2π
ψ(−x) (1 + o(1)). (23)

In particular, if ψ(x) is not identically equal to 1, then the approximation (21)
of P[Yn ≥ y] by the Gaussian tail breaks and the normality zone is exactly
o(
√

tn). �

As seen in the proof, from a simple application of Theorem 4.2.1, the residue ψ
describes how to correct the Gaussian tail to find an equivalent for P[Yn ≥ y]. A
standard and interesting case is the case where the limiting function is ψ = exp(Lzv),
where L 6= 0 is a real number and v a positive integer (v ≥ 3). This might seem
restrictive, but we will see in the examples that ψ is very often of this type — Examples
7.1.1, 7.1.2, 2.1.2 and Theorems 11.2.4, 10.0.1, 8.2.1 and 9.5.1. If v is odd (v = 3 is a
common case), comparing Equations (22) and (23) shows the following phenomenon:
the negative and positive deviations of Yn at order O(

√
tn) have different asymptotic

behaviour, one being larger than the other one depending on the sign of L. In other
words, our results reveal a breaking of symmetry at the edge of the normality zone.

REMARK 4.4.2. This breaking of symmetry also occurs in multi-dimensional setting.
In particular, in two dimensions, the residue allows to compute the distribution of
the angle of a sum of i.i.d. random variables at the edge of the normality zone, see
[FMN15].

4.5. Discussion and refinements

4.5.1. Bahadur-Rao theorem and Cramér-Petrov expansion. We consider here the
case of a sum Sn = Y1 + · · · + Yn of i.i.d. random variables such that Y = Y1 has
an infinitely divisible distribution of Lévy exponent η. Then Sn converges mod-Y with
parameters n and limiting function ψ = 1; see Example 2.1.2. In this case, Theorems
4.2.1 and 3.2.2 correspond to Bahadur-Rao estimates

P[Sn ≥ n x] '





exp(−n F(x))
(1−e−h)

√
2πn η′′(h)

in the lattice case (assume Z is the minimal lattice);
exp(−n F(x))
h
√

2πn η′′(h)
in the non-lattice case,

where η(h) = log E[ehY] and F is the Legendre-Fenchel transform of η; see Theorem
3.7.4 in [DZ98], and also the papers [BR60, Ney83, Ilt95].
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In the same setting, Theorems 4.3.1 and 3.3.1 correspond to Cramér-Petrov expan-
sion [Pet95] (in the non-lattice case, we assume in addition that the law of Y is abso-
lutely continuous with respect to Lebesgue measure). To the best of our knowledge,
the link with the Legendre-Fenchel transform is new.

4.5.2. On the infinite divisibility of φ. As above, consider the case of a sum Sn =
Y1 + · · ·+Yn of i.i.d. random variables, but with the law of Y1 not necessarily infinitely
divisible. In this case, E[ezSn ] =

(
E[ezY1 ]

)n, but, if E[ezY1 ] vanishes for some complex
value of z, one cannot write this as exp(nη(z)) as in Definition 1.1.1.

The proofs of our large deviation results — Theorems 4.2.1 and 3.2.2 — can never-
theless be adapted to this setting. For the extended central limit theorem — Theorems
3.3.1 and 4.3.1 — we would need to assume the estimate given by Lemma 3.3.3 or
Lemma 4.3.2. This is satisfied in particular if:

• either Y takes its values in Z, and there are two consecutive integers n, m =
n− 1 such that P[Y = n] 6= 0 and P[Y = m] 6= 0;

• or, Y has a component absolutely continuous w.r.t. Lebesgue measure.

Since these are classical results and since our method are close to the usual ones, we do
not give details on how to adapt our proof to the non infinitely divisible setting.

REMARK 4.5.1. For Bahadur-Rao theorem, it should be noticed that the assumption
that Z is the minimal lattice is necessary. For instance, if one considers a sum Sn of n
independent Bernoulli random variables with P[B = 1] = P[B = −1] = 1/2, then the
estimate above is not true, because Sn has always the same parity as n. This is related
to the fact that E[ezB] has modulus 1 at z = iπ.

4.5.3. Quasi powers. Mod-φ convergent is reminiscent of the quasi-power theory
developed by Hwang [Hwa96, Hwa98] — see also [FS09, Chapter IX].

DEFINITION 4.5.2. [Hwa96] A sequence (Xn) of random variables satisfy the quasi-power
hypothesis if

E[ezXn ] = eφ(n)u(z)+v(z)(1 + O(κ−1
n )
)
, (24)

where φ(n), κn → ∞, u(z) and v(z) are analytic functions for |s| < ρ (with u′′(0) 6= 0) and
the O symbol is uniform in the disk D(0, ρ).

Clearly, any sequence converging mod-φ satisfies this hypothesis, taking φ(n) = tn,
v(z) = ln(ψ(z)), u(z) = η(z) (since ψ(0) = 1, a determination of the ln always exists
on a sufficiently small neighbourhood of the origin). A major difference between mod-
convergence and the quasi-power framework is that we assume that η(z) is the Lévy
exponent of an infinitely divisible distribution, while Hwang does not have any hy-
pothesis on u(z) (except u′′(0) 6= 0). The fact that exp(η(z)) =

∫
R

ezx φ(dx) is impor-
tant to study deviations at scale O(tn), since we used the inequality | exp(η(z))| ≤ 1
for z = iξ in the proof of Theorem 3.2.2 and Proposition 4.1.1.

At the scale o(tn), our results — Theorems 4.3.1 and 3.3.1 — coincide with the ones
of Hwang. Note, however, that our hypotheses are slightly different. We need η(z)
to be the Lévy exponent of an infinitely divisible distribution, while Hwang uses an
hypothesis on the speed of convergence in Equation (24). In most examples, η is a
Poisson or Gaussian Lévy exponent, so that our hypothesis is automatically verified. It
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can thus be considered as a slight improvement that we do not require any hypothesis
on the speed of convergence (but such an hypothesis allows us to refine our results at
scale O(tn) in the lattice case, see Theorem 3.2.2).

REMARK 4.5.3 (The disk or the strip?). In the quasi-power framework, we assume
convergence of the renormalised Laplace transform on a disk, while mod-φ conver-
gence is defined as such convergence on the strip. It is thus natural to wonder which
hypothesis is more natural. To this purpose, let us mention an old result of Lukacs and
Szász [LS52, Theorem 2]: if X is a random variable with an analytic moment generat-
ing function E[ezX] defined on the open disk D(0,c), then this function is automatically
defined and analytic on the strip S(−c,c). This implies that the left-hand side of Eq. (2)
is automatically defined on a strip, as soon as it is defined on a disk. Of course it could
converge on a disk and not on a strip, but we shall see throughout this paper that, in
many examples, the convergence on the strip indeed occurs. Actually, in most of our
examples, c = −∞ and d = +∞, and the distinction between disk and strip disappears
as D(0,+∞) = S(−∞,+∞) = C.



CHAPTER 5

An extended deviation result from bounds on cumulants

In this chapter, we discuss a particular case of mod-Gaussian variables, that arises
from bounds on cumulants. We will see that in this case the deviation result given in
Theorem 4.2.1 is still valid at a scale larger than tn; see Proposition 5.2.1.

5.1. Bounds on cumulants and mod-Gaussian convergence

Let (Sn)n∈N be a sequence of real-valued centered random variables that admit
moments of all order, and such that

|κ(r)(Sn)| ≤ (Cr)r αn(βn)
r (25)

for all r ≥ 2 and for some sequences (αn)n→∞ → +∞ and (βn)n∈N arbitrary. Assume
moreover that there exists an integer v ≥ 3 such that

(1) κ(r)(Sn) = 0 for all 3 ≤ r < v and all n ∈N;

(2) we have the following approximations for second and third cumulants:

κ(2)(Sn) = σ2 αn(βn)
2
(

1 + o
(
(αn)

− v−2
v

))
;

κ(v)(Sn) = L αn(βn)
v (1 + o(1)

)
. (26)

Set Xn = Sn

(αn)
1
v βn

. The cumulant generating series of Xn is

log ϕn(z) =
κ(2)(Sn)

2 (αn)
2
v (βn)2

z2 +
κ(v)(Sn)

v! αn(βn)v zv +
∞

∑
r=v+1

κ(r)(Sn)

r! (αn)
r
v (βn)r

zr

=
σ2

2
(αn)

v−2
v z2 +

L
v!

zv +
∞

∑
r=v+1

κ(r)(Sn)

r! (αn)
r
v (βn)r

zr + o(1),

where the o(1) is locally uniform. The remaining series is locally uniformly bounded
in absolute value by

∞

∑
r=v+1

Cr rr

r!
1

(αn)
r−v

v
Rr ≤ αn

∞

∑
r=v+1

(
e CR

(αn)
1
v

)r

= (αn)
− 1

v
(e CR)v+1

1− e CR (αn)
− 1

v
→ 0.

Hence,

ψn(z) = exp
(
−(αn)

v−2
v

σ2z2

2

)
ϕn(z)→ exp

(
L
v!

zv
)

locally uniformly on C, so one has again mod-Gaussian convergence, with parameters
tn = σ2 (αn)

v−2
v and limiting function ψ(z) = e

L
v! zv

.

REMARK 5.1.1. The case of i.i.d. variables — Example 2.1.2 — fits in this frame-
work, with αn = n and βn = 1. However, it includes many more examples than sums

45
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of i.i.d. variables: in particular, in Chapter 9, we show that such bounds on cumu-
lants typically occur in the framework of dependency graphs. Concrete examples are
discussed in Chapters 10 and 11.

5.2. Precise deviations for random variables with control on cumulants

We use the same hypotheses as in the previous subsection, and without loss of
generality, we suppose that v = 3. Then, the sequence of random variables

Xn =
Sn

βn (αn)1/3

converges mod-Gaussian with parameters tn = (αn)1/3 σ2 and with limiting func-
tion ψ(z) = exp(Lz3/6) (here, we may have L = 0). So, one can apply the previ-
ous theorems to estimate the tail of the distribution of Sn. In particular, Xn/

√
tn =

Sn/(βn σ
√

αn) satisfies a central limit theorem with a normality zone of size o(
√

tn) =

o((αn)1/6) (as for the sum of αn i.i.d. variables) and one can describe the deviation
probabilties at the edge of the normality zone — see Proposition 4.4.1.

We shall see now that, with stronger assumptions on the speed of convergence
than Equation (26), we can extend these results to a larger scale. More precisely, we
will assume:

κ(2)(Sn) = σ2 αn (βn)
2 (1 + O((αn)

−1/2));

κ(3)(Sn) = L αn (βn)
3 (1 + O((αn)

−1/4)). (27)

We then have the following result:

PROPOSITION 5.2.1. Let (Sn)n∈N be a sequence of centered real-valued random variables.
Assume that the bound on cumulants (25) and the asymptotics of second and third cumulants
given by Equation (27) hold. If xn is a positive sequence, bounded away from 0 with xn =
o((αn)1/12), then

P
[
Sn ≥ βnσ2α2/3

n xn

]
= P[Xn ≥ tnxn] =

e−
(xn)2(αn)1/3σ2

2

xn(αn)1/6σ
√

2π
e

L(xn)3
6 (1 + o(1)).

P
[
Sn ≥ βnσ2α2/3

n xn

]
= P[Xn ≤ −tnxn] =

e−
(xn)2(αn)1/3σ2

2

xn(αn)1/6σ
√

2π
e
−L(xn)3

6 (1 + o(1)).

REMARK 5.2.2. The case where xn is a constant sequence equal to x corresponds
to Equations (22) and (23), which gives an equivalent for the deviation probability at
the edge of the normality zone. Hence, the proposition asserts that, with appropriate
assumptions on cumulants, this result is valid at a larger scale. Namely, we give an
equivalent for the deviation probability of Xn of order up to o((tn)5/4), instead of the
usual O(tn).

PROOF. Set Xn = (αn)−1/3 Sn; up to a renormalisation of the random variables, one
can suppose βn = 1, and also σ2 = 1. Let zn be a sequence of complex numbers with
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|zn| = O((αn)1/12); we set ηn = |zn| (αn)−1/12. Then, following the computation of
Section 5.1 with v = 3, we get:

log ϕXn(zn) =
κ(2)(Sn)

2 (αn)
2
3
(zn)

2 +
κ(3)(Sn)

6 αn
(zn)

3 +
∞

∑
r=4

κ(r)(Sn)

r! (αn)
r
3
(zn)

r

=
1
2
(αn)

1
3 (zn)

2 +
L
6
(zn)

3 + O((ηn)
2 + (ηn)

3 + (ηn)
4).

If |zn| = o((αn)1/12), then ηn → 0, so the remainder above is o(1) and we have:

ϕXn(zn) = exp
(
(αn)

1
3
(zn)2

2
+

L(zn)3

6

) (
1 + o(1)

)
. (28)

We make the change of probability measure

P[Yn ∈ dy] =
exny

ϕXn(xn)
P[Xn ∈ dy]

with xn = o((αn)1/12); the generating function of Yn is ϕYn(z) =
ϕXn (xn+z)

ϕXn (xn)
. So, using

the inequality
|(z + xn)

r − (xn)
r| ≤ 2r |z| max(|z|, |xn|)r−1,

we get, setting ηz
n = |z| (αn)−1/12 and ηx,z

n = max(|xn|, |z|) (αn)−1/12,

log ϕYn(z) = (αn)
1/3 (z + xn)2 − (xn)2

2
+

L((z + xn)3 − (xn)3)

6
+ O(ηz

n(η
x,z
n + (ηx,z

n )2 + (ηx,z
n )3))

=

(
(αn)

1/3 xn +
L (xn)2

2

)
z +

(
(αn)1/3 + L xn

2

)
z2 +

L
6

z3

+ O(ηz
n(η

x,z
n + (ηx,z

n )2 + (ηx,z
n )3)) (29)

Thus, if

Zn = Yn − (αn)
1/3 xn −

L (xn)2

2
,

then the sequence (Zn)n∈N converges in the mod-Gaussian sense, with parameters
tn = (αn)1/3 + L xn and limiting function exp( L z3

6 ). Moreover, in Equation (29), the
approximation is valid for any z such that |z| ≤ ∆(αn)1/12, for some constant ∆ de-
pending only on the constant C in the bound (25).

Besides, for xn = o((αn)1/12), one has

P
[
Sn ≥ xn (αn)

2
3

]
= P

[
Xn ≥ xn (αn)

1
3

]
= ϕXn(xn)

∫ ∞

y=xn (αn)1/3
e−xny P[Yn ∈ dy]

= ϕXn(xn) e
−
(
(αn)1/3 (xn)2+ L (xn)3

2

)∫ ∞

z=− L (xn)2
2

e−xnz P[Zn ∈ dz]

= exp

(
− (αn)1/3 (xn)2

2
− L(xn)3

3

)
Rn (1 + o(1)),

by replacing ϕXn(xn) by its estimate (28), which holds since xn = o((αn)1/12); Rn is the
integral of the second line.
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To estimate the integral Rn, we shall adapt the proof of Proposition 4.1.1 to the
special case of a sequence (Zn)n∈N that converges in the mod-Gaussian sense, with
parameters tn, limit function exp(Kz3), and with the approximation

log ϕZn(z) =
tn z2

2
+ K z3 + O

(
z

(tn)1/4

)
(30)

that is valid for every |z| ≤ ∆(tn)1/4 with ∆ > 0. Notice that the sequence (Zn)n∈N

previously constructed satisfies these hypotheses with tn = (αn)1/3 + Lxn ' (αn)1/3.
If one applies Proposition 4.1.1 to the case of mod-Gaussian convergence with a limit
exp(Kz3), then η′′′(0) = ψ′(0) = 0, so the approximation of the law dFn(w) of Zn/

√
tn

is simply the Gaussian law dG(w) = (2π)−1/2 e−w2/2 dw, and the Kolmogorov distance
between Fn and G is a o((tn)−1/2). However, by using the validity of the approximation
(30) on a larger scale than z = O(1), it is possible to obtain a better Berry-Esseen bound,
namely, O((tn)−3/4).

Recall that for any T > 0 and any w ∈ R, the distance between cumulative distri-
bution functions is smaller than

|Fn(w)− G(w)| ≤ 1
π

∫ T

−T

∣∣∣∣
f ∗n (ζ)− g∗(ζ)

ζ

∣∣∣∣ dζ +
24m
πT

.

However, for any ζ = O((tn)3/4), one has

∣∣∣∣
f ∗n (ζ)− g∗(ζ)

ζ

∣∣∣∣ = e−
ζ2
2

∣∣∣∣∣∣

exp
(

K ζ3

(tn)3/2 + O
(

ζ
(tn)3/4

))
− 1

ζ

∣∣∣∣∣∣

e
ζ2
2

∣∣∣∣
f ∗n (ζ)− g∗(ζ)

ζ

∣∣∣∣ ≤
∣∣∣∣∣e

K ζ3

(tn)3/2

∣∣∣∣∣

∣∣∣∣∣∣

exp
(

O
(

ζ
(tn)3/4

))
− 1

ζ

∣∣∣∣∣∣
+

∣∣∣∣∣∣

exp
(

K ζ3

(tn)3/2

)
− 1

ζ

∣∣∣∣∣∣

≤ e
K |ζ|3
(tn)3/2 O

(
1

(tn)3/4 +
ζ2

(tn)3/2

)
.

In these inequalities, the constant hidden in the big O can be chosen uniform if ζ
(tn)3/4

stays in a bounded, sufficiently small interval [−∆, ∆]. As a consequence, setting T =
∆ (tn)3/4, one obtains from Feller’s lemma:

|Fn(w)− G(w)| ≤ O

( ∫ ∆ (tn)3/4

−∆ (tn)3/4

(
1

(tn)3/4 +
ζ2

(tn)3/2

)
e
− ζ2

2 + K |ζ|3
(tn)3/2 dζ +

1
∆ (tn)3/4

)

uniformly in w. Since |ζ| stays smaller than ∆ (tn)3/4, in this integral,

−ζ2

2
+

K |ζ|3
(tn)3/2 ≤ −

ζ2

2

(
1− K ∆

(tn)3/4

)
≤ −ζ2

4

for tn large enough. As claimed before, it follows that

sup
w∈R

|Fn(w)− G(w)| = O
(

1
(tn)3/4

)
.
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We can now compute the asymptotics of the integral Rn. Set

εn = − L(xn)2

2
√
(αn)1/3 + Lxn

= −L(xn)2

2
√

tn
;

since xn = o((αn)1/12), εn → 0. Now,

Rn =
∫ ∞

w=εn
exp

(
−w xn

√
tn
)

dFn(w)

= xn
√

tn

∫ ∞

εn
exp

(
−w xn

√
tn
)
(Fn(w)− Fn(εn)) dw

= xn
√

tn

∫ ∞

εn
exp

(
−w xn

√
tn
) (

Gn(w)− Gn(εn) + O
(

1
(tn)3/4

))
dw

=
1√
2π

∫ ∞

εn
exp

(
−w xn

√
tn −

w2

2

)
dw + O


 e

L (xn)3
2

(tn)3/4


 .

The last Gaussian integral is given by Lemma 2.3.1, (3):
∫ ∞

εn
exp

(
−w xn

√
tn −

w2

2

)
dw = e

tn(xn)2
2

∫ ∞

0
exp

(
− (y + εn + xn

√
tn)2

2

)
dy

=
e

L(xn)3
2

εn + xn
√

tn
(1 + o(1)) =

e
L(xn)3

2

xn
√

tn
(1 + o(1))

since εn → 0. Since xn = o((αn)1/12) = o((tn)1/4), 1
xn
√

tn
becomes much larger than

O( 1
(tn)3/4 ) as tn goes to infinity, so finally:

Rn =
1√
2π

e
L(xn)3

2

xn(αn)1/6 (1 + o(1))

as tn ' (αn)1/3. Gathering everything, we get

P
[
Sn ≥ xn (αn)

2
3

]
=

e−
(xn)2(αn)1/3

2

xn(αn)1/6
√

2π
e

L(xn)3
6 (1 + o(1)),

and this ends the proof if βn = σ2 = 1 (set T = xn (αn)2/3 in the statement of the
Proposition). In the general case, it suffices to replace Sn by Sn

σβn
, which changes L into

L
σ3 in the previous computations. �

REMARK 5.2.3. The argument which allows one to get a better Berry-Esseen es-
timate than in Proposition 4.1.1 can be used in a very general setting of mod-stable
convergence, in order to get sharp bounds on the Kolmogorov distance. This will be
the main topic of the forthcoming paper [FMN16].
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5.3. Link with the Cramér-Petrov expansion

Proposition 5.2.1 hints at a possible expansion of the fluctuations up to any order
T = o((αn)1−ε), and indeed, it is a particular case of the results given by Rudzkis,
Saulis and Statulevičius in [RSS78, SS91], see in particular [SS91, Lemma 2.3]. Suppose
that

|κ(r)(Sn)| ≤ (Cr)r αn (βn)
r ; κ(r)(Sn) = K(r) αn (βn)

r (1 + O((αn)
−1))

the second estimate holding for any r ≤ v; we denote σ2 = K(2). In this setting, one can
push the expansion up to order o((αn)1−1/v). Indeed, define recursively for a sequence
of cumulants (κ(r))r≥2 the coefficients of the Cramér-Petrov series λ(r) = −br−1/r, with

j

∑
r=1

κ(r+1)

r!


 ∑

j1+···+jr=j
ji≥1

bj1bj2 · · · bjr


 = 1j=1.

For instance, λ(2) = −1
2 , λ(3) = κ(3)

6 , λ(4) = κ(4)−3(κ(3))2

24 , etc. The appearance of these
coefficients can be guessed by trying to push the previous technique to higher or-
der; in particular, the simple form of λ(3) is related to the fact that the only term in
z3 in the expansion (29) is κ(3)

6 . If for the cumulants κ(r)’s one has estimates of order
(αn)1−r/2(1+O((αn)−1)), then one has the same estimates for the λ(r)’s, so there exists
coefficients L(r) such that

λ(r)

(
Sn

σ βn (αn)
1
2

)
= L(r) (αn)

1−r/2 (1 + O((αn)
−1)).

Take then T = xn (αn)
v−1

v with xn = O(1); Lemma 2.3 of [SS91] ensures that

P

[
Sn

σβn
≥ T

]
=

e−
T2

2αn√
2π T2

αn

exp

(
v

∑
r=3

λ(r)
(

T
σ(αn)1/2

)r
)
(
1 + o(1)

)

=
e−

T2
2αn√

2π T2

αn

exp

(
v

∑
r=3

L(r) Tr

σr (αn)r−1

)
(
1 + o(1)

)
.

Thus, the method of cumulants of Rudzkis, Saulis and Statulevičius can be thought of
as a particular case (and refinement in this setting) of the notion of mod-φ convergence.
However, their works do not yield a bound

|κ(r)(Sn)| ≤ (Cr)r αn (βn)
r

but for simple cases, such as sums of i.i.d. random variables. In Chapter 9, we show
that dependency graphs are an adequate framework to provide such bounds.



CHAPTER 6

A precise version of the Ellis-Gärtner theorem

In the classical theory of large deviations, asymptotic results are formulated not
only for the probabilities of tails P[Xn ≥ tnx], but more generally for probabilities

P[Xn ∈ tnB] with B arbitrary Borelian subset of R.

In particular, under some technical assumptions on the generating series (that look
like, but are somehow weaker than mod-convergence), Ellis-Gärtner theorem provides
some asymptotic upper and lower bounds for log(P[Xn ∈ tnB]), these bounds relying
on a limiting condition on (tn)−1 log ϕn(·). When the topology of B is nice enough,
these bounds coincide (see e.g. [DZ98, Theorem 2.3.6]). This generalises Cramér’s
large deviations for sums of i.i.d. random variables.

Our Theorems 3.2.2 and 4.2.1 give estimates for the probabilities P[Xn ≥ tnx] them-
selves, instead of their logarithm). Therefore, it is natural to establish in the framework
of mod-convergence a precise version of Ellis-Gärtner theorem. In this chapter, we
shall give some asymptotic upper and lower bounds for the probabilities P[Xn ∈ tnB]
itself instead of their logarithms. Once again, the upper and lower bounds coincide for
nice borelian sets B.

REMARK 6.0.1. In [FMN15], we shall prove similar estimates of P[Xn ∈ tnB] in the
setting of sequences of random vectors that converge in the multi-dimensional mod-
Gaussian sense.

6.1. Technical preliminaries

In this section, we make the following assumptions:

(1) The random variables Xn satisfy the hypotheses of Definition 1.1.1 with c =
+∞ (in particular, ψ is entire on C).

(2) The Legendre-Fenchel transform F is essentially smooth, that is to say that
it takes finite values on a non-empty closed interval IF and that lim F′(x) =
lim h = ±∞ when x goes to a bound of the interval IF (cf. [DZ98, Definition
2.3.5]).

The latter point is verified if φ is a Gaussian or Poisson law, which are the most impor-
tant examples.

LEMMA 6.1.1. Let C be a closed subset of R. Either infu∈C F(u) = +∞, or infu∈C F(u) =
m is attained and {x ∈ C | F(x) = minu∈C F(u)} consists of one or two real numbers a ≤ b,
with a < η′(0) < b if a 6= b.
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ba

Cη′(0)

Fφ

2

FIGURE 1. The infimum of F on an admissible closed set C is attained
either at a = sup(C ∩ (−∞, η′(0)]), or at b = inf(C ∩ [η′(0),+∞)), or at
both if F(a) = F(b).

PROOF. Recall that F is strictly convex, since its second derivative is 1/η′′(h), which
is the inverse of the variance of a non-constant random variable. Also, η′(0) is the point
where F attains its global minimum, and it is the expectation of the law φ. If C∩ IF = ∅,
then F|C = +∞ and we are in the first situation. Otherwise, F|C is finite at some points,
so there exists M ∈ R+ such that C∩ {x ∈ R | F(x) ≤ M} 6= ∅. However, the set {x ∈
R | F(x) ≤ M} is compact by the hypothesis of essential smoothness: it is closed as
the reciprocal image of an interval ]−∞, M] by a lower semi-continuous function, and
bounded since limx→(IF)c |F′(x)| = +∞. So, C ∩ {x ∈ R | F(x) ≤ M} is a non-empty
compact set, and the lower semi-continuous F attains its minimum on it, which is also
minu∈C F(u). Then, if a ≤ b are two points in C such that F(a) = F(b) = minu∈C F(u),
then by strict convexity of F, F(x) < F(a) for all x ∈ (a, b), hence, (a, b) ⊂ Cc. Also,
F(x) > F(a) if a 6= b and x /∈ [a, b], so either a = b, or η′(0) ∈ (a, b). �

We take the usual notations Bo and B for the interior and the closure of a subset
B ⊂ R. Call admissible a (Borelian) subset B ⊂ R such that there exists b ∈ B with
F(b) < +∞, and denote then

F(B) = inf
u∈B

F(u) = min
u∈B

F(u),

and Bmin = {a ∈ B | F(a) = F(B)}; according to the previous discussion, Bmin consists
of one or two elements.

6.2. A precise upper bound

THEOREM 6.2.1. Let B be a Borelian subset of R.

(1) If B is admissible, then

lim sup
n→∞

(√
2πtn exp(tnF(B))P[Xn ∈ tnB]

)
≤





∑a∈Bmin

ψ(h(a))
(1−e−|h(a)|)

√
η′′(h(a))

∑a∈Bmin

ψ(h(a))
|h(a)|
√

η′′(h(a))
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the distinction of cases corresponding to φ lattice or non-lattice distributed. The sum
on the right-hand side consists in one or two terms — it is considered infinite if a =
η′(0) ∈ Bmin.

(2) If B is not admissible, then for any positive real number M,

lim
n→∞

(
exp(tnM)P[Xn ∈ tnB]

)
= 0.

PROOF. For the second part, one knows that ϕn(x) exp(−tnη(x)) converges to ψ(x)
which does not vanish on the real line, so by taking the logarithms,

lim
n→∞

log ϕn(x)
tn

= η(x).

Then, Ellis-Gärtner theorem holds since F is supposed essentially smooth. So,

lim sup
n→∞

log P[Xn ∈ tnB]
tn

≤ −F(B),

and if B is not admissible, then the right-hand side is −∞ and (2) follows immediately.

For the first part, suppose for instance φ non-lattice distributed. Take C a closed
admissible subset, and assume η′(0) /∈ C — otherwise the upper bound in (1) is +∞
and the inequality is trivially satisfied. Since Cc is an open set, there is an open interval
(a, b) ⊂ Cc containing η′(0), and which we can suppose maximal. Then a and b are in
C as soon as they are finite, and C ⊂ (−∞, a] t [b,+∞). Moreover, by strict convexity
of F, the minimal value F(C) is necessarily attained at a or b. Suppose for instance
F(a) = F(b) = F(C) — the other situations are entirely similar. Then,

P[Xn ∈ tnC] ≤ P[Xn ≤ tna] + P[Xn ≥ tnb]

. exp(−tnF(C))

(
ψ(h(a))

−h(a)
√

2πtnη′′(h(a))
+

ψ(h(b))
h(b)

√
2πtnη′′(h(b))

)

by using Theorem 4.2.1 for P[Xn ≥ tnb], and also for P[Xn ≤ tna] = P[−Xn ≥ −tna] —
the random variables −Xn satisfy the same hypotheses as the Xn’s with η(x) replaced
by η(−x), ψ(x) replaced by ψ(−x), etc. This proves the upper bound when B is closed,
and since F(B) = F(B) by lower semi-continuity of F and Bmin = (B)min, the result
extends immediately to arbitrary admissible Borelian subsets. �

6.3. A precise lower bound

One can then ask for an asymptotic lower bound on P[Xn ∈ tnB], and in view of
the classical theory of large deviations, this lower bound should be related to open
sets and to the exponent F(Bo). Unfortunately, the result takes a less interesting form
than Theorem 6.2.1. If B is a Borelian subset of R, denote Bδ the union of the open
intervals (x, x + κ) of width κ ≥ δ that are included into B. The interior O = Bo is a
disjoint union of a countable collection of open intervals, and also the increasing union⋃

δ>0 Bδ.
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b O

Fφ

3

FIGURE 2. In some problematic situations, one is only able to prove a
non-precise lower bound for large deviations.

However, the topology of Bo may be quite intricate in comparison to the one of the
Bδ’s, as some points can be points of accumulation of open intervals included in B and
of width going to zero (see Figure 2). This phenomenon prevents us to state a precise
lower bound when one of this point of accumulation is a = sup(Bo ∩ (−∞, η′(0)]) or
b = inf(Bo ∩ [η′(0),+∞)). Nonetheless, the following is true:

THEOREM 6.3.1. For an admissible Borelian set B,

lim inf
δ→0

lim inf
n→∞

(√
2πtn exp(tnF(Bδ))P[Xn ∈ tnB]

)
≥





∑a∈(Bo)min

ψ(h(a))
(1−e−|h(a)|)

√
η′′(h(a))

∑a∈(Bo)min

ψ(h(a))
|h(a)|
√

η′′(h(a))
,

with the usual distinction of lattice/non-lattice cases. In particular, the right-hand side in
Theorem 6.2.1 is the limit of

√
2πtn exp(tnF(B))P[Xn ∈ tnB] as soon as F(Bδ) = F(B) for

some δ > 0.

PROOF. Again we deal with the non-lattice case, and we suppose for instance that
the set (Bo)min consists of one point b = inf(Bo ∩ [η′(0),+∞)), the other situations be-
ing entirely similar. As δ goes to 0, Bδ increases towards Bo =

⋃
δ>0 Bδ, so the infimum

F(Bδ) decreases and the quantity

L(δ) = lim inf
n→∞

(√
2πtn exp(tnF(Bδ))P[Xn ∈ tnB]

)

is decreasing in δ. Actually, if bδ = inf(Bδ ∩ [η′(0),+∞)), then for δ small enough
F(Bδ) = F(bδ), so limδ→0 F(Bδ) = F(Bo) by continuity of F. On the other hand,

R(δ) =
ψ(h(bδ))

h(bδ)
√

η′′(h(bδ))

tends to the same quantity with b instead of bδ. Hence, it suffices to show that for δ
small enough, L(δ) ≥ R(δ). However, by definition of Bδ, the open interval (bδ, bδ + δ)
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is included into B, so

P[Xn ∈ tnB] ≥ P[Xn ∈ tnBδ] ≥ P[Xn > tnbδ]−P[Xn ≥ tn(bδ + δ)]

≥
(

ψ(h(bδ)) e−tnF(bδ)

h(bδ)
√

2πtnη′′(h(bδ))
− ψ(h(bδ + δ)) e−tnF(bδ+δ)

h(bδ + δ)
√

2πtnη′′(h(bδ + δ))

)
(
1 + o(1)

)

≥ ψ(h(bδ)) e−tnF(bδ)

h(bδ)
√

2πtnη′′(h(bδ))

(
1 + o(1)

)

since the second term on the second line is negligible in comparison to the first term —
F(bδ + δ) > F(bδ). This ends the proof. �





CHAPTER 7

Examples with an explicit generating function

The general results of Chapters 3 and 6 can be applied in many contexts, and the
main difficulty is then to prove for each case that one has indeed the estimate on the
Laplace transform given by Definition 1.1.1. Therefore, the development of techniques
to obtain mod-φ estimates is an important part of the work. Such an estimate can some-
times be established from an explicit expression of the Laplace transform (hence of the
characteristic function); we give several examples of this kind in Section 7.1. But there
also exist numerous techniques to study sequences of random variables without ex-
plicit expression for the characteristic function: complex analysis methods in number
theory (Section 7.2) and in combinatorics (Section 7.3), localisation of zeros (Chapter
8) and dependency graphs (Chapters 9, 10 and 11) to name a few. These methods are
known to yield central limit theorems and we show how they can be adapted to prove
mod-convergence. We illustrate each case with one or several example(s).

In this chapter, we detail examples for which the mod-φ convergence has already
been proved before (cf. [JKN11, DKN15]) or follows easily from formulas in the litera-
ture.

7.1. Mod-convergence from an explicit formula for the Laplace transform

Examples where mod-convergence is proved by using an explicit formula for the
Laplace transform were already given in Section 2.1. We provide here two additional
examples of mod-Gaussian convergence that can be obtained by this method.

EXAMPLE 7.1.1. Let f (z) = ∑∞
n=0 an zn be a random analytic function, where the

coefficients an are independent standard complex Gaussian variables. The random
function f has almost surely its radius of convergence equal to 1, and its set of zeroes
Z( f ) = {z ∈ D(0,1) | f (z) = 0} is a determinantal point process on the unit disk, with
kernel

K(w, z) =
1

π(1− wz)2 =
1
π

∞

∑
k=1

k(wz)k−1.

We refer to [HKPV09] for precisions on these results. It follows then from the gen-
eral theory of determinantal point processes, and the radial invariance of the kernel,
that the number Nr of points of Z( f ) ∩ B(0,r) can be represented in law as a sum of
independent Bernoulli variables of parameters {r2k}k≥1:

Nr = card{z ∈ Z( f ) | |z| ≤ r} =law

∞

∑
k=1
B(r2k).

This representation as a sum of independent variables allows one to estimate the mo-
ment generating function of Nr under various renormalisations. Let us introduce the
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hyperbolic area

h =
4π r2

1− r2

of D(0,r), and denote Nr = Nh; we are interested in the asymptotic behavior of Nh as h
goes to infinity, or equivalently as r goes to 1. Since E[ezNr ] = ∏∞

k=1(1 + r2k(ez − 1)),
one has

log
(

E

[
e

zNh

h1/3

])
=

∞

∑
k=1

log
(

1 + r2k
(

e
z

h1/3 − 1
))

=
h2/3z

4π
+

h1/3z2

16π
+

z3

144π
+ o(1)

with a remainder that is uniform when z stays in a compact domain of C. Therefore,

Nh − h
4π

h1/3 converges mod-Gaussian with

{
parameters th = h1/3

8π ,

limiting function ψ(z) = exp
(

z3

144π

)
.

Again, the limiting function is the exponential of a simple monomial. By Proposition
4.4.1,

Xh =
Nh − h

4π√
h

8π

converges as h → ∞ to a Gaussian law, with normality zone o(h1/6). Moreover, by
Theorem 4.2.1, at the edge of this normality zone,

P

[
Nh − h

4π
≥ h2/3

4π
x

]
=

e−
h1/3 x2

4π

h1/6 x
exp

(
x3

18π

)
(1 + o(1))

for any x > 0.

EXAMPLE 7.1.2. Consider the Ising model on the discrete torus Z/nZ. Thus, we
give to each spin configuration σ : Z/nZ → {±1} a probability proportional to the
factor exp(−β ∑i∼j 1σ(i) 6=σ(j)), the sum running over neighbours in the circular graph
Z/nZ. The technique of the transfer matrix (see [Bax82, Chapter 2]) ensures that if
Mn = ∑n

i=1 σ(i) is the total magnetisation of the model, then

E[ezMn ] =
tr (T(z))n

tr (T(0))n , where T(z) =
(

e−z ez−β

e−z−β ez

)
.

The two eigenvalues of T(z) are cosh z±
√
(sinh z)2 + e−2β, and their Taylor expansion

shows that

log
(

E

[
e

zMn
n1/4

])
=

eβ n1/2 z2

2
− (3e3β − eβ) z4

24
+ o(1).

So, one has mod-Gaussian convergence for n−1/4 Mn, and the estimates

P[Mn ≥ n3/4x] =
e−

n1/2 eβ x2
2

x
√

2πn1/2
exp

(
− (3e3β − eβ) x4

24

)
(1 + o(1)).

In particular, Mn
n1/2 eβ/2 satisfies a central limit theorem with normality zone o(n1/4).
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REMARK 7.1.3. If instead of Z/nZ we consider the graph 1 ↔ 2 ↔ · · · ↔ n (i.e.,
one removes the link n ↔ 1), then one can realise the spins σ(i) of the Ising model as
the n first states of a Markov chain with space of states {±1}. The magnetisation Mn
appears then as a linear functional of the empirical measure of this Markov chain. More
generally, if Sn = ∑n

i=1 f (Xi) is a linear functional of a Markov chain on a finite space,
then under mild hypotheses this sum satisfies the Markov chain central limit theorem
(cf. for instance [Cog72]). In [FMN16], we shall use arguments of the perturbation
theory of operators in order to prove that one also has mod-Gaussian convergence for
such linear functionals of Markov chains.

7.2. Additive arithmetic functions of random integers

In this paragraph, we sometimes write log(log n) = log2 n, which is negligible in
comparison to log n as n goes to infinity.

7.2.1. Number of prime divisors, counted without multiplicities. Denote P the
set of prime numbers, ω(k) the number of distinct prime divisors of an integer k,
and ωn the random variable ω(k) with k random integer uniformly chosen in [n] :=
{1, 2, . . . , n}. The random variable ωn satisfies the Erdös-Kac central limit theorem
(cf. [EK40]):

ωn − log log n√
log log n

→ NR(0, 1).

In this section, we show that ωn converges mod-Poisson and present precise deviation
results for it. Such a result was established in [KN10, Section 4]. But in the latter article,
mod-φ convergence is defined via convergence of the renormalised Fourier transform,
while here we work with Laplace transform. Therefore, we need to justify that the
convergence also holds for Laplace transforms.

We start from the Dirichlet series of yω(k), which is:

∑
k≥1

yω(k)

ks = ∏
p∈P

(
1 +

y
ps − 1

)
,

well-defined and absolutely convergent if Re(s) > 1. The Selberg-Delange method
allows to extract from this formula precise estimates for the generating function of ωn;
see [Ten95] and references therein.

PROPOSITION 7.2.1. [Ten95, Section II.6, Theorem 1] For any A > 0, we have, for any y
in C with |y| ≤ A

∑
k≤n

yω(k) = n (log n)y−1 (λ0(y) + O(1/ log n)),

where

λ0(y) =
1

Γ(y) ∏
p∈P

(
1 +

y
p− 1

)(
1− 1

p

)y

and the constant hidden in the O symbol depends only on A.
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REMARK 7.2.2. In fact, [Ten95, Section II.6, Theorem 1] gives a complete asymptotic
expansion of ∑k≤n yω(k) in terms of powers of 1/ log(n). For our purpose, the first
term is enough: we will see that it implies mod-Poisson convergence with a speed of
convergence as precise as wanted.

Setting y = ez, this can be rewritten as an asymptotic formula for the Laplace trans-
form of ωn.

E[ez ωn ] =
1
n

n

∑
k=1

ez ω(k) = (log n)ez−1λ0(ez) (1 + O(1/ log n))

= e(e
z−1) log log n λ0(ez) (1 + O(1/ log n)).

Recall that the constant in the O symbol is uniform on sets {w, |w| ≤ A}, that is on
bands {z, Re(z) ≤ log(A)}. In particular the convergence is uniform on compact sets.
Therefore, one has the following result.

PROPOSITION 7.2.3. The sequence of random variables (ωn)n≥1 converges mod-Poisson
with parameter tn = log2 n and limiting function ψ(z) = λ0(ez) on the whole complex plane.
This takes place with speed of convergence O(1/ log n), that is O((tn)−ν) for all ν > 0.

Using Theorem 3.2.2, we get immediately the following deviation result.

THEOREM 7.2.4. Let x > 0. Assume x log2 n ∈N. Then

P[ωn = x log2 n] =
λ0(x) (1 + O(1/ log2 n))

(log n)x log(x)−x+1
√

2πx log2 n
. (31)

Furthermore, if x > 1, then

P[ωn ≥ x log2 n] =
λ0(x) (1 + O(1/ log2 n))

(log n)x log(x)−x+1
√

2πx log2 n
1

1− 1
x

. (32)

REMARK 7.2.5. The first equation (31) is not new: it is due to Selberg [Sel54] and
presented in a slightly different form than here in [Ten95, Section II.6, Theorem 4].
Note also that, as the speed of mod-Poisson convergence of ωn is O

((
tn
)−ν) for all

ν > 0, Theorem 3.2.2 gives asymptotic expansions of the above probabilities, up to
an arbitrarily large power of 1/ log log n. Theorem 4 in [Ten95, Section II.6] also gives
such estimates. The second statement (32) follows from [Rad09, Theorem 2.8]; it is a
nice feature of the theory of mod-φ convergence to allow to recover quickly such deep
arithmetic results (though we still need Selberg-Delange asymptotics).

7.2.2. Number of prime divisors, counted with multiplicities. In this section, we
give similar results for the number of prime divisors Ωn of an integer chosen randomly
in {1, 2, . . . , n}, but this time counted with multiplicities. An important difference is that,
here, the mod-Poisson convergence occurs only on a band and not on the whole com-
plex plane C. In this case the Dirichlet series is given by:

∑
k≥1

yΩ(k)

ks = ∏
p∈P

(
1− y

ps

)−1

,
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which again is well-defined and absolutely convergent for Re(s) > 1. Note that, unlike
in the case of ω(k), the right-hand side has some poles, the smallest in modulus being
for y = 2s. Again, a precise estimate for the generating function follows from the work
of Selberg and Delange; see [Ten95] and references therein.

PROPOSITION 7.2.6. [Ten95, Section II.6, Theorem 2] For any δ with 0 < δ < 1, we have,
for any y in C with |y| ≤ 2− δ

∑
k≤n

yΩ(k) = n (log n)y−1 (ν0(y) + O(1/ log n)),

where

ν0(y) =
1

Γ(y) ∏
p∈P

(
1− y

p

)−1(
1− 1

p

)y

and the constant hidden in the O symbol depends only on δ.

Note the difference with Proposition 7.2.1: the function ν0 has a simple pole for y = 2
(while λ0 is an entire function) and the estimate in Proposition 7.2.6 holds (uniformly
on compacts) only for |y| < 2.

Setting again y = ez, this can be rewritten as an asymptotic formula for the Laplace
transform of Ωn on the band S(−∞,log 2) = {z, Re(z) < log 2}.

E[ez Ωn ] =
1
n

n

∑
k=1

ez Ω(k) = e(e
z−1) log log n ν0(ez) (1 + O(1/ log n)).

Recall that the constant in the O symbol is uniform on sets {y, |y| ≤ 2− δ}, that is on
bands {z, Re(z) < log(2− δ)}. In particular the convergence is uniform on compact
sets. Therefore, one has the following result.

PROPOSITION 7.2.7. The sequence of random variables (Ωn)n≥1 converges mod-Poisson
with parameter tn = log2 n and limiting function ψ(z) = ν0(ez), on the band S(−∞,log 2).
This takes place with speed of convergence O(1/ log(n)), that is O((tn)−ν), for all ν > 0.

As for ωn, this implies precise deviation results. However, as the convergence only
takes place on a band, the range of these results is limited (note the condition x < 2 in
the theorem below).

THEOREM 7.2.8. Fix x with 0 < x < 2. Assume x log2 n ∈N. Then

P[Ωn = x log2 n] =
ν0(x) (1 + O(1/ log2 n))

(log n)x log(x)−x+1
√

2πx log2 n
. (33)

Furthermore, if 1 < x < 2,

P[Ωn ≥ x log2 n] =
ν0(x) (1 + O(1/ log2 n))

(log n)x log(x)−x+1
√

2πx log2 n
1

1− 1
x

. (34)

Again, the first equation was discovered by Selberg [Sel54] and can be found in a
slightly different form in [Ten95, Section II.6, Theorem 5].
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REMARK 7.2.9. An extension of Equation (33) for x > 2 is given in [Ten95, Section
II.6, Theorem 6]. This involves the type of singularity of the limiting function ν0(ez) at
the edge of the convergence domain. Here, ν0(y) has only a simple pole in y = 2, and
the residue appears in the deviation results. It would be interesting to see if this kind
of idea can be used in the general framework of mod-φ convergence, but this is outside
the scope of this already quite long paper.

7.2.3. Other arithmetic functions. In this paragraph, we generalise the two exam-
ples ωn and Ωn above. The goal is to understand the phase transition between the
convergence on a band and the convergence on the complex plane.

Let f : N→ Z be a function with the following properties:

(i) f is additive, that is f (mn) = f (m) + f (n) if m ∧ n = 1;

(ii) for every prime p, one has f (p) = 1.

We necessarily have f (1) = 0. For C > 0, we say that such a function has a C-linear
growth if there exists B such that

| f (pk)| ≤ B + C k for any p ∈ P and any k > 0.

If f has a C-linear growth for any C > 0, we say that f has a sublinear growth. In
particular, since Ω(pk) = k (for all p and k), the function Ω has a 1-linear growth,
while ω has a sublinear growth (for all p and k, ω(pk) = 1). We are interested in
the random variable fn, which is equal to the value f (k) of f on a random integer k
chosen uniformly between 1 and n. Note that the additivity condition ensures that the
following Dirichlet series factorises:

F(y, s) :=
∞

∑
k=1

y f (k)

ks = ∏
p∈P

(
1 +

y f (p)

ps +
y f (p2)

p2s + · · ·
)

.

Again, one can use the Selberg-Delange method to get precise estimates for the Laplace
transform.

PROPOSITION 7.2.10. Suppose that f fulfills (i) and (ii) and has a C-linear groth for some
C > 0. For any δ with 0 < δ < 1

2 , we have, for any y in C with (2− 2δ)−1/C ≤ |y| ≤
(2− 2δ)1/C,

∑
k≤n

y f (k) = n (log n)y−1 (τ0(y) + O(1/ log n)), (35)

where the constant hidden in the O symbol depends on δ, B and C (but not on y), and

τ0(y) =
1

Γ(y) ∏
p∈P

(
1 +

y f (p)

p
+

y f (p2)

p2 + · · ·
)(

1− 1
p

)y
.

PROOF. The proof is an easy adaptation of the proof of [Ten95, Section II.6, Theo-
rems 1 and 2]. We will only indicate the necessary modifications, assuming that the
reader can consult Tenenbaum’s book.

Fix δ ∈ (0, 1
2), and y in C with (2 − 2δ)−1/C ≤ |y| ≤ (2 − 2δ)1/C. We set Y =

max(|y|, |y|−1); by assumption, 1 ≤ Y ≤ (2− 2δ)1/C, and on the other hand,

|y f (pk)| ≤ YB+Ck



7.2. ADDITIVE ARITHMETIC FUNCTIONS OF RANDOM INTEGERS 63

as f has a C-linear growth. We have, for any prime p and |ξ| < Y−C, the bound

∑
k≥0
|y f (pk) ξk| < 1 + ∑

k≥1
YB+Ck|ξ|k ≤ 1 + YB YC|ξ|

1−YC|ξ| .

Therefore, for each prime p, the following formula defines a holomorphic function for
|ξ| < Y−C ≤ 1:

hy,p(ξ) =
(

1 + y f (p)ξ + y f (p2)ξ2 + . . .
)
(1− ξ)y .

Moreover, we have

|hy,p(ξ)| <
(

1 + YB YC|ξ|
1−YC|ξ|

)
eY | log(1−ξ)|.

Consider now the coefficients of the power series expansion of hy,p around the origin,
i.e. the numbers by(pk) such that

hy,p(ξ) = 1 + ∑
k≥1

by(pk)ξk.

Note that by(p) = 0 for any p ∈ P. With the previous hypotheses,

1
2− δ

< Y−C ≤ |y|−C.

By Cauchy’s formula applied to the circle of radius 1/(2− δ), one has, for any prime
p, any complex number y such that (2− 2δ)1/C ≤ |y| ≤ (2− 2δ)1/C, and any k ≥ 1:

|bw(pk)| ≤ M(δ, B, C) (2− δ)k,

where

M(δ, B, C) = sup
|ξ|=1/(2−δ)

1≤Y≤(2−2δ)1/C

(
1 + YB YC|ξ|

1−YC|ξ|

)
eY | log(1−ξ)| < +∞.

Denote ζ the Riemann zeta function. The same arguments as in the proof of [Ten95,
Section II.6, Theorem 1] shows that

G(y, s) := F(y, s) ζ(s)−y = ∏
p∈P

(
1 + ∑

k≥2

by(pk)

pks

)

is convergent and uniformly bounded for Re(s) > 3/4 and y such that (2− 2δ)−1/C ≤
|y| ≤ (2 − 2δ)1/C. Therefore, we can apply [Ten95, Section II.5, Theorem 3], which
gives the asymptotic formula (35). �

Setting y = ez, Proposition 7.2.10 can be rewritten as an asymptotic formula for the
Laplace transform of fn:

E[ez fn ] =
1
n

n

∑
k=1

ez f (k) = e(e
z−1) log log n) (τ0(ez) + O(1/ log n)),

where the constant hidden in O depends on δ, B and C, but is uniform on |Re(z)| ≤
(log(2− 2δ))/C. This yields the following mod-convergence result:
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PROPOSITION 7.2.11. Assume f is an arithmetic function that fulfills (i) and (ii) and has
a C-linear growth for some constant C > 0. Then, the sequence of random variables ( fn)n≥1
converges mod-Poisson with parameter tn = log2 n and limiting function ψ(z) = τ0(ez) on
the band

S
(− log 2

C , log 2
C )

.

This takes place with speed of convergence O(1/ log n), that is O((tn)−ν) for all ν > 0.

As a consequence, if f has a sublinear growth, then the convergence takes place on the whole
complex plane.

It is then straightforward to write deviation results, analoguous to Equations (32) and
(34), for a generic function f as above.

REMARK 7.2.12. If the additive function f is non-negative, as is the case for ω(n)
and Ω(n), then it is easily seen that one can perform the whole proof of Proposition
7.2.10 assuming only |y| ≤ (2− 2δ)1/C (but not |y| ≥ (2− 2δ)−1/C). Therefore, one has
in this case a mod-Poisson convergence on the band

S
(−∞, log 2

C )
instead of S

(− log 2
C , log 2

C )
.

7.3. Number of cycles in weighted probability measure

We consider here the number of cycles of random permutations under the so-called
weighted probability measure. This example was already considered in [NZ13] and we
follow the presentation of this article.

Denote Xn(σ) the number of disjoint cycles (including fixed points) of a permuta-
tion σ in the symmetric group S(n). We write Cj(σ) for the number of cycles of length j
in the decomposition of σ as a product of disjoint cycles; thus, Xn(σ) = ∑n

j=1 Cj(σ) and
n = ∑n

j=1 j Cj(σ). Let Θ = (θm)m≥1 be given with θm ≥ 0. The generalised weighted
measure is defined as the probability measure PΘ on the symmetric group S(n):

PΘ[σ] =
1

hn n!

n

∏
m=1

(θm)
Cm(σ)

with hn a normalisation constant (or a partition function) and h0 = 1. This model is
coming from statistical mechanics and the study of Bose quantum gases (see [NZ13]
for more references and details). It generalises the classical cases of the uniform mea-
sure (corresponding to θm ≡ 1) and the Ewens measure (corresponding to the case
θm ≡ θ > 0). It has been an open question to prove a central limit theorem for the
total number of cycles Xn under such measures (or more precisely under some specific
regimes related to the asymptotic behavior of the θm’s; such a central limit theorem was
already known for Ewens measure). We refer to [EU14] for a nice survey of this ques-
tion. The difficulty comes from the fact the there is nothing such as the Feller coupling
anymore, and we cannot apply the same method as in Example 2.1.3. We now show
how singularity analysis allows us to prove mod-Poisson convergence, and hence the
central limit theorem, but also distributional approximations and precise large devia-
tions.
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We consider the generating series

gΘ(t) =
∞

∑
n=1

θn

n
tn.

It is well known that
∞

∑
n=0

hn tn = exp(gΘ(t)). (36)

Set F(t, w) = exp(wgΘ(t)). Using elementary combinatorial arguments (which are
detailed in [NZ13]), one can prove for each z ∈ C the following identity as formal
power series:

∞

∑
n=0

hn EΘ[exp(zXn)] tn = exp(ezgΘ(t)) = F(t, ez). (37)

Our goal is to obtain an asymptotic for hn and for the moment generating function
of Xn. Note that in general (and unlike the case of Ewens measure), neither hn nor
EΘ[exp(zXn)] have a closed expression. Nevertheless, they correspond to the coeffi-
cient of tn in F(t, 1) (respectively F(t, ez)) and, thus, using Cauchy formula, they can
be expressed as a contour integral. The idea of singularity analysis is to choose the
contour in a clever way such that, asymptotically, the main part of this contour inte-
gral comes from the integral near the singularity. In this way, the integral depends
asymptotically only of the type of singularity of F(t, 1) (resp. F(t, ez)).

We note r the radius of convergence of gΘ(t). We need suitable assumptions on the
analyticity properties of g together with assumptions on the nature of its singularity at
the point r on the circle of convergence. This motivates the next definition:

DEFINITION 7.3.1. Let 0 < r < R and 0 < φ < π/2 be given. We then define

∆0 = ∆0(r, R, φ) = {z ∈ C; |z| < R, z 6= r, | arg(z− r)| > φ},
see Figure 1. Assume we are further given g(t), θ ≥ 0 and r > 0. We then say that g(t) is in
the class F (r, θ) if

(i) there exists R > r and 0 < φ < π/2 such that g(t) is holomorphic in ∆0(r, R, φ);

(ii) there exists a constant K such that

g(t) = θ log
(

1
1− t/r

)
+ K + O(t− r) as t→ r.

r

R

φ
∆0 = domain inside

the blue curve

12

FIGURE 1. Domain ∆0(r, R, φ).
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One readily notes that the generating series corresponding to the Ewens measure
(i.e. θm ≡ θ) is of class F (1, θ) since in this case

gΘ(t) ≡ θ log
(

1
1− t

)
.

Consequently our results will provide alternative proofs to this case as well. The next
theorem due to Hwang plays a key role in our example (we use the following notation:
if G(t) = ∑∞

n=0 gntn, we denote [tn][G] ≡ gn the coefficient of tn in G(t)).

THEOREM 7.3.2 (Hwang, [Hwa94]). Let F(t, w) = exp(wg(t)) S(t, w) be given. Sup-
pose

(i) g(t) is of class F (r, θ),

(ii) S(t, w) is holomorphic in a domain containing {(t, w) ∈ C2; |t| ≤ r, |w| ≤ r̂}, where
r̂ > 0 is some positive number.

Then

[tn][F(t, w)] =
eKwnwθ−1

rn

(
S(r, w)

Γ(θw)
+ O

(
1
n

))

uniformly for |w| ≤ r̂ and with the same K as in the definition above.

The idea of the proof consists in taking a suitable Hankel contour and to estimate
the integral over each piece. There exist several other versions of this theorem where
one can replace log(1− t/r) by other functions and we refer the reader to the mono-
graph [FS09], chapter VI.5. As an application of Theorem 7.3.2, we obtain an asymp-
totic for hn.

LEMMA 7.3.3. Let θ > 0 and assume that gΘ(t) is of class F (r, θ). We then have

hn =
eKnθ−1

rn Γ(θ)

(
1 + O

(
1
n

))
.

PROOF. We have already noted that ∑∞
n=1 hntn = exp(gΘ(t)). We can apply Theo-

rem 7.3.2 with g(t) = gΘ(t), w = 1 and S(t, w) = 1. �

Using identity (37) and Theorem 7.3.2, we can also obtain an asymptotic for the
Laplace transform EΘ[exp(wXn)]:

THEOREM 7.3.4 (Nikeghbali-Zeindler, [NZ13]). If gΘ(t) is of class F (r, θ), then

EΘ[exp(zXn)] = nθ(ez−1)eK(ez−1)
(

Γ(θ)
Γ(θez)

+ O
(

1
n

))
.

Consequently, the sequence (Xn)n∈N converges in the mod-Poisson sense, with parameters
tn = K + θ log n and limiting function ψ(z) = Γ(θ)

Γ(θez)
. The convergence takes place of the

whole complex plane with speed O(1/n).

PROOF. An application of Theorem 7.3.2 yields

[tn][exp(ezgΘ(t))] =
eKez

nezθ−1

rn

(
1

Γ(θez)
+ O

(
1
n

))
,

with O(·) uniform for bounded z ∈ C. Now a combination of identity (37) and Lemma
7.3.3 gives the desired result. �
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The above theorem not only implies the central limit theorem, but also Poisson
approximations and precise large deviations. We only state here the precise large de-
viation result which extends earlier work of Hwang in the case θ = 1 as a consequence
of Theorem 3.2.2 and refer to [NZ13] for the distributional approximations results.

PROPOSITION 7.3.5 (Nikeghbali-Zeindler, [NZ13]). Let Yn = Xn − 1 and let x ∈ R

such that tnx ∈N with tn = K + θ log n. We note k = tnx. Then

P[Yn = xtn] = e−tn
(tn)k

k!

(
Γ(θ)

x Γ(θx)
+ O

(
1
tn

))
.

In fact, an application of Theorem 3.2.2 would immediately yield an arbitrary long
expansion for P[Yn = xtn] and also for P[Yn ≥ xtn], since the speed of convergence is
fast enough.

REMARK 7.3.6. Equations (36) and (37) fit naturally in the framework of labeled com-
binatorial classes [FS09, Chapter II]: a permutation is a set of cycles and the weighted ex-
ponential generating series of cycles is gΘ(t). Using this framework, one could give a
more general statement with the same proof. LetA be a (weighted) labeled combinato-
rial class and consider the class B = SET(A). We denote Xn the number of components
in a random element of size n of B (the probability of taking an element of B being pro-
portional to its weight). Assume that the generating series of A is in the class F (r, θ).
Then (Xn)n∈N converges in the mod-Poisson sense as in Theorem 7.3.4. We refer to
[Hwa96, Section 4.1] for a similar discussion.

However, the hypothesis that the generating series of A is in the class F (r, θ) is
mainly natural in the case of cycles and permutations, which explains why we focused
on this example here.

REMARK 7.3.7. The singularity analysis of generating functions is closely related to
the Selberg-Delange method used in previous section. In both cases we do not have
a closed expression for the Laplace transform of our variable, but for an appropriate
sum of them — Dirichlet series for arithmetic functions and exponential generating
functions for cycles in weighted permutations. From Perron’s or Cauchy’s formula,
we get an integral formula for the Laplace transform. Then choosing an appropriate
integral contour allows to find the asymptotics. It is quite striking that these closely
related methods both yield mod-Poisson convergence. However, we are not aware of
a way to bring both under one roof.

7.4. Rises in random permutations

As illustrated in the previous section, the methods of singularity analysis and the
transfer theorems between the singularities of a generating series and the asymptotic
behavior of its coefficients (see e.g. [FS09, Chapter VI]) can be used to prove mod-φ
convergence (this is not surprising as they can be used to establish the related concept
of quasi-powers, see Section 4.5.3). We examine here another example where we do
not have strictly speaking mod-φ convergence since the reference law is not infinitely
divisible, but where our methods can nevertheless be used.

If σ ∈ S(n) is a permutation, a rise of σ is an integer i ∈ [[1, n − 1]] such that
σ(i) < σ(i + 1). The number of rises R(σ) is thus a quantity between 0 and n− 1, the
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two extremal values corresponding to the permutations n(n− 1) . . . 21 and 12 . . . (n−
1)n. We denote Rn = R(σn) the random variable which counts the number of rises
of a random permutation σn ∈ S(n) chosen under the uniform measure. The double
generating series

R(z, t) =
∞

∑
n=0

E[ezRn ] tn

is computed in [FS09, III.7, p. 209]:

R(z, t) =
ez − 1

ez − et(ez−1)
.

If Re(z) ≤ log 2, then |ez| ≤ 2 and the smallest (in modulus) root of the denominator is

t = ρ(z) =
z

ez − 1
.

We then have R(z, t) = 1
ρ(z)−t + (ez − 1) S(z, t) with S(z, t) = 1

ez−et(ez−1) − 1
z−t(ez−1)

analytic in t and on the band z ∈ S(−∞,log 2). This implies:

THEOREM 7.4.1 ([FS09], p. 658). For z ∈ S(−∞,log 2), one has locally uniformly

E[ezRn ] = τ(z)n+1 + O(|z| 2−n),

where τ(z) = ez−1
z .

Notice that τ(z) = ez−1
z =

∫ 1
0 ezu du is the Laplace transform of a uniform random

variable U in the interval [0, 1]. Informally, the previous should be thought as follows:
(Rn)n∈N converges mod-U on S(−∞,log 2) with parameters tn = n + 1 and limit ψ(z) =
1. However, the uniform law U is not infinitely divisible, and τ(z) vanishes on any
z ∈ 2iπZ, therefore the error term O(|z| 2−n) cannot be rewritten as a multiplicative
error term, as we did before. Still, every computation of Chapter 4 can be performed
in this case. Let us stress out the necessary adjustments:

• Berry-Esseen estimates. Set Fn(x) = P[Rn − n+1
2 ≥

√
n+1
12 x] and Gn(x) =∫ x

−∞ g(y) dy. We have by Feller’s lemma

|Fn(x)− Gn(x)| ≤ 24m
∆π
√

tn
+

1
π
√

tn

∫

[±δ
√

tn]

∣∣∣∣∣∣
f ∗n (ξ)− e−

ξ2
2

ξ

∣∣∣∣∣∣
dξ

+
1

πδ
√

tn

∫

[±∆
√

tn]\[±δ
√

tn]

∣∣∣∣ f ∗n (ξ)− e−
ξ2
2

∣∣∣∣ dξ,

where as in the proof of Proposition 4.1.1, f ∗n (ξ) is the Fourier transform of
Rn− tn

2√
tn
12

. From Theorem 7.4.1 and a Taylor expansion of τ(iξ), one has

f ∗n (ξ) = e
− ξ2

2

(
1+O

(
ξ2
tn

))

+ O(|ξ| 2−tn).

In the first integral of Feller’s bound, we are integrating
∣∣∣∣

f ∗n (ξ)− g∗(ξ)
ξ

∣∣∣∣ = O
(

δ2 e−
ξ2
2

)
+ O(2−tn),
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so we get a o( 1√
tn
) as δ goes to zero. Then, regarding the second integral, we

are integrating a O((qδ)
tn) for some qδ ∈ [1

2 , 1), so it does not contribute to the
asymptotics. Thus, we get the uniform estimate |Fn(x)− Gn(x)| = o( 1√

tn
) as

in Proposition 4.1.1.

• Tilting method and large deviation estimates. When tilting by h > 0, the new
random variable Rh

n with law P[Rh
n ∈ dy] = ehy

E[ehRn ]
P[Rn ∈ dy] has its Fourier

transform that has asymptotics

τ(h + iξ)n+1 + O(2−n)

τ(h)n+1 + O(2−n)
=

(
τ(h + iξ)

τ(h)

)n+1

(1 + o(1))

the second formula holding if h and ξ are small enough (more precisely, we
want 0 < h < log 2 and then ξ small enough with bounds depending on
h). Notice that the new exponent τ(h+iξ)

τ(h) does not vanish anymore, so we can
now use the same argument as in Theorem 4.2.1. Thus, if F is the Legendre-
Fenchel transform of the uniform law on [0, 1] (not really explicit), and if h is
the solution of 1+ε

2 = η′(h) with η(h) = log
(

eh−1
h

)
, then for

ε ∈ (2η′(0)− 1, 2η′(log 2)− 1) =
(

0, 3− 2
log 2

)
⊇ (0, 0.114),

we obtain the large deviation estimate:

P

[
Rn ≥

(1 + ε)(n + 1)
2

]
=

e−tn F( 1+ε
2 )

h
√

2πtn η′′(h)
(1 + o(1))

since we have mod-U convergence of (Rn)n∈N with parameters tn = n+1
2 and

residue ψ(x) = 1. Similarly, for the negative deviations, the estimate of the
Fourier transform of the tilted random variable Rh

n can be used if h > h0, where
h0 ≈ −1.594 is the solution of the equation τ(h) = 1

2 . Therefore, for

ε ∈
(

0,
2
h0
− 1
)
⊇ (0, 0.254),

we have

P

[
Rn ≤

(1− ε)(n + 1)
2

]
=

e−tn F( 1−ε
2 )

|h|
√

2πtn η′′(h)
(1 + o(1)),

where h is the solution of 1−ε
2 = η′(h).

• Extended central limit theorem. The result of Lemma 4.3.2 holds, because

∣∣∣∣
τ(h + iu)

τ(h)

∣∣∣∣
2

=

∣∣∣∣∣
eh+iu − 1

eh − 1
h

h + iu

∣∣∣∣∣

2

=

(
1 +

2eh (1− cos u)
(eh − 1)2

)
h2

h2 + u2 =
h2 + 2t(h) (1− cos(u))

h2 + u2 ,
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where t(h) = h2eh

(eh−1)2 ≤ 1 for any h. From this inequality, one deduces that

qδ = max
u∈R\[−δ,δ]

∣∣∣∣
τ(h + iu)

τ(h)

∣∣∣∣ ≤ 1− Dδ2

for some constant D > 0 and any h ∈ (−ε, ε), with ε small enough.

Since η(x) = log(τ(x)) has Taylor expansion x
2 +

x2

24 − x4

2880 + o(x5), we thus
get from Equation (20):

P

[
Rn ≥

n + 1
2

+

√
n + 1

12
y

]
=

(1 + o(1))
y
√

2π
exp

(
−y2

2
+

y4

240tn

)

for any positive y with y = o((tn)
1
2− 1

6 ) = o((tn)
5
12 ).

7.5. Characteristic polynomials of random matrices in a compact Lie group

Introduce the classical compact Lie groups of type A, C, D:

U(n) = {g ∈ GL(n, C) | gg† = g†g = In} (unitary group)

USp(n) = {g ∈ GL(n, H) | gg? = g?g = In} (compact symplectic group)

SO(2n) = {g ∈ GL(2n, R) | ggt = gtg = I2n ; det g = 1} (special orthogonal group)

where for compact symplectic groups g? denotes the transpose conjugate of a quater-
nionic matrix, the conjugate of a quaternionic number q = a + ib + jc + kd being
q? = a − ib − jb − kd. In the following we shall consider quaternionic matrices as
complex matrices of size 2n× 2n by using the map

a + ib + jc + kd 7→
(

a + ib c + id
−c + id a− ib

)
.

The eigenvalues of a matrix g ∈ G = SO(2n) or U(n) or USp(n) are on the unit circle
S1, and the value of the characteristic polynomial det(1− g) factorises as

det(1− g) =
n

∏
i=1

(1− eiθi)

if G = U(n) and Sp(g) = (eiθ1 , . . . , eiθn), and

det(1− g) =
n

∏
i=1

(1− eiθi)(1− e−iθi) =
n

∏
i=1
|1− eiθi |2

if G = SO(2n) or USp(n) and Sp(g) = (eiθ1 , e−iθ1 , . . . , eiθn , e−iθn). We define

YA,C,D
n =

{
Re
[

log det(1− g)
]

in type A;
log det(1− g) in types C and D.

An exact formula for the Laplace transform of log det(1− g), and the corresponding
asymptotics have been given in [KS00a, KS00b, HKO01], see also [KN12, Sections 3
and 4]. Hence, in type A,

E
[
ez1 Re(log det(1−g))+z2 Im(log det(1−g))

]
=

n

∏
j=1

Γ(j) Γ(j + z1)

Γ(j + z1+iz2
2 ) Γ(j + z1−iz2

2 )
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for every z1 with Re(z1) > −1, and every z2 ∈ C (see e.g. [KS00b, Formula (71)]. In
particular, if Re(z) > −1, then

E
[
ezYA

n
]
=

n

∏
j=1

Γ(j) Γ(j + z)
Γ(j + z

2)
2

=
G(1 + z

2)
2

G(1 + z)
n

z2
4 (1 + o(1)).

Here G denotes Barnes’ G-function, which is the entire solution of the functional equa-
tion G(z + 1) = Γ(z) G(z) with G(1) = 1. To go from the exact formula with ratios
of Gamma functions, to the asymptotic formula with Barnes’ functions, one has to in-
terpret the formula as a Toeplitz determinant with one Fisher-Hartwig singularity, see
the details in the aforementioned paper [KN12] (the arguments therein apply mutatis
mutandi to the case of a complex random variable in the Laplace transform z, since the
exact formula holds as long as Re(z) > −1, and the theory of Toeplitz determinants
works from the outset with complex functions). Therefore, (YA

n )n∈N converges in the
mod-Gaussian sense with parameters tn =

log n
2 , limiting function

ψA(z) =
G(1 + z

2)
2

G(1 + z)
,

and on the band S(−1,+∞).

Similarly, in type C and D, one has the exacts formulas

E
[
ezYC

n
]
= 22n z

n

∏
j=1

Γ(j + n + 1) Γ(z + j + 1
2)

Γ(j + 1
2) Γ(z + j + n + 1)

for Re(z) > −3
2

;

E
[
ezYD

n
]
= 22n z

n

∏
j=1

Γ(j + n− 1) Γ(z + j− 1
2)

Γ(j− 1
2) Γ(z + j + n− 1)

for Re(z) > −1
2

as well as the asymptotic formulas

E
[
ezYC

n
]
=
(πn

2

) z
2
(n

2

) z2
2 G(3

2)

G(3
2 + z)

(1 + o(1));

E
[
ezYD

n
]
=

(
8π

n

) z
2 (n

2

) z2
2 G(1

2)

G(1
2 + z)

(1 + o(1))

which hold in the same range for z, locally uniformly. Therefore, setting

XC
n = YC

n −
1
2

log
πn
2

XD
n = YD

n −
1
2

log
8π

n
then (XC

n )n∈N and (XD
n )n∈N converges in the mod-Gaussian sense, with parameters

tn = log n
2 , limiting functions

ψC(z) =
G(3

2)

G(3
2 + z)

and ψD(z) =
G(1

2)

G(1
2 + z)

,

and respectively on S(− 3
2 ,+∞) and on S(− 1

2 ,+∞).
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Now, our large deviation theorems apply and one obtains:

THEOREM 7.5.1. Over U(n), one has:

∀x > 0, Pn

[
|det(1− g)| ≥ n

x
2

]
=

G(1 + x
2 )

2

G(1 + x)
1

x n
x2
4
√

π log n
(1 + o(1));

∀x ∈ (0, 1), Pn

[
|det(1− g)| ≤ n−

x
2

]
=

G(1− x
2 )

2

G(1− x)
1

x n
x2
4
√

π log n
(1 + o(1)).

Over USp(n), one has:

∀x > 0, Pn


det(1− g)√

π
2

≥ n
1
2+x


 =

G(3
2)

G(3
2 + x)

1

x n
x2
2 2

x2+x
2
√

2π log n
(1 + o(1));

∀x ∈
(

0 ,
3
2

)
, Pn


det(1− g)√

π
2

≥ n
1
2−x


 =

G(3
2)

G(3
2 − x)

1

x n
x2
2 2

x2−x
2
√

2π log n
(1 + o(1)).

Finally, over SO(2n), one has:

∀x > 0, Pn

[
det(1− g)√

8π
≥ n−

1
2+x
]
=

G(1
2)

G(1
2 + x)

1

x n
x2
2 2

x2−x
2
√

2π log n
(1 + o(1));

∀x ∈
(

0 ,
1
2

)
, Pn

[
det(1− g)√

8π
≤ n−

1
2−x
]
=

G(1
2)

G(1
2 − x)

1

x n
x2
2 2

x2+x
2
√

2π log n
(1 + o(1)).

PROOF. These are immediate computations by using Theorem 4.2.1. �

REMARK 7.5.2. From Proposition 4.4.1, one also gets normality zones for the ran-
dom variables Xn/

√
tn. On the other hand, the computations performed in the unitary

case hint at a phenomenon of 2-dimensional mod-Gaussian convergence for the com-
plex numbers log det(1− g), with g ∈ U(n). In [FMN15], we shall prove this rigor-
ously, and compute various probabilistic consequences, for instance, estimates of large
deviations for the random vectors log det(1− g).

REMARK 7.5.3. The analogue of Theorem 7.5.1 in the setting of random matrices in
the β-ensembles, or of general Wigner matrices, has been studied in the recent paper
[DE13a]. They can be easily restated in the mod-Gaussian language, since their proofs
rely on the computation of the asymptotics of the cumulants of the random variables
Xn = log |det Mn|, with for instance (Mn)n∈N random matrices of the Gaussian uni-
tary ensembles.



CHAPTER 8

Mod-Gaussian convergence from a factorisation
of the probability generating function

Let (Xn)n∈N be a sequence of bounded random variables with nonnegative integer
values, and such that σ2

n := Var(Xn) tends to infinity. Denote Pn(t) = E[tXn ] the proba-
bility generating function of Xn. Each Pn(t) is a polynomial in t. Then, it is known that
a sufficient condition so that Xn is asymptotically Gaussian is that Pn(t) has negative
real roots (see references below). In this chapter, we prove that if the third cumulant
L3

n := κ(3)(Xn) also tends to infinity with light additional hypotheses, then a suitable
renormalised version of Xn converges in the mod-Gaussian sense. We then give an
application for the number of blocks in a uniform set-partition of [n].

8.1. Background: central limit theorem from location of zeros

The idea of proving central limit theorem by looking at the zeros of the probability
generating function originates from an article of Harper [Har67]. Harper was inter-
ested in the number of blocks of a random set-partition, which will be our main exam-
ple below. The argument was then generalised by Haigh [Hai71]. Hwang and Steyaert
[HS02, Lemma 4] refined Haigh’s result by giving a bound on the speed of convergence
towards the normal distribution. Finally, let us mention a recent work of Lebowitz,
Pittel, Ruelle and Speer [LPRS14], where the authors prove central limit theorems and
local limit laws for random variables under various assumptions on the location of the
zeros of the probability generating function. Lebowitz, Pittel, Ruelle and Speer apply
their theoretical results to graph counting polynomials and to the Ising model in Zd

(using Lee-Yang’s theorem). We plan to address the problem of mod-Gaussian conver-
gence for these models in the future. The presentation of the results here is inspired
from the one in [HS02].

8.2. Mod-Gaussian convergence from non-negative factorisations

We will prove the following statement, which is stronger than what was announced.

THEOREM 8.2.1. Let (Xn)n∈N be a sequence of bounded random variables with non-
negative integer values, with mean µn, variance σ2

n and third cumulant L3
n. Suppose that

the probability generating function Pn(t) of Xn can be factorised as

Pn(t) = ∏
1≤j≤kn

Pn,j(t), (38)

where

• (kn)n∈N is a sequence of positive integers;

• each Pn,j is a polynomial with non-negative coefficients;
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• we assume Ln = o(σn) and Mn = o((Ln)2/σn), where Mn = max1≤j≤kn deg(Pn,j).

Then, the sequence

X̃n =
Xn − µn

Ln

converges in the mod-Gaussian sense with limiting function ψ = exp(z3/6) and parameters
tn = σ2

n/L2
n. The convergence takes place of the whole complex plane, with speed of convergence

O(Mn/|Ln|).
REMARK 8.2.2. Before doing the proof, let us discuss briefly the hypothesis. First

observe that if Pn has only real negative roots −rn,j, then

Pn(t) = C ∏
1≤j≤n

(t + rn,j),

so that our theorem includes this case, as claimed. In particular, this theorem contains
the mod-Gaussian convergence of a sum of i.i.d. bounded variables with a non-zero
third cumulant (see Example 2.1.2).

Conversely, the factorisation (38) and the fact that all Pn,j have non-negative coeffi-
cients imply that Xn can be written as a sum of independent (but not necessarily iden-
tically distributed) random variables. However, an interesting feature is that this rep-
resentation of Xn may not be explicit at all, as in the example of blocks in set-partitions
in next section.

Finally, we point our that the hypotheses of Theorem 8.2.1 imply Mn = o(|Ln|):
indeed,

Mn �
(Ln)2

σn
= |Ln|

|Ln|
σn
� |Ln|

since Ln = o(σn).

PROOF. Since Pn(1) = ∏1≤j≤kn Pn,j(1) = 1, we have

Pn(t) = ∏
1≤j≤kn

Pn,j(t)
Pn,j(1)

.

Therefore, we can assume without loss of generality that Pn,j(1) = 1 (otherwise re-
place Pn,j(t) by Pn,j(t)/Pn,j(1)). Since Pn,j(t) has non-negative coefficients, Pn,j(t) is
the probability generating function of a variable Xn,j (for 1 ≤ j ≤ kn), defined by
P[Xn,j = k] = [tk]Pn,j(t).

The factorisation (38) implies that Xn can be represented as the sum of independent
copies of the variables Xn,j. In particular,

µn = ∑
1≤j≤kn

µn,j;

σ2
n = ∑

1≤j≤kn

σ2
n,j;

L3
n = ∑

1≤j≤kn

L3
n,j
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where µn,j, σ2
n,j and L3

n,j are the three first cumulants of Xn,j. Notice that each Xn,j, and
hence |Xn,j − µn,j| is bounded by Mn. We will use this repeatedly below. In particular
one has: σ2

n,j ≤ (Mn)2 and |L3
n,j| ≤ (Mn)3.

Call ϕ̃n the Laplace transform of X̃n. We have

ϕ̃n(z) = E

[
exp

(
z

Ln
(Xn − µn)

)]
=

kn

∏
j=1

E

[
exp

(
z

Ln
(Xn,j − µn,j)

)]
.

Fix K > 0 and assume that Mn|z|
|Ln| ≤ K. From the Taylor expansion

ew = 1 + w +
w2

2
+

w3

6
+ O(w4) (uniformly for |w| ≤ K),

we have that, uniformly for Mn|z|
|Ln| ≤ K,

E

[
exp

(
z

Ln
(Xn,j − µn,j)

)]
= 1 +

σ2
n,j z2

2 (Ln)2 +
L3

n,j z3

6 (Ln)3 + O

(
E[(Xn,j − µn,j)

4]

( |z|
|Ln|

)4
)

.

(39)
Note that, since Mn|z|/|Ln| ≤ K, the two first terms are bounded. Besides, we have
the following bounds:

∣∣∣∣∣∣

(
σ2

n,j z2

2 (Ln)2

)2
∣∣∣∣∣∣
≤ E[(Xn,j − µn,j)

4]

4

( |z|
|Ln|

)4

;

∣∣∣∣∣
σ2

n,j z2

2 (Ln)2 ×
L3

n,j z3

6 (Ln)3

∣∣∣∣∣ ≤
E[|Xn,j − µn,j|5]

12

( |z|
|Ln|

)5

≤ E[(Xn,j − µn,j)
4]

12

( |z|
|Ln|

)4 Mn|z|
|Ln|

;
∣∣∣∣∣∣

(
L3

n,j z3

6 (Ln)3

)2
∣∣∣∣∣∣
≤ E[(Xn,j − µn,j)

6]

36

( |z|
|Ln|

)6

≤ E[(Xn,j − µn,j)
4]

36

( |z|
|Ln|

)4 (Mn|z|
|Ln|

)2

.

Taking the logarithm of Equation (39) and using log(1 + t) = t +O(t2), we get, thanks
to the above bounds, that

log E

[
exp

(
z

Ln
(Xn,j − µn,j)

)]
=

σ2
n,j z2

2 (Ln)2 +
L3

n,j z3

6 (Ln)3 + O

(
E[(Xn,j − µn,j)

4]

( |z|
|Ln|

)4
)

.

Summing these identities, we obtain

log ϕ̃n(z) =
(

σn

Ln

)2 z2

2
+

z3

6
+ O

(( |z|
|Ln|

)4 kn

∑
j=1

E[(Xn,j − µn,j)
4]

)
.
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The error term can be bounded as follows:
( |z|
|Ln|

)4 kn

∑
j=1

E[(Xn,j − µn,j)
4] ≤

( |z|
|Ln|

)4

(Mn)
2

kn

∑
j=1

E[(Xn,j − µn,j)
2] ≤ |z|4 (Mn)2(σn)2

|Ln|4
.

By the assumption made on Mn, this is a o(|z|4). Finally, we get

log ϕ̃n(z) =
(

σn

Ln

)2 z2

2
+

z3

6
+ o(|z|4),

which can be rewritten as

ϕ̃n(z) e−(
σn
Ln )

2 z2
2 = exp

(
z3

6

) (
1 + o(|z|4)

)
,

this being uniform for Mn|z|/|Ln| ≤ K, thus on compacts of C. This ends the proof of
the theorem. �

REMARK 8.2.3. Suppose for instance that Mn = 1, i.e., the probability generating
function of Xn has non-negative real roots. Then, the conditions on the first cumulants
of Xn in order to apply Theorem 8.2.1 are

√
σn � Ln � σn,

which are usually easy to check.

8.3. Two examples: uniform permutations and uniform set-partitions

The first example that fills in this framework is the number of disjoint cycles Xn of
a uniform random permutation in S(n). As mod-convergence of Xn has already been
discussed in this article (Example 2.1.3), we will skip details. Using Feller’s coupling,
it is easily seen that

Pn(t) =
n

∏
i=1

t + i− 1
1 + i− 1

.

Moreover, a straight-forward computation yields µn = Hn + O(1), σ2
n = Hn + O(1)

and L3
n = Hn + O(1), where Hn is the n-th harmonic number as in Example 2.1.3.

Theorem 8.2.1 implies that (Xn − Hn)/(Hn)1/3 converges in the mod-Gaussian sense,
as established at the end of Example 2.1.3. Note however that Theorem 8.2.1 does not
give the stronger mod-Poisson convergence of (Xn)n∈N without renormalisation.

The second and more interesting example is the number of blocks in a random
uniform set-partition of [n]. By definition, a set-partition of [n] is a set of disjoint non-
empty subsets of [n], whose union is [n]. These subsets are called blocks or parts of the
set-partition. For instance, {{2, 4}, {1}, {3}} is a set-partition of [4] with 3 blocks. We
denote Q(n) the set of all set-partitions of [n]. For each integer n ≥ 0, we then consider
a random uniform set-partition in Q(n), and denote Xn its number of blocks.

It was proved by Harper [Har67, Lemma 1] that the probability generating function
of Xn has only real non-negative roots. Moreover, the asymptotic behaviour of µn =
E[Xn] and σ2

n = Var(Xn) are known — see e.g. [CDKR15, Theorem 2.1] —

µn =
n

log n
(1 + o(1)), σ2

n =
n

(log n)2 (1 + o(1)).
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We will prove in next subsection that

L3
n =

2n
(log n)3 (1 + o(1)).

Since Mn = 1 and

√
σn = O

(
n1/4

(log n)1/2

)
� Ln = O

(
n1/3

log n

)
� σn = O

(
n1/2

log n

)
,

we can apply Theorem 8.2.1: the variables (Xn−µn)/Ln converge in the mod-Gaussian
sense with parameter tn = σ2

n/L2
n = (n

4 )
1/3 (1 + o(1)) and limiting function ψ(z) =

exp(z3/6). As a corollary, applying Theorem 4.2.1 and Proposition 4.4.1 yields the
following precise deviation result.

PROPOSITION 8.3.1. Let Xn be the number of blocks in a uniform set-partition of [n].
Define µn, σn, Ln and tn as above. Then the random variable Xn−µn

σn
converges towards a

Gaussian law, with a normality zone of size o(n1/6). Moreover, at the edge of this normality
zone, the deviation probabilities are given by: for any fixed x > 0,

P

[
Xn − µn

Ln
≥ tnx

]
=

exp(−tn
x2

2 )

x
√

2πtn
exp

(
x3

6

)
(1 + o(1));

P

[
Xn − µn

Ln
≤ −tnx

]
=

exp(−tn
x2

2 )

x
√

2πtn
exp

(
−x3

6

)
(1 + o(1)).

8.4. Third cumulant of the number of blocks in uniform set-partitions

Fix n ≥ 0. Let Bn be the number of set-partitions of [n], known as the n-th Bell num-
ber. Dobinski’s formula states that Bn = e−1 ∑∞

k=0 kn/k!, which allows us to consider a
random variable M with the following distribution:

P[M = k] =
1

eBn

kn

k!
.

An easy observation, useful below, is that E[Mr] = Bn+r/Bn. As above, we denote Xn
the number of blocks in a uniform set-partition of size [n]. We also consider a Poisson
variable P of parameter 1, independent from Xn. Stam [Sta83] proved the following
relation (with a very nice probabilistic explanation).

LEMMA 8.4.1. [Sta83, Theorem 2] We have the following equality of random variables in
law:

M law
= Xn + P.

Therefore, κ(3)(M) = κ(3)(Xn) + κ(3)(P). But κ(3)(P) = 1 is a constant (independent
of n), whose value will not be relevant for the asymptotic of κ(3)(Xn). Let us consider
κ(3)(M). It is given by:

κ(3)(M) = E[M3]− 3 E[M2]E[M] + 2(E[M])3 =
Bn+3

Bn
− 3

Bn+2 Bn+1

(Bn)2 + 2
(Bn+1)

3

(Bn)3 .

In order to find the asymptotic of the above formula, we use the following estimate
for Bell numbers. This is a variant of the Moser-Wyman formula [MW55], that can be
found in an unpublished note of Mohr [Moh95].
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LEMMA 8.4.2. Let αn be the positive real number defined by the equation αn eαn = n; in
particular αn = (log n) (1− o(1)). Then, one has, for any integer r,

Bn+r =
(n + r)!
(αn)n+r

exp(eαn − 1)√
2πβn

×
(

1 +
P0 + rP1 + r2P2

eαn
+

Q0 + rQ1 + r2Q2 + r3Q3 + r4Q4

e2αn
+ O(e−3αn)

)
,

where βn = ((αn)2 + αn) eαn , and the Pi’s and Qi’s are explicit rational functions of αn, with
Pi = O((αn)−i) and Qi = O((αn)−i).

This lemma yields an estimate for quotients of Bell numbers (we substitute eαn by
n/αn):

(αn)
r Bn+r

Bn
= (n + 1) · · · (n + r)

(
1 + αn

rP1 + r2P2

n

+(αn)
2 −P0(rP1 + r2P2) + rQ1 + r2Q2 + r3Q3 + r4Q4

n2 + O(α3
n/n3)

)

Consider the expression

k3 := α3
n

(
Bn+3

Bn
− 3

Bn+2 Bn+1

B2
n

+ 2
(Bn+1)

3

(Bn)3

)
.

With the help of a computer algebra program, we find

k3 = n
(
(−6 P2 (P1 + P2) + 6 Q3 + 36 Q4)(αn)

2 + 12P2 αn + 2
)
+ O((αn)

3).

From the estimate Pi = O((αn)−i) and Qi = O((αn)−i), we see that the dominant term
in k3 comes from the constant 2 in the above equation. Namely,

k3 = 2n + O
(

n
αn

)
, that is κ(3)(Xn) =

2n
(αn)3 + O

(
n

(αn)4

)
,

as claimed in the previous subsection.



CHAPTER 9

Dependency graphs and mod-Gaussian convergence

The theory of dependency graphs is a powerful toolbox to prove asymptotic nor-
mality. A dependency graph encodes the dependency structure in a family of random
variables: roughly we take a vertex for each variable in the family and connect de-
pendent random variables by edges. The idea is that, if the degrees in a sequence
of dependency graphs do not grow too fast, then the corresponding variables behave
as if independent and the sum of the corresponding variables is asymptotically nor-
mal. Precise normality criteria using dependency graphs have been given by Petro-
vskaya/Leontovich, Janson, Baldi/Rinott and Mikhailov [PL83, Jan88, BR89, Mik91].
These results are black boxes to prove asymptotic normality of sums of partially de-
pendent variables and can be applied in many different contexts. The original moti-
vation of Petrovskaya and Leontovich comes from the mathematical modelisation of
cell populations [PL83]. On the contrary, Janson was interested in random graph the-
ory: dependency graphs are used to prove central limit theorems for some statistics,
such as subgraph counts, in G(n, p) [BR89, Jan88, JŁR00]; see also [Pen02] for appli-
cations to geometric random graphs. The theory has then found a field of application
in geometric probability [AB93, PY05, BV07]. More recently it has been used to prove
asymptotic normality of pattern counts in random permutations [Bón10, HJ10]. De-
pendency graphs also generalise the notion of m-dependence [HR48, Ber73], widely
used in statistics [Das08].

Beyond asymptotic normality, dependency graphs may be used for other kind of
results. The first family of such results consists in refinements of central limit theorems.

• In their original paper [BR89], Baldi and Rinott combined dependency graphs
with Stein’s method. In addition to give a central limit theorem, this approach
provides precise estimates for the Kolmogorov distance between a renormal-
ised version of Xn and the Gaussian distribution. For more general and in
some cases sharper bounds, we also refer the reader to the work of Chen and
Shao [CS04].

• More recently, H. Döring and P. Eichelsbacher have shown how dependency
graphs can be used to obtain some moderate deviation principles, see [DE13b,
Section 2].

The Gaussian law is not the only limit law that is accessible with the dependency graph
approach. Convergence to Poisson distribution can also be proved this way, as demon-
strated in [AGG89]; again, this result has found applications, e.g., in the theory of ran-
dom geometric graphs (cf. [Pen02]).

We now leave convergence in distribution to discuss probabilities of rare events:
• In [Jan04], S. Janson has established some large deviation result involving the

fractional chromatic number of the dependency graph.
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• Another important, historically first use of dependency graphs is the Lovász
local lemma [EL75, Spe77]. The goal here is to find a lower bound for the prob-
ability that Xn = 0 when the Yn,i’s are indicator random variables, that is the
probability that none of the Yn,i’s is equal to 1. This inequality has found a
large range of application to prove by probabilistic arguments the existence of
an object (often a graph) with given properties: this method is known as the
probabilistic method, see [AS08, Chapter 5].

Here, we shall see that dependency graphs can be used to prove mod-Gaussian
convergence. This gives us a large collection of examples, for which the material of
this article gives automatically some precise moderate deviation and normality zone
results. Our deviation result has a larger domain of validity than the one of Döring
and Eichelsbacher — see below.

In this chapter, we establish a general result involving dependency graphs (The-
orem 9.1.7). In the next two chapters, we focus on examples and derive the mod-
Gaussian convergence of the following renormalised statistics:

• subgraph count statistics in Erdös-Rényi random graphs (Chapter 10);

• random character values from central measures on partitions (Chapter 11).

Dependency graphs can also be used to cover the framework of m-dependence,
widely used in statistics [Das08]. We shall develop this application in a forthcoming
work [FMN16]. Unfortunately, we haven’t been able to obtain similar result for mod-
Poisson convergence, using dependency graphs.

9.1. The theory of dependency graphs

Let us consider a variable X, which writes as a sum

X = ∑
α∈V

Yα

of random variables Yα indexed by a set V.

DEFINITION 9.1.1. A graph G with vertex set V is called a dependency graph for the
family of random variables {Yα, α ∈ V} if the following property is satisfied:

If V1 and V2 are disjoint subsets of V such that there are no edges in G with
one extremity in V1 and one in V2, then the sets of random variables {Yα}α∈V1
and {Yα}α∈V2 are independent (i.e., the σ-algebras generated by these sets are
independent).

EXAMPLE 9.1.2. Let (Y1, . . . , Y7) be a family with dependency graph

1

2

3
4

5

6

7
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Then, (Y1, Y2, Y3, Y4, Y5) and (Y6, Y7) are independent (obvious), but the vectors (Y1, Y2)
and (Y4, Y5) are also independent: although they are in the same connected component
of the graph G, they are not directly connected by an edge e ∈ E.

REMARK 9.1.3. Note that a family of random variables may admit several depen-
dency graphs. In particular, the complete graph with vertex set V is always a depen-
dency graph. We are interested in dependency graphs with as few edges as possible.
Note that a family of random variables does not always have a unique minimal depen-
dency graph (minimal for edge-set inclusion), as shown by the following example.

EXAMPLE 9.1.4. Consider three independent Bernoulli random variables X1, X2, X3,
and Y1 = 1(X2=X3), Y2 = 1(X1=X3) and Y3 = 1(X1=X2). Then, the following graphs are
minimal dependency graphs for (Y1, Y2, Y3):

1 1 13 3 3

2 2 2

EXAMPLE 9.1.5. Fix a finite graph G = (V, E). Take a family of independent non-
constant random variables (Ye)e∈E indexed by the edge-set E of G. For a vertex v ∈ V,
define Xv = ∑e Ye where the sum runs over incident edges to v. Then G is a depen-
dency graph for the family (Xv)v∈V . Moreover, it is minimal for edge-set inclusion and
unique with this property.

The following bound on cumulants of sums of random variables has been estab-
lished by S. Janson [Jan88, Lemma 4].

THEOREM 9.1.6. For any integer r ≥ 1, there exists a constant Cr with the following
property. Let {Yα}α∈V be a family of random variables with dependency graph G. We denote
N = |V| the number of vertices of G and D the maximal degree of G. Assume that the variables
Yα are uniformly bounded by a constant A. Then, if X = ∑α Yα, one has:

|κ(r)(X)| ≤ Cr N (D + 1)r−1 Ar.

In most applications for counting substructures in random objects, the Yα are indi-
cator variables, so that the uniformly bounded assumption is not restrictive. This theo-
rem is often used to prove some central limit theorem. In [DE13b], Döring and Eichels-
bacher analysed Janson’s original proof and established that the theorem holded with
Cr = (2e)r(r!)3. Then they used this new bound to obtain some moderate deviation
results. Here, we will give a new proof of Janson’s result, with a smaller value of the
constant Cr. Namely, we will prove:

THEOREM 9.1.7. Theorem 9.1.6 holds with Cr = 2r−1 rr−2.

We shall see at the end of this section, and in the next sections that this stronger ver-
sion can be used to establish mod-Gaussian convergence and, thus, precise moderate
deviation results. In fact, we prove a slightly stronger bound.
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THEOREM 9.1.8. With the same assumptions as above, one has:

|κ(r)(X)| ≤ 2r−1 rr−2

(
∑
α

E[|Yα|]
)
(D + 1)r−1Ar−1.

The next subsections are devoted to the proof of Theorem 9.1.8. Note that ∑α E[|Yα|] ≤
N A, so that Theorem 9.1.8 is indeed stronger than Theorem 9.1.7. On the other hand,
if Yα are Bernoulli variables indexed by α ∈ {1, . . . , N} with parameters 1/α, then
∑α E[|Yα|] ∼ log N. In this case, when D is constant, the bound given in Theorem 9.1.8
is exponentially smaller than the one from Theorem 9.1.7.

REMARK 9.1.9. The hypothesis of bounded random variables can sometimes be
lifted by mean of truncation methods. Indeed, if (Yα)α∈V is a family of unbounded ran-
dom variables with dependency graph G, then any truncated family (Yα 1|Yα|≤Lα

)α∈V
with fixed levels of truncation Lα has the same dependency graph G. Thus, in many sit-
uations, one can prove the mod-Gaussian convergence of (an adequate renormalisation
of) the truncated sum Struncated = ∑α∈V Yα 1|Yα|≤Lα

, and then to use ad-hoc arguments
in order to control the remainder Sremainder = ∑α∈V Yα 1|Yα|>Lα

, such as moments in-
equalities (Bienaymé-Chebyshev). We shall develop these arguments in details in the
forthcoming paper [FMN16].

9.2. Joint cumulants

There exists a multivariate version of cumulants, called joint cumulants, that we
shall use to prove Theorem 9.1.7. We present in this paragraph its definition and basic
properties. Most of this material can be found in Leonov’s and Shiryaev’s paper [LS59]
(see also [JŁR00, Proposition 6.16]).

9.2.1. Preliminaries: set-partitions. We denote by [n] the set {1, . . . , n}. Recall
from Section 8.3 that a set partition of [n] is a (non-ordered) family of non-empty disjoint
subsets of S (called parts of the partition), whose union is [n]. For instance,

{{1, 3, 8}, {4, 6, 7}, {2, 5}}
is a set partition of [8]. Denote Q(n) the set of set partitions of [n]. Then Q(n) may be
endowed with a natural partial order: the refinement order. We say that π is finer than
π′ or π′ coarser than π (and denote π ≤ π′) if every part of π is included in a part of
π′.

Lastly, denote µ the Möbius function of the poset Q(n). In this paper, we only
use evaluations of µ at pairs (π, {[n]}) (the second argument is the partition of [n] in
only one part, which is the maximum element of Q(n)), so we shall use abusively the
notation µ(π) for µ(π, {[n]}). In this case, the value of the Möbius function is given
by:

µ(π) = µ(π, {[n]}) = (−1)#(π)−1(#(π)− 1)! . (40)
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9.2.2. Definition and properties of joint cumulants. If X1, . . . , Xr are random vari-
ables with finite moments on the same probability space (denote E the expectation on
this space), we define their joint cumulant by

κ(X1, . . . , Xr) = [t1 · · · tr] log
(

E
[
et1X1+···+trXr

] )
. (41)

As usual, [t1 . . . tr]F stands for the coefficient of t1 · · · tr in the series expansion of F
in positive powers of t1, . . . , tr. Note that joint cumulants are multilinear functions.
In the case where all the Xi’s are equal, we recover the r-th cumulant κ(r)(X) of a
single variable. Using set-partitions, joint cumulants can be expressed in terms of joint
moments, and vice-versa:

E[X1 · · ·Xr] = ∑
π∈Q(r)

∏
C∈π

κ(Xi ; i ∈ C); (42)

κ(X1, . . . , Xr) = ∑
π∈Q(r)

µ(π) ∏
C∈π

E

[
∏
i∈C

Xi

]
. (43)

In these equations, C ∈ π shall be understood as “C is a part of the set partition π”. Re-
call that µ(π) has an explicit expression given by Equation (40). For example the joint
cumulants of one or two variables are simply the mean of a single random variable
and the covariance of a couple of random variables:

κ(X1) = E[X1] ; κ(X1, X2) = E[X1X2]−E[X1]E[X2].

For three variables, one has

κ(X1, X2, X3) = E[X1X2X3]−E[X1X2]E[X3]−E[X1X3]E[X2]

−E[X2X3]E[X1] + 2 E[X1]E[X2]E[X3].

REMARK 9.2.1. The most important property of cumulants is their relation with in-
dependence: if the variables X1, . . . , Xr can be split in two non-empty sets of variables
which are independent with each other, then κ(X1, . . . , Xr) vanishes [JŁR00, Proposi-
tion 6.16 (v)]. We will not need this property here. In fact, we will prove a more precise
version of it, see Equation (48).

9.2.3. Statement with joint cumulants. Theorems 9.1.6 and 9.1.7 have some ana-
logues with joint cumulants. Let {Yα}α∈V be a family of random variables with depen-
dency graph G. As in Theorem 9.1.6, we assume that the variables Yα are uniformly
bounded by a constant A: i.e., for all α ∈ V,

‖Yα‖∞ ≤ A.

Consider r subsets V1, V2, . . . , Vr of V, non necessarily distinct and set Xi = ∑α∈Vi
Yα

(for i ∈ [r]). We denote Di the maximal number of vertices in Vi adjacent to a given
vertex (not necessarily in Vi). Then one has the following result.

THEOREM 9.2.2. With the notation above,

|κ(X1, . . . , Xr)| ≤ 2r−1 rr−2 |V1| (D2 + 1) · · · (Dr + 1) Ar.

The proof of this theorem is very similar to the one of Theorem 9.1.7. However, to
simplify notation, we only prove the latter here.
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9.3. Useful combinatorial lemmas

We start our proof of Theorem 9.1.7 by stating a few lemmas on graphs and span-
ning trees.

9.3.1. A functional on graphs. In this section, we consider graphs H with multiple
edges and loops. We use the standard notation V(H) and E(H) for their vertex and
edge sets. For a graph H and a set partition π of V(H), we denote π ⊥ H when the
following holds: for any edge {i, j} ∈ E(H), the elements i and j lie in different parts
of π (in this case we use the notation i �π j). We introduce the following functional on
graphs H:

FH = (−1)|V(H)|−1 ∑
π⊥H

µ(π).

LEMMA 9.3.1. For any graph H, one has

FH = ∑
E⊂E(H)

(V(H),E) connected

(−1)|E|−|V(H)|+1.

PROOF. To simplify notation, suppose V(H) = [r]. We denote 1(P) the characteris-
tic function of the property (P). By inclusion-exclusion,

(−1)|V(H)|−1 FH = ∑
π∈Q(r)


 ∏

(i,j)∈E(H)

1i�π j


 µ(π) = ∑

π∈Q(r)


 ∏

(i,j)∈E(H)

(1− 1i∼π j)


 µ(π)

= ∑
E⊂E(H)

∑
π∈Q(r)

(−1)|E|


 ∏

(i,j)∈E
1i∼π j


 µ(π)

= ∑
E⊂E(H)

(−1)|E|


 ∑

π such that
∀(i,j)∈E, i∼π j

µ(π)


 .

But the quantity in the bracket is 0 unless the only partition in the sum is the maximal
partition

{
[r]
}

, in which case it is 1. This corresponds to the case where the edges in E
form a connected subgraph of H. �

COROLLARY 9.3.2. The functional FH fulfills the deletion-contraction induction, i.e., if e
is an edge of H which is not a loop, then

FH = FH/e + FH\e,

where H \ e (respectively H/e) are the graphs obtained from H by deleting (resp. contracting)
the edge e.

PROOF. The first term corresponds to sets of edges containing e, and the second to
those that do not contain e. �
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This induction (over-)determines FH together with the initial conditions:




F
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Proof. Each spanning tree ofHA can be lifted (non necessarily in a unique way) to
a pseudo-tree contained in GA. So the number of couples (A, T ) of the statement
is bounded by the number of couples (A, G), where G is a pseudo-tree contained
in GA. By Lemma 1.1 and 1.2, this number is given by the formula above.
The second assertion comes from the fact that a connected graph has at least one

spanning tree. !

Let H be a graph on vertex set [!] (eventually with some multiple edges and/or
loops). We consider the following quantity

AH = (−1)V (H)−1
∑

Π⊥E(H)

µ(Π),

where Π⊥E(H) means: (i, j) ∈ E(H) implies that i and j lie in different parts of
Π (notation: i !Π j).

Lemma 1.4. For any graph H , one has

AH =
∑

E⊂E(H)
(V (H),E) connected

(−1)|E|−V (H)+1.

Proof. By inclusion-exclusion,

AH = (−1)V (H)−1
∑

E⊂E(H)
E "=∅

(−1)|E|




∑

Πsuch that
∀(i,j)∈E,i∼Πj

µ(Π)


 .

But the quantity in the bracket is 0 unless the only partition in the sum is the
maximal partition

{
{1, . . . , !}

}
, in which case it is 1. This corresponds to the case

where the edges in E form a connected subgraph of H . !

Corollary 1.5. AH fulfills the deletion-contraction induction: if e is an edge of H ,
then

AH = AH\e + AH/e,

where H\e (resp. H/e) are the graphs obtained from H by contracting (resp.
deleting) the edge e.

Proof. The first term correspond to sets of edges containing e, the second to those
who do not contain e. !

This induction detemines AH together with the initial conditions:




A = 1

A = 0

AH = 0 if H is disconnected.

Corollary 1.6. For any graph H , the quantity AH is positive and smaller than the
number STH of spanning trees in H .

= 1,
F = F = · · · = 0,

FH = 0 if H is disconnected.

COROLLARY 9.3.3. For any graph H, the quantity FH is nonnegative and less or equal
than the number STH of spanning trees in H.

PROOF. The quantity STH fulfills the same induction as FH with initial conditions:
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Proof. Each spanning tree ofHA can be lifted (non necessarily in a unique way) to
a pseudo-tree contained in GA. So the number of couples (A, T ) of the statement
is bounded by the number of couples (A, G), where G is a pseudo-tree contained
in GA. By Lemma 1.1 and 1.2, this number is given by the formula above.
The second assertion comes from the fact that a connected graph has at least one

spanning tree. !

Let H be a graph on vertex set [!] (eventually with some multiple edges and/or
loops). We consider the following quantity

AH = (−1)V (H)−1
∑

Π⊥E(H)

µ(Π),

where Π⊥E(H) means: (i, j) ∈ E(H) implies that i and j lie in different parts of
Π (notation: i !Π j).

Lemma 1.4. For any graph H , one has

AH =
∑

E⊂E(H)
(V (H),E) connected

(−1)|E|−V (H)+1.

Proof. By inclusion-exclusion,

AH = (−1)V (H)−1
∑

E⊂E(H)
E "=∅

(−1)|E|




∑

Πsuch that
∀(i,j)∈E,i∼Πj

µ(Π)


 .

But the quantity in the bracket is 0 unless the only partition in the sum is the
maximal partition

{
{1, . . . , !}

}
, in which case it is 1. This corresponds to the case

where the edges in E form a connected subgraph of H . !

Corollary 1.5. AH fulfills the deletion-contraction induction: if e is an edge of H ,
then

AH = AH\e + AH/e,

where H\e (resp. H/e) are the graphs obtained from H by contracting (resp.
deleting) the edge e.

Proof. The first term correspond to sets of edges containing e, the second to those
who do not contain e. !

This induction detemines AH together with the initial conditions:




A = 1

A = 0

AH = 0 if H is disconnected.

Corollary 1.6. For any graph H , the quantity AH is positive and smaller than the
number STH of spanning trees in H .

= 1,
ST = ST = · · · = 1,

STH = 0 if H is disconnected. �

REMARK 9.3.4. If H is connected, both FH and STH are actually specialisations of
the bivariate Tutte polynomial TH(x, y) of H (cf. [Bol98, Chapter X]):

FH = TH(1, 0) ; STH = TH(1, 1).

This explains the deletion-contraction relation. As the bivariate Tutte polynomials has
non-negative coefficients, it also explains the inequality 0 ≤ FH ≤ STH.

9.3.2. Induced graphs containing spanning trees. Fix a graph G (typically the de-
pendency graphs of our family of variables). For a list (v1, . . . , vr) of r vertices of G, we
define the induced graph G[v1, . . . , vr] as follows:

• its vertex set is [r];

• there is an edge between i and j if and only if vi = vj or vi and vj are linked in
G.

We will be interested in spanning trees of induced graphs. As the vertex set is [r], these
spanning trees may be seen as Cayley trees. Recall that a Cayley tree of size r is by def-
inition a tree with vertex set [r] (Cayley trees are neither rooted, nor embedded in the
plane, they are only specified by an adjacency matrix). These objects are enumerated
by the well-known Cayley formula established by C. Borchardt in [Bor60]: there are
exactly rr−2 Cayley trees of size r.

LEMMA 9.3.5. Fix a Cayley tree T of size r and a graph G with N vertices and maximal
degree D. Fix a vertex v1 of G. The number of lists (v1, . . . , vr) of r vertices of G such that T
is contained in the induced subgraph G[v1, . . . , vr] is bounded from above by

(D + 1)r−1.

PROOF. Lists (v1, . . . , vr) as in the lemma are constructed as follows. First consider
a neighbour j of 1 in T. As we require G[v1, . . . , vr] to contain T, the vertices 1 and j
must also be neighbours in G[v1, . . . , vr], i.e. vj = v1 or vj is a neighbour of v1 in T.
Thus, once v1 is fixed, there are at most D + 1 possible values for vj. The same is true
for all neighbours of 1 and then for all neighbours of neighbours of 1 and so on. �
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We have the following immediate consequence.

COROLLARY 9.3.6. Let G be a graph with n vertices and maximal degree D and r ≥ 1.
Fix a vertex v1 of G. The number of couples

(
(v1, . . . , vr), T

)
where each vi is a vertex of V

and T a spanning tree of the induced subgraph G[v1, . . . , vr] is bounded above by

rr−2 (D + 1)r−1.

9.3.3. Spanning trees and set partitions of vertices. Recall that STH denotes the
number of spanning trees of a graph H. Consider now a graph H with vertex set [r]
and a set partition π = (π1, . . . , πt) of [r]. For each i, we denote STπi(H) = STH[πi]

the
number of spanning trees of the graph induced by H on the vertex set πi. We also use
the multiplicative notation

STπ(H) =
t

∏
j=1

STπj(H).

We can also consider the contraction H/π of H with respect to π. By definition, it
is the multigraph (i.e. graph with multiple edges, but no loops) defined as follows.
Its vertex set is the index set [t] of the parts of π and, for i 6= j, there are as many
edges between i and j as edges between a vertex of πi and a vertex of πj in H. Denote
STπ(H) = STH/π the number of spanning trees of this contracted graph (multiple
edges are here important). This should not be confused with STπ(H): in the latter, π is
placed as an exponent because the quantity is multiplicative with respect to the part of
π.

Note that the union of a spanning tree T of H/π and of spanning trees Ti of H[πi]
(one for each 1 ≤ i ≤ t) gives a spanning tree T of H. Conversely, take a spanning tree
T on H and a bicolouration of its edges. Edges of colour 1 can be seen as a subgraph
of H with the same vertex set [r]. This graph is of course acyclic. Its connected compo-
nents define a partition π = {π1, . . . , πt} of [r] and edges of colour 1 correspond to a
collection of spanning trees Ti of H[πi] (for 1 ≤ i ≤ t). Besides, edges of colour 2 define
a spanning tree T on H/π.

Therefore, we have described a bijection between spanning trees T0 of H with a
bicolouration of their edges and triples (π, T, (Ti)1≤i≤t) where:

• π is a set partition of the vertex set [r] of H (we denote t its number of parts);

• T is a spanning tree of the contracted graph H/π;

• for each 1 ≤ i ≤ t, Ti is a spanning tree of the induced graph H[πi].

Before giving a detailed example, let us state the numerical corollary of this bijection:

2r−1 STH = ∑
π

STπ(H) STπ(H), (44)

where the sum runs over all set partitions π of [r].

Our bijection is illustrated on Figure 1, with the following conventions.

• On the left, blue plain edges are edges of colour 1 in the tree T0; on the right,
these blue plain edges are the edges of the spanning trees Ti.
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T = 1

23

4

5 6

↔





π = {π1, π2} with π1 = {1, 2, 3}, π2 = {4, 5, 6};

T1 =
1

23
, T2 =

4

5 6
;

T =

π1

π2

.

FIGURE 1. Bijection explaining Identity (44).

• On the left, green dashed edges are edges of colour 2 in the tree T0; on the right,
these green dashed edges are edges of the spanning tree T.
• Red dotted edges belong to the graphs H, H/π, H[πi] but not to their spanning

tree T0, T, Ti.

Note that in this example the graph H/π has two vertices linked by four edges. These
four edges correspond to the edges (1, 4), (1, 6), (2, 6) and (3, 5) of H. In the example,
the spanning tree T is the edge {(3, 5)}. If we had chosen another edge, the tree T on
the left-hand side would have been different. Hence, in the Equality (44), the multiple
edges of H/π must be taken into account: in our example, STπ(H) = 4.

9.4. Proof of the bound on cumulants

Recall that we want to find a bound for κ(r)(X). As X writes X = ∑α∈V Yα, we may
use joint cumulants and expand by multilinearity:

κ(r)(X) = ∑
α1,...,αr

κ(Yα1 , . . . , Yαr). (45)

The sum runs over lists of r elements in V, that is vertices of the dependency graph G.
The proof consists in bounding each summand κ(Yα1 , . . . , Yαr), with a bound depend-
ing on the induced subgraph G[α1, . . . , αr].

9.4.1. Bringing terms together in joint cumulants. Recall the moment-cumulant
formula (43) which states κ(Yα1 , . . . , Yαr) = ∑π µ(π)Mπ, where

Mπ = ∏
B∈π

E

[
∏
i∈B

Yαi

]
.

We warn the reader that the notation Mπ is a little bit abusive as this quantity depends
also on the list (α1, . . . , αr). By hypothesis, G is a dependency graph for the family
{Yα}α∈V . Hence if some block B of a partition π can be split into two sub-blocks B1
and B2 such that the sets of vertices {αi}i∈B1 and {αi}i∈B2 are disjoint and do not share
an edge, then

E

[
∏
i∈B

Yαi

]
= E

[
∏
i∈B1

Yαi

]
×E

[
∏
i∈B2

Yαi

]
. (46)
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Therefore, Mπ = MφH(π), where H = G[α1, . . . , αr] and φH(π) is the refinement of
π obtained as follows: for each part πi of π, consider the induced graph H[πi] and
replace πi by the collection of vertex sets of the connected components of H[πi]. This
construction is illustrated on Figure 2.

H = 1

23

4

5 6

For example, consider the graph H here opposite
and the partition π = {π1, π2}with π1 = {1, 2, 3, 4}
and π2 = {5, 6}. Then H[π1] (respectively, H[π2])
has two connected components with vertex sets
{1, 2} and {3, 4} (resp. {5} and {6}). Thus

φH(π) = {{1, 2}, {3, 4}, {5}, {6}}.

FIGURE 2. Illustration of the definition of φH.

We can thus write

κ(G) = ∑
π′

Mπ′


 ∑

π∈φ−1
H (π′)

µ(π)


 .

Fix π′ = (π′1, . . . , π′t) and let us have a closer look to the expression in the parentheses
that we will call απ′ . To compute it, it is convenient to consider the contraction H/π′

of the graph H with respect to the partition π′.

LEMMA 9.4.1. Let π′ be a set partition of [r]. If one of the induced graph H[π′i ] is discon-
nected, then απ′ = 0. Otherwise, απ′ = (−1)`(π

′)−1FH/π′ .

PROOF. The first part is immediate, as φ−1
H (π′) = ∅ in this case.

If all induced graphs are connected, let us try to describe φ−1
H (π′). All set partitions π

of this set are coarser than π′, so can be seen as set partitions of the index set [r] of the
parts of π′. This identification does not change their Möbius functions, which depends
only on the number of parts. Then, it is easy to see that π lies in φ−1

H (π′) if and only
if π is coarser than π′ and two elements in the same part of π never share an edge in
H/π′ (here, π is seen as a set partition of [r]). In other words, π lies in φ−1

H (π′) if and
only if π ⊥ (H/π′). This implies the Lemma. �

Consequently,

κ(Yα1 , . . . , Yαr) = ∑
π′
(−1)`(π

′)−1Mπ′ FH/π′

(
t

∏
i=1

1H[π′i ] connected

)
, (47)

where the sum runs over all set partitions π′ of [r].

9.4.2. Bounding all the relevant quantities. Using |Yαi | ≤ A for all i, we get the
inequality:

|Mπ| ≤ Ar−1 E[|Yα1 |].
Finally, to bound each summand κ(Yα1 , . . . , Yαr), we shall use the following bounds:

|FH/π′ | ≤ STH/π′ by Corollary 9.3.3;
1H[π′i ] connected ≤ STH[π′i ]

.
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Thus, Equation (47) gives

|κ(Yα1 , . . . , Yαr)| ≤ Ar−1 E[|Yα1 |] ∑
π′

STH/π′

(
t

∏
i=1

STH[π′i ]

)
= Ar−1 E[|Yα1 |] 2r−1 STH,

(48)
the last equality corresponding to Equation (44). Recall that H = G[α1, . . . , αr]. Sum-
ming over α1, . . . , αr and using Equation (45), we get

|κ(r)(X)| ≤ (2A)r−1 ∑
α1

E[|Yα1 |]
[

∑
α2,...,αr

STG[α1,...,αr]

]
.

From Corollary 9.3.6, we know that the expression in the bracket is bounded by the
quantity rr−2(D + 1)r−1 (for any fixed α1). This completes the proof of Theorem 9.1.8.

9.5. Sums of random variables with a sparse dependency graph

An immediate application of Theorem 9.1.7 is the following general result on sums
of weakly dependent random variables, to be compared with [Pen02, §2.3]. Let Xn =

∑Nn
i=1 Yi be a sum of random variables, where the Yi’s have a dependency graph of

maximal degree Dn − 1, and satisfy ‖Yi‖∞ ≤ A for some A ≥ 0 (independent of i). We
also assume that Xn is not deterministic, so that its variance is non-zero.

THEOREM 9.5.1. We assume that the dependency graph of (Yi)1≤i≤Nn is sparse, in the
sense that limn→∞

Dn
Nn

= 0.

(1) There exists a positive constant C such that, for all r ≥ 2,
∣∣∣κ(r)

(
Xn
Dn

)∣∣∣ ≤ (Cr)r Nn
Dn

.

(2) Consider the bounded sequences

σ2
n =

Dn

Nn
κ(2)

(
Xn

Dn

)
; Ln =

1
σ3

n

Dn

Nn
κ(3)

(
Xn

Dn

)
.

If they have limits σ2 > 0 and L, then

Xn −E[Xn]

Dn σn

(
Dn

Nn

)1/3

converges in the mod-Gaussian sense with parameters tn = (Nn/Dn)1/3 and limiting
function ψ(z) = exp(Lz3/6).

(3) If furthermore,

σ2
n = σ2

(
1 + o

(
(Dn/Nn)

1/3
))

,

then the variable
Xn −E[Xn]

Dn σ

(
Dn

Nn

)1/3

converges in the mod-Gaussian sense with parameters (Nn/Dn)1/3 and limiting func-
tion ψ(z) = exp(Lz3/6) (the difference with the previous item is that σn has been
replaced by the usually more explicit quantity σ).

Of course, if (2) holds, then the results of this paper imply that
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• Xn/(σn
√

NnDn) satisfies a central limit theorem, with a normality zone of size
o((Nn

Dn
)1/6);

• furthermore, for x > 0,

P[Xn −E[Xn] ≥ (Nn)
2/3 (Dn)

1/3 σn x] =
e−(

Nn
Dn )

1/3 x2
2

x
√

2π(Nn/Dn)1/3
exp

(
Lx3

6

)
(1 + o(1))

(49)
and a similar result holds for negative deviations.

The same holds replacing σn by σ if one has the assumption on the speed of conver-
gence of σn towards σ, given in the third item of Theorem 9.5.1. If, moreover, the cumu-
lants of Xn satisfy (27), then (49) still holds when we replace x by a positive sequence
xn tending to infinity with xn = o((Nn/Dn)1/12) — see Proposition 5.2.1.

order of fluctuations

moderate deviations (0 < x):

P
[

Xn−E[Xn]
σ (Nn)2/3(Dn)1/3 ≥ x

]
' exp(−( Nn

Dn )
1/3 x2

2 )

x
√

2π( Nn
Dn )

1/3
exp

(
Lx3

6

)
;

central limit theorem (y� (Nn
Dn

)1/6):

P
[

Xn−E[Xn]
σ
√

Nn Dn
≥ y

]
' P[NR(0, 1) ≥ y].

O((Nn)2/3(Dn)1/3)

O((Nn)1/2(Dn)1/2)

FIGURE 3. Panorama of the fluctuations of a sum of Nn random vari-
ables that have a sparse dependency graph, of degree Dn − 1 with
limn→∞

Dn
Nn

= 0.

Notice that in the case of independent random variables, Dn = 1 and we recover the
mod-Gaussian convergence of Example 2.1.2.

In the next chapters, we shall study some particular cases of Theorem 9.5.1, and see
that most computations are related to the asymptotic analysis of the first cumulants of
Xn.



CHAPTER 10

Subgraph count statistics in Erdös-Rényi random graphs

In this chapter, we consider Erdös-Rényi model Γ(n, pn) of random graphs. A ran-
dom graph Γ with this distribution is described as follows. Its vertex set is [n] and for
each pair {i, j} ⊂ [n] with i 6= j, there is an edge between i and j with probability pn.
Moreover, all these events are independent. We are then interested in the following
random variables, called subgraph count statistics. If γ is a fixed graph of size k, then
X(n)

γ is the number of copies of γ contained in the graph Γ(n, pn) (a more formal defi-
nition is given in the next paragraph). This is a classical parameter in random graph
theory; see, e.g., the book of S. Janson, T. Łuczak and A. Ruciński [JŁR00].

The first result on this parameter was obtained by P. Erdös and A. Rényi, cf. [ER60].
They proved that, if γ belongs to some particular family of graphs (called balanced),
then one has a threshold: namely,

lim
n→∞

P[X(n)
γ > 0] =

{
0 if pn = o

(
n−1/m(γ)

)
;

1 if n−1/m(γ) = o(pn),

where m(γ) = |E(γ)|/|V(γ)|. This result was then generalised to all graphs by B. Bol-
lobás [Bol01], but the parameter m(γ) is in general more complicated than the quotient
above. Consider the case n−1/m(γ) = o(pn), when the graph Γ(n, pn) contains with
high probability a copy of γ. It was then proved by A. Ruciński (see [Ruc88]) that, un-
der the additional assumption n2(1− pn) → ∞, the fluctuations of X(n)

γ are Gaussian.
This result can be obtained using dependency graphs; see e.g. [JŁR00, pages 147-152].

Here, we consider the case where pn = p is a constant sequence (0 < p < 1). The
possibility of relaxing this hypothesis is discussed in Subsection 10.3.3. Denote αn = n2

and βn = nk−2, where k is the number of vertices of γ. It is easy to check that

E[X(n)
γ ] = c αn βn ; Var(X(n)

γ ) = σ2 αn (βn)
2

for some positive constants c and σ — see, e.g., [JŁR00, Lemma 3.5]. Hence, Ruciński’s
central limit theorem asserts that, if T ∼ x

√
αn for some fixed real x, then

lim
n→∞

P

[
X(n)

γ −E[X(n)
γ ]

βn
≥ T

]
=

1√
2π

∫ x/σ

−∞
e−u2/2du.

Using Theorem 9.1.7, we shall extend this result to a framework where x tends to in-
finity, but not to quickly: (αn)1/2 � T � (αn)3/4.

THEOREM 10.0.1. Let 0 < p < 1 and γ be a graph with k vertices. We consider X(n)
γ

the number of copies of γ contained in Erdös-Rényi random graph Γ(n, p). Let αn and βn be
defined as above.

91
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(1) The renormalised variable (X(n)
γ − E[X(n)

γ ])/((αn)1/3βn) converges mod-Gaussian
with parameters tn = σ2 α1/3

n and limiting function ψ(z) = exp
( L

6 z3), where σ and
L are computed in Section 10.3.2. The convergence takes place on the whole complex
plane with speed of convergence o(α−1/3

n ).

(2) Therefore, (X(n)
γ −E[X(n)

γ ])/((αn)1/2βn) converges in distribution towards a Gauss-
ian law, with normality zone o((αn)1/6). Moreover, the deviation probabilities at the
edge of the normality zone and at a slightly larger scale are given as follows: is xn is a
positive sequence bounded away from 0 with xn = o((αn)1/12), then

P

[
X(n)

γ −E[X(n)
γ ]

(αn)1/2 βn
≥ σ2(αn)

1/6xn

]
=

e−
(xn)2(αn)1/3σ2

2

xn(αn)1/6σ
√

2π
e

L(xn)3
6 (1 + o(1)).

P

[
X(n)

γ −E[X(n)
γ ]

(αn)1/2 βn
≤ −σ2(αn)

1/6xn

]
=

e−
(xn)2(αn)1/3σ2

2

xn(αn)1/6σ
√

2π
e
−L(xn)3

6 (1 + o(1)).

A similar result has been obtained by H. Döring and P. Eichelsbacher in [DE13b,
Theorem 2.3]. However,

• their result is less precise as they only obtain the equivalence of the logarithms
of the relevant quantities (in particular, when we look at the logarithm, the
second factor of the right-hand side is negligible);

• and they cover a smaller zone of deviation.

Unfortunately, we cannot get deviation results when xn ∼ t(αn)1/3 for some real num-
ber t; this would amount to evaluate P[X(n)

γ > (1 + ε)E[X(n)
γ ]]. For large deviations

equivalents of

log P[X(n)
γ > (1 + ε)E[X(n)

γ ]],
there is a quite large literature, see [CV11, Theorem 4.1] and [Cha12] for recent results
in this field. As we consider deviations of a different scale, our result is neither im-
plied by, nor implies these results. Note, however, that their large deviation results are
equivalents of the logarithm of the probability, while our statement is an equivalent for
the probability itself.

10.1. A bound on cumulants

10.1.1. Subgraph count statistics. In the following we denote A(n, k) the set of
arrangements in [n] of length k, i.e., lists of k distinct elements in [n]. The cardinality of
A(n, k) is the falling factorial n↓k = n(n− 1) · · · (n− k + 1). Let A = (a1, . . . , ak) be an
arrangement in [n] of length k, and γ be a fixed graph with vertex set [k]. Recall that
Γ = Γ(n, pn) is a random Erdös-Rényi graph on [n]. We denote δγ(A) the following
random variable:

δγ(A) =

{
1 if γ ⊆ Γ[a1, . . . , ak];
0 else.

(50)

Here Γ[a1, . . . , ak] denotes the graph induced by Γ on vertex set {a1, . . . , ak}. As our
data is an ordered list (a1, . . . , ak), this graph can canonically be seen as a graph on
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vertex set [k], that is the same vertex set as γ. Then the inclusion should be understood
as inclusion of edge sets.

For any graph γ with k vertices and any integer n ≥ 1, we then define the random
variable X(n)

γ by

X(n)
γ = ∑

A∈A(n,k)
δγ(A).

REMARK 10.1.1. It would also be natural to replace in Definition (50) the inclusion
by an equality γ = Γ[a1, . . . , ak]. This would lead to other random variables Y(n)

γ ,
called induced subgraph count statistics. Their asymptotic behavior is harder to study
(in particular, fluctuations are not always Gaussian; see [JŁR00, Theorem 6.52]). Notice
that if γ is a complete graph, then both definitions coincide.

10.1.2. A dependency graph of the subgraph count statistics. Fix some graph γ
with vertex set [k]. By definition, the variable we are interested in writes as a sum

X(n)
γ = ∑

A∈A(n,k)
δγ(A).

We shall describe a dependency graph for the variables {δγ(A)}A∈A(n,k).

For each pair e = {v, v′} ⊂ [n], denote Ie the indicator function of the event: e
is in the graph Γ(n, p). By definition of the model Γ(n, p), the random variables Ie are
independent Bernouilli variables of parameter p. Then, for an arrangement A, denote
E(A) the set of pairs {v, v′} where v and v′ appear in the arrangement A. One has

δγ(A) = ∏
e∈E′(A)

Ie,

where E′(A) is a subset of E(A) determined by the graph γ. In particular, if, for two
arrangements A and A′, one has |E(A)∩ E(A′)| = ∅ (equivalently, |A∩ A′| ≤ 1), then
the variables δγ(A) and δγ(A′) are defined using different variables Ie (and, hence, are
independent). This implies that the following graph denoted B is a dependency graph
for the family of variables {δγ(A)}A∈A(n,k):

• its vertex set is A(n, k);

• there is an edge between A and A′ if |A ∩ A′| ≥ 2.

Considering this dependency graph is quite classical — see, e.g., [JŁR00, Example 1.6].

All variables in this graph are Bernoulli variables and, hence, bounded by 1. Be-
sides the graph B has N = n↓k vertices, and is regular of degree D smaller than

(
k
2

)2

2 (n− 2)(n− 3) · · · (n− k + 1) < k4 nk−2.

Indeed, a neighbour A′ of a fixed arrangement A ∈ A(n, k) is given as follows:

• choose a pair {ai, aj} in A that will appear in A′;

• choose indices i′ and j′ such that a′i′ = ai and a′j′ = aj (these indices are different
but their order matters);
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• choose the other values in the arrangement A′.

So, we may apply Theorem 9.1.7 and we get:

PROPOSITION 10.1.2. Fix a graph γ of vertex set [k]. For any r ≤ 1, one has
∣∣κ(r)(X(n)

γ )
∣∣ ≤ 2r−1rr−2 nk (k4 nk−2)r−1.

10.2. Polynomiality of cumulants

10.2.1. Dealing with several arrangements. Consider a list (A1, . . . , Ar) of arran-
gements. We associate to this data two graphs (unless said explicitly, we always con-
sider loopless simple graphs, and V(G) and E(G) denote respectively the edge and
vertex sets of a graph G):

• the graph GA has vertex set

Vk = V(GA) = {(t, i) | 1 ≤ i ≤ r, 1 ≤ t ≤ ki}

and an edge between (t, i) and (s, j) if and only if ai
t = aj

s. It is always a disjoint
union of cliques. If the Ai’s are arrangements, then the graph GA is endowed
with a natural proper r-colouring, (t, i) being of colour i.

• the graph Hm
A has vertex set [r] and an edge between i and j if |Ai ∩ Aj| ≥ m.

Notice that H1
A is the contraction of the graph GA by the map ϕ : (t, i) 7→ i from the

vertex set of GA to the vertex of H1
A. Indeed,

(i, j) ∈ E(H1
A) ⇔ ∃vi ∈ ϕ−1(i), vj ∈ ϕ−1(j) such that (vi, vj) ∈ E(GA).

An example of a graph GA and of its 1- and 2-contractions H1
A and H2

A is drawn on
Figure 1. For m ≥ 2, the definition of Hm

A is less common. We call it the m-contraction of
GA. The 2-contraction is interesting for us. It corresponds exactly to the graph induced
by the dependency graph B on the list of arrangement A, considered in the proof of
Theorem 9.1.7.

REMARK 10.2.1. Graphs associated to families of arrangements are a practical way
to encode some information and should not be confused with the random graphs or
their induced subgraphs. Therefore we used greek letters for the latter and latin letter
for graphs GA and their contractions. The dependency graph will always be called B

to avoid confusions.

10.2.2. Exploiting symmetries. The dependency graph of our model has much
more structure than a general dependency graph. In particular, all variables δγ(A)
are identically distributed. More generally, the joint distribution of

(
δγ(A1), . . . , δγ(Ar)

)

depends only on GA. Here, we state a few consequences of this invariance property
that will be useful in the next section.
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2 7 9 4
4 16 3

2 5 6 4 1

8 10 5

15 13 14 11 12

GA

H1
A H2

A

10

FIGURE 1. The graphs GA, H1
A and H2

A corresponding to the family of
arrangements (15, 13, 14, 11, 12), (2, 5, 6, 4, 1), (2, 7, 9, 4), (4, 16, 3), and
(8, 10, 5).

LEMMA 10.2.2. Fix a graph γ of size k, the quantity

E
[
δγ(A1) · · · δγ(Ar)

]

depends only on the graph GA associated to the family of arrangements (A1, . . . , Ar). The
same is true for the joint cumulant κ(δγ(A1), . . . , δγ(Ar)).

PROOF. The first statement follows immediately from the invariance of the model
Γ(n, p) by relabelling of the vertices. The second is a corollary, using the moment-
cumulant relation (43). �

COROLLARY 10.2.3. Fix some graph γ. Then the joint cumulant κ(X(n)
γ , . . . , X(n)

γ ) is a
polynomial in n.

PROOF. Using Lemma 10.2.2, we can rewrite the expansion (45) as

κ(X(n)
γ , . . . , X(n)

γ ) = ∑
G

κ(G)NG, (51)

where:

• the sum runs over graphs G of vertex set Vk that correspond to some arrange-
ments (that is G is a disjoint union of cliques and, for any s, t and i, there is no
edge between (s, i) and (t, i));

• κ(G) is the common value of κ
(
δγ(A1), . . . , δγ(Ar)

)
, where (A1, . . . , Ar) is any

list of arrangements with associated graph G;

• NG is the number of lists of arrangements with associated graph G.

But it is clear that the sum index is finite and that neither the summation index nor
the quantity κ(G) depend on n. Besides, the number NG is simply the falling factorial
n(n− 1) . . . (n− cG + 1), where cG is the number of connected components of G. The
corollary follows from these observations. �
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10.3. Moderate deviations for subgraph count statistics

10.3.1. End of the proof of Theorem 10.0.1. We would like to apply Proposition
5.2.1 to the sequence Sn = X(n)

γ −E[X(n)
γ ] with αn = n2 and βn = nk−2. Let us check

that Sn indeed fulfills the hypothesis.

(1) The uniform bound |κ(r)(Sn)| ≤ (Cr)rαn(βn)r, where C does not depend on n,
corresponds to Proposition 10.1.2; we may even choose C = 2k4.

(2) We also have to check the speed of convergence:

κ(2)(Sn) = σ2 αn (βn)
2 (1 + O(α−1/2

n )) ; κ(3)(Sn) = L αn (βn)
3 (1 + O(α−1/4

n )). (52)

But these estimates follow directly from the bound above for r = 2, 3 and the
fact that κ(r)(Sn) is always a polynomial in n — see Corollary 10.2.3.

Finally, the mod-Gaussian convergence follows from the observations in Chapter 5.
The normality zone result follows from Proposition 4.4.1 and we can apply Proposition
5.2.1 to get the moderate deviation statement. This ends the proof of Theorem 10.0.1.

�

REMARK 10.3.1. Using Theorem 9.2.2, we could obtain a bound for joint cumu-
lants of subgraph count statistics. Hence, it would be possible to derive mod-Gaussian
convergence and moderate deviation results for linear combinations of subgraph count
statistics. However, since we do not have a specific motivation for that and since the
statement for a single subgraph count statistics is already quite technical, we have cho-
sen not to present such a result.

10.3.2. Computing σ2 and L. The proof above does not give an explicit value for
σ2 and L. Yet, these values can be obtained by analyzing the graphs G that contribute
to the highest degree term of κ(2) and κ(3).

LEMMA 10.3.2. Let γ be a graph with k vertices and h edges. Then the positive number σ
appearing in Theorem 10.0.1 is given by

σ2 = 2h2p2h−1(1− p).

PROOF. By definition, σ2 is the coefficient of n2k−2 in κ(2)(X(n)
γ ). As seen in Equation

(51), the quantity κ(2)(X(n)
γ ) can be written as

∑
G

κ(G)NG,

where the sum runs over some graphs G with vertex set V t V. However, we have
seen that κ(G) = 0 unless the 2-contraction H2 of G is connected — see Inequality (48)
— and on the other hand, NG is a polynomial in n, whose degree is the number cG of
connected component of G.

As we are interested in the coefficient of n2k−2, we should consider only graphs G with
at least 2k− 2 connected components and a connected 2-contraction. These graphs are
represented on Figure 2.
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FIGURE 2. Graphs involved in the computation of the main term in κ(2)(X(n)
γ ).

Namely, we have to choose a pair of vertices on each side and connect each of these
vertices to one vertex of the other pair (there are 2 ways to make this connection, if
both pairs are fixed). A quick computation shows that, for such a graph G,

κ(G) =

{
p2h−1(1− p) if both pairs correspond to an edge of γ;
0 else.

Finally there are 2h2 graphs with a non-zero contribution to the coefficient of n2k−2 in
κ(2)(X(n)

γ ). For each of these graphs, NG = n(n− 1) · · · (n− 2k + 3) = n2k−2(1 + o(1)).

Therefore, the coefficient of n2k−2 in κ(2)(X(n)
γ ) is 2h2p2h−1(1− p), as claimed. �

The number L can be computed by the same method.

LEMMA 10.3.3. Let γ be a graph with k vertices and h edges. Then the number L appearing
in Theorem 10.0.1 is given by

L = 12h3(h− 1)p3h−2(1− p)2 + 4h3p3h−2(1− p)(1− 2p).

PROOF. Here, we have to consider graphs G on vertex set V t V t V with at least
3k− 4 connected components and with a connected 2-contraction. These graphs are of
two kinds, see Figure 3.

FIGURE 3. Graphs involved in the computation of the main term in κ(3)(X(n)
γ ).

In the first case (left-hand side picture), an edge on the left can possibly have an
extremity in common with an edge on the right. In this case, one has to add an edge
to complete the triangle (indeed, all graphs G are disjoint unions of cliques). But this
cannot happen for both edges on the left simultaneously, otherwise the graph belong
to the second family.
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The following is now easy to check. There are 12h3(h− 1) graphs of the first kind
with a non-zero cumulant κ(G) — 3 choices for which copy of V plays the central role,
h3(h− 1) for pairs of vertices and 4 ways to link the chosen vertices — and, for these
graphs, the corresponding cumulant is always κ(G) = p3h−2(1− p)2. Similarly, there
are 4h3 graphs of the second kind with a non-zero cumulant κ(G). For these graphs,
κ(G) = p3h−2(1− p)(1− 2p). In both cases, NG = n3k−4(1 + o(1)). This completes the
proof. �

EXAMPLE 10.3.4. Denote Tn the number of triangles in a random Erdös-Rényi graph
Γ(n, p) (each triangle being counted 6 times). According to the previous Lemmas, the
parameters σ2 and L are respectively

σ2 = 18 p5 (1− p) and L = 108 p7 (1− p)(7− 8p).

Moreover, E[Tn] = n↓3 p3 = n3 p3 − 3 n2 p3 + O(n). So,

P
[

Tn ≥ n3p3 + n2(v− 3p3)
]
'
√

9p5(1− p)
π v2 exp

(
− v2

36 p5(1− p)
+

(7− 8p) v3

324 n p8(1− p)2

)

for 1� v� n1/2.

10.3.3. Case of a non-constant sequence pn. Proposition 10.1.2 still holds when
pn is a non-constant sequence (the particularly interesting case is pn → 0). Applying
Theorem 9.1.8 instead of Theorem 9.1.7, one gets a slightly sharper bound

∣∣∣κ(r)(X(n)
γ )

∣∣∣ ≤ Cr rr−2 nr(k−2)+2 (pn)
h.

But, unlike in the case pn = p constant, this bound is not always optimal for a fixed
r (even up to a multiplicative constant) . Indeed, [JŁR00, Lemma 6.17] gives stronger
bounds than ours (see also Example 6.19 in [JŁR00]). Finding a uniform bound for
cumulants, whose dependence in r is of order (Cr)r (so that we have mod-Gaussian
convergence), and which is optimal for fixed r is an open problem.

Yet, we can still give a lower bound on the normality zone. Let αn and βn be defined
as follows:

αn = n2 (pn)
4h−3 (1− pn)

3;

βn = nk−2 (pn)
1−h (1− pn)

−1.

With these choices, one has
∣∣∣κ(r)(X(n)

γ )
∣∣∣ ≤ (Cr)r αn(βn)

r.

Notice that κ(2)(X(n)
γ ) and κ(3)(X(n)

γ ) are polynomials in n and pn, of degree 2h and 3h
in pn. Thanks to this observation, if pn → 0, then

κ(2)(X(n)
γ ) = 2h2 n2k−2 (pn)

2h−1(1− pn) + O(n2k−3)

= 2h2 αn (βn)
2
(

1 + O
(

1
n (pn)2h−1

))
;
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κ(3)(X(n)
γ ) = h3 n3k−4 (pn)

3h−2(1− pn) (12(h− 1)(1− pn) + 4(1− 2pn)) + O(n3k−5)

= αn (βn)
3
(

O((pn)
2h−2) + O

(
1

n (pn)h

))
.

From the discussion of Section 5.1, we conclude that we have mod-Gaussian conver-
gence if (αn)1/3 = o(n (pn)2h−1) and n (pn)h → +∞. The first condition is equivalent
to n (pn)2h → +∞, so, if

n−
1

2h � pn � 1,
then Conditions (26) are met, and one has a mod-Gaussian convergence of

X(n)
γ −E[X(n)

γ ]

nk− 4
3 (pn)

h
3

with parameters tn = 2h2 n
2
3 (pn)

4h
3 −1 (1− pn) and limit ψ(z) = 1. Therefore, in this

setting,
X(n)

γ −E[X(n)
γ ]

h nk−1
√

2(pn)2h−1(1− pn)

has normality zone at least O(n
1
3 (pn)

2h
3 − 1

2 ). Note that we only have a lower bound on
the normality zone, since the limit in the mod-Gaussian convergence is trivial.

REMARK 10.3.5. Unfortunately the convergence speed hypotheses (52) are not sat-
isfied, so one cannot apply Proposition 5.2.1.





CHAPTER 11

Random character values from central measures on partitions

11.1. Background

Our Theorem 9.1.7 can also be used to study certain models of random integer
partitions, which encode the lengths of the longest increasing subsequences in random
permutations or random words. Consider first a random permutation σ = σn chosen
uniformly among the n! permutations of size n. An increasing subsequence of the
permutation σ is a subword σ(i1)σ(i2) · · · σ(il) of the word σ(1)σ(2) · · · σ(n), with

i1 < i2 < · · · < il ; σ(i1) ≤ σ(i2) ≤ · · · ≤ σ(il).

Denote `n = `(σn) the longest length of an increasing subsequence of σn; it is a random
variable with values in [[1, n]]. In the 60’s, numerical experiments ([Ula61]) lead Ulam
to conjecture the existence of a limit in probability

lim
n→∞

`n√
n
= c > 0

and this was proved later by Hammersley, see [Ham72]. The value of c was then
computed by Logan and Shepp and separately by Kerov and Vershik to be equal to
2, cf. [LS77, KV77] for the inequality c ≥ 2, and [KV86] for the converse inequal-
ity. More recently, the fluctuations n−1/6(`n − 2

√
n) of the length of the longest in-

creasing subsequence were shown to converge to the Tracy-Widom distribution, see
[BDJ99, BOO00, Oko00, Joh01].

The proof of the Logan-Shepp-Kerov-Vershik law of large numbers relies on the
use of the Robinson-Schensted-Knuth algorithm ([Rob38, Sch61]), which associates to
a permutation σ or more generally to a word w of length n two numberings (tableaux)
of the cells of a Young diagram λ of size n. The first row of this Young diagram has
length λ1 = `(w), and more generally, for any k ≥ 1,

λ1 + λ2 + · · ·+ λk

= max{sum of the lengths of k disjoint weakly increasing subwords of w}.
One can then study the random Young diagram λ under the law that is the image of the
uniform probability measure on S(n), or more generally under the image by RSK of
any probability measure on words of length n. Denote P(n) the set of Young diagrams
of size n. If σ = σn is a uniform random permutation of size n and λ is its image by
RSK, then the probability measure on P(n) that one obtains is the so-called Plancherel
measure. It can be shown that it is given by

P[λ] =
(dim Sλ)2

n!
,

where Sλ is the Specht module of label λ, that is one of the irreducible complex linear
representations of S(n) (see [Sag01]). This algebraic point of view is particular useful,
and its generalisation with spectral measures of traces of symmetric groups leads to

101
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the study of certain random variables, which shall be shown in this chapter to be mod-
Gaussian convergent.

11.2. Definitions and results

Recall that if G is a finite group and if τ is a function G → C with τ(eG) = 1 and
τ(gh) = τ(hg) (such a function is called a trace on G), then τ can be expanded uniquely
as a linear combination of normalised irreducible characters:

τ = ∑
λ∈Ĝ

Pτ[λ] χ̂λ,

where Ĝ is the (finite) set of isomorphism classes of irreducible representations of G
and χ̂λ the normalised (i.e. divided by the dimension of the space) character of the
irreducible representation associated to λ.

DEFINITION 11.2.1. The map λ 7→ Pτ[λ] is called the spectral measure of the trace τ.
It takes non-negative values if and only if, for every family (g1, . . . , gn) of elements of G, the
matrix (τ(gi(gj)

−1))1≤i,j≤n is Hermitian non-negative definite. Then, the spectral measure is
a probability measure on Ĝ.

When G = S(n) is the symmetric group of order n, the irreducible representations
of G are indexed by the integer partitions of size n, so a spectral measure associated to
a normalised trace on S(n) is a (complex) measure on P(n). In the sequel, we shall
also consider the infinite symmetric group S(∞) =

⋃
n≥1 S(n), which is the group of

permutations of the set of natural numbers that move a finite number of elements.

DEFINITION 11.2.2. A central measure on partitions is a family (Pτ,n)n∈N of spectral
measures on the sets P(n) that come from the same trace of the infinite symmetric group S(∞).
In other words (Pτ,n)n∈N is a central measure if there exists a trace τ : S(∞)→ C such that

τ|S(n) = ∑
λ∈P(n)

Pτ,n[λ] χ̂λ.

This definition of central measures comes from [KV81, Section 3], and it can be
generalised to the setting of approximately finite algebras, see [SV75] and [Ker03].

EXAMPLE 11.2.3. Consider the regular trace τ(σ) = 1σ=id of the infinite symmetric
group S(∞). The corresponding spectral measures are the Plancherel measures given
by the formula Pn[λ] = (dim Sλ)2/n!, see e.g. [Oko00, IO02]. Thus, the previous defi-
nition generalises Ulam’s problem and the study of Plancherel measures of symmetric
groups.

A central measure (Pτ,n)n∈N is non-negative if and only if (τ(ρiρ
−1
j ))1≤i,j≤n is Her-

mitian non-negative definite for any finite family of permutations ρ1, . . . , ρn. The set of
non-negative central measures, i.e., coherent systems of probability measures on parti-
tions has been identified in [Tho64] and later studied in [KV81]; see also [Ols90, Oko99]
for more general results on representations of S(∞), and [Buf12, Mél12] for a proba-
bilistic study of the central measures. Call extremal a non-negative trace on S(∞) that
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is not a positive linear combination of other non-negative traces. Then, extremal cen-
tral measures are indexed by the infinite-dimensional Thoma simplex

Ω =

{
ω = (α, β) =

(
(α1 ≥ α2 ≥ · · · ≥ 0), (β1 ≥ β2 ≥ · · · ≥ 0)

) ∣∣∣∣
∞

∑
i=1

αi + βi ≤ 1
}

.

The trace on the infinite symmetric group corresponding to a parameter ω is given by

τω(σ) = ∏
c∈C(σ)

p|c|(ω) with p1(ω) = 1, pk≥2(ω) =
∞

∑
i=1

(αi)
k + (−1)k−1(βi)

k, (53)

C(σ) denoting the set of cycles of σ.

We can finally introduce the random variables that we are interested in. In [KV81],
Kerov and Vershik have shown that if ω ∈ Ω and ρ ∈ S(∞) are fixed, then the random
character value χ̂λ(ρ) with λ chosen according to the central measure Pω,n converges
in probability towards the trace τω(ρ). Informally, central measures on partitions and
extremal traces of S(∞) are concentrated. More recently, it was shown by Féray and
Méliot that this concentration is Gaussian, see [FM12, Mél12]. The aim of this chapter
is to use the techniques of Sections 9-10 in order to prove the following:

THEOREM 11.2.4. Fix a parameter ω ∈ Ω, and denote ρ a k-cycle in S(∞) (for k ≥ 2).
Assume p2k−1(ω) − (pk(ω))2 6= 0. Denote then X(n)

ρ the random character value χ̂λ(ρ),
where:

• λ ∈ P(n) is picked randomly according to the central measure Pω,n,

• and χ̂λ denotes the normalised irreducible character indexed by λ of S(n), that is

χ̂λ(ρ) =
tr Πλ(ρ)

dim Vλ
with (Vλ, Πλ) irreducible representation of S(n).

The rescaled random variable n2/3 [X(n)
(k) − pk(ω)

]
converges in the mod-Gaussian sense with

parameters tn = n1/3 σ2 and limiting function ψ(z) = exp(L z3

6 ), where

σ2 = k2 (p2k−1(ω)− pk(ω)2);
L = k3 ((3k− 2) p3k−2(ω)− (6k− 3) p2k−1(ω) pk(ω) + (3k− 1) pk(ω)3).

As in Chapter 10, the mod-Gaussian convergence is proved by bounds on cumu-
lants of type (25). Furthermore, the hypothesis (27) on the third and second cumulant
are ensured by the polynomiality of joint cumulants — Lemma 11.3.3. Therefore, we
can apply Propositions 5.2.1 and 4.4.1.

COROLLARY 11.2.5. Let X(n)
k = X(n)

(k) be the random character value on a k-cycle as

defined above. Then n1/2 (X(n)
k − pk(ω)) satisfies a central limit theorem with normality zone

o(n1/6). Moreover, at the edge of this normality zone and at a slightly larger scale, the deviation
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probabilities are given by:

P
[
n1/2(X(n)

k − pk(ω)) ≥ n1/6σ2xn

]
=

e−
(xn)2 n1/3σ2

2

xn n1/6 σ
√

2π
e

L(xn)3
6 (1 + o(1));

P
[
n1/2(X(n)

k − pk(ω)) ≤ −n1/6σ2xn

]
=

e−
(xn)2 n1/3σ2

2

xn n1/6 σ
√

2π
e
−L(xn)3

6 (1 + o(1)).

for any sequence (xn)n∈N of positive numbers bounded away from 0 with xn = o(n1/12), and
where σ2 and L as in Theorem 11.2.4.

REMARK 11.2.6. The condition σ2 > 0 is satisfied as soon as the sequence α t β
associated to the Thoma parameter ω contains two different non-zero coordinates. In-
deed, for any summable non-increasing non-negative sequence γ = (γ1, γ2, . . .) with
γi > γi+1 for some i, one has

(
∞

∑
i=1

(γi)
k−ε

)(
∞

∑
i=1

(γi)
k+ε

)
≥
(

∞

∑
i=1

(γi)
k

)2

with equality if and only if ε = 0. Indeed, the derivative of the function of ε on the
left-hand side is

∑
i<j

(
γiγj

)k log

(
γi

γj

) ((
γi

γj

)ε

−
(

γj

γi

)ε
)

.

Applying the result to γ = α t β and ε = k− 1, we obtain on the left-hand side
(

∞

∑
i=1

γi

)(
∞

∑
i=1

(γi)
2k−1

)
=

(
∞

∑
i=1

αi + βi

)
p2k−1(ω) ≤ p2k−1(ω)

and on the right-hand side
(

∞

∑
i=1

(γi)
k

)2

≥
(

∞

∑
i=1

(αi)
k + (−1)k−1(βi)

k

)2

= (pk(ω))2.

This proof shows that the condition σ2 > 0 is also satisfied if 0 < ∑∞
i=1 αi + βi < 1.

This chapter is organised as follows. In Section 11.3, we present the necessary ma-
terial. In Section 11.4, we then prove bounds on these cumulants similar to those of
Proposition 10.1.2, and we compute the limits of the second and third cumulants. This
will allow us to use in Section 11.5 the framework of Section 5.2 in order to prove the
results stated above. We shall also detail some consequences of these results for the
shapes of the random partitions λ ∼ Pn,ω viewed as Young diagrams, in the spirit of
[FM12, Mél12].

REMARK 11.2.7. By using the Hopf algebra of free quasi-symmetric functions, one
can show that the central measures Pω,n associated to parameters ω of the Thoma
simplex are the images by the Robinson-Schensted-Knuth algorithm of certain non-
uniform probability measures on permutations, that are constructed by random shuffles
of cards; see [DHT02] and [Sta01, Ful04]. Therefore, the study of central measures is
indeed a generalisation of Ulam’s problem of the longest increasing subsequence in a
random uniform permutation.
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As this combinatorial interpretation of the central measures is not at all required to
understand the results of this chapter, we choose to skip it; and everything hereafter
can be followed starting only from the algebraic definition 11.2.2.

11.3. Technical preliminaries

11.3.1. Non-commutative probability theory. The originality of this last chapter
is that, although the problem is formulated in a classical probability space, it is natural
to work in the setting of non-commutative probability theory.

DEFINITION 11.3.1. A non-commutative probability space is a complex unital algebra
A endowed with an adjunction ?, and with some linear functional ϕ : A → C such that
ϕ(1) = 1 and, for any a ∈ A , ϕ(a?a) ≥ 0.

This generalises the notion of probability space: elements of A should be thought
as random variables, while ϕ should be thought as the expectation. The difference
is that, unlike random variables in usual probability theory, elements of A are not
assumed to commute. Usually one also assumes that ϕ is tracial, i.e., ϕ(ab) = ϕ(ba) for
any a, b ∈ A .

There are five natural analogues of the notion of independence in non-commutative
probability theory, see [Mur03]. In our context, the relevant one is the following one,
sometimes called tensor independence [HS10, Definition 1.1].

DEFINITION 11.3.2. Two subalgebras A1 and A2 of A are tensor independent if and
only if, for any sequence a1, . . . , ar with, for each i, ai ∈ A1 or ai ∈ A2, one has

ϕ(a1 . . . ar) = ϕ




→
∏

1≤i≤r
ai∈A1

ai


 ϕ




→
∏

1≤i≤r
ai∈A2

ai


 .

The arrow on the product sign means that the ai in the product appear in the same order as in
a1, . . . , ar.

With this definition of independence, the notion of dependency graph presented in
Section 9.1 is immediately extended to the non-commutative framework. One can also
define joint cumulants as follows: if a1, . . . , ar are elements in A , we set

κ(a1, . . . , ar) = ∑
π

µ(π) ∏
B∈π

ϕ

(
→
∏
i∈B

ai

)
.

Note that, in the proof of Theorem 9.1.7, independence is only used in equation (46).
By definition of tensor independence, equation (46) also holds in the non-commutative
setting and hence, so does Theorem 9.1.7.
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11.3.2. Two probability spaces. From now on, we fix an element ω in the Thomas
simplex Ω. Denote CS(n) the group algebra of S(n). The function τω, defined by
Equation (53), can be linearly extended to CS(n). Then (CS(n), τω) is a non-commut-
ative probability space.

Note that we are now working with two probability spaces: the non-commutative
probability space (CS(n), τω) and the usual probability space that we want to study
(the set of Young diagrams of size n with the probability measure Pω,n). They are
related as follows. Consider an element y in CS(n) and define the random variable
(for the usual probability space) Xy by Xy(λ) = χ̂(y). Then one has

EPω,n(Xy) = ∑
λ`n

Pω,n(λ)χ̂(y) = τω(y).

In other words, the expectations of y (in the non-commutative probability space) and of
Xy (in the usual probability space) coincide (recall that the trace of a non-commutative
probability space, here τω, is considered as an expectation).

Besides, if we restrict to the center of (CS(n), τω), then the map y 7→ Xy is an
algebra morphism, called discrete Fourier transform. As a consequence, if y1, . . . , yr lie in
the center of (CS(n), τω), their joint moments (and joint cumulants) are the same as
those of Xy1 , . . . , Xyr .

11.3.3. Renormalised conjugacy classes and polynomiality of cumulants. Given
a partition µ = (µ1, . . . , µ`) of size |µ| = ∑`

i=1 µi = k, we denote

Σµ,n = ∑
A

ρµ(A) where ρµ(A) = (a1, . . . , aµ1)(aµ1+1, . . . , aµ1+µ2) · · · .

In the equation above, the formal sum is taken over arrangements in A(n, k) and is
considered as an element of the group algebra CS(n). It clearly lies in its center. Be-
sides, Σµ,n is the sum of n↓k elements of cycle-type µ, hence, if ρ is a fixed permutation
of type µ, one has:

XΣµ,n = n↓kXρ.

Note that considering these elements Σµ,n and their normalised characters is a classical
trick in the study of central measures on Young diagrams; see [IO02, Śni06b, FM12].

Fix some permutations ρ1, . . . , ρr of respective size k1, . . . , kr. Denote µ1, . . . , µr their
cycle-types.

n↓k1 · · · n↓kr κ
(

X(n)
ρ

µ1 , . . . , X(n)
ρµr

)
= κ(Σµ1 , . . . , Σµr)

= ∑
A1∈A(n,k1)...
Ar∈A(n,kr)

κ
(

ρµ1(A1), . . . , ρµr(Ar)
)

. (54)

As in the framework of subgraph count statistics, the invariance of τω by conjugacy of
its argument implies that the joint cumulant κ

(
ρµ1(A1), . . . , ρµr(Ar)

)
depends only on

the graph GA associated to the family of arrangement A = (A1, . . . , Ar). Copying the
proof of Corollary 10.2.3, we get:
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LEMMA 11.3.3. Fix some integer partitions µ1, . . . , µr. Then the rescaled joint cumulant

κ(Σµ1 , . . . , Σµr) = n↓k1 · · · n↓kr κ
(

X(n)
ρ

µ1 , . . . , X(n)
ρµr

)

is a polynomial in n.

11.4. Bounds and limits of the cumulants

11.4.1. The dependency graph for random character values. If k = |µ|, we are
interested in the non-commutative random variables

Σµ,n = ∑
A∈A(n,k)

ρµ(A) ∈ CS(n).

Again, to control the cumulants, we shall exhibit a dependency graph for the families
of random variables {ρµ(A)}A∈A(n,k).

Due to the multiplicative form of Equation (53), if I and J have disjoint subsets of
[n], the subalgebras CS(I) and CS(J) are tensor independent (here, S(I) denotes the
group of permutations of I, canonically included in S(n)). Therefore, one can associate
to {ρµ(A)}A∈A(n,k) the dependency graph B defined by:

• its vertex set is A(n, k);

• there is an edge between A and A′ if |A ∩ A′| ≥ 1.

The graph B is obviously regular with degree strictly smaller than k2 n↓k−1. On the
other hand, all joint moments of the family (ρµ(A))A∈A(n,k) are normalised characters
of single permutations and hence bounded by 1 in absolute value. So one can once
again apply Theorem 9.1.7 and we get:

PROPOSITION 11.4.1. Fix a partition µ of size k. For any r ≤ 1, one has
∣∣κ(r)(Σµ)

∣∣ ≤ 2r−1rr−2 n↓k (k2n↓k−1)r−1;

∣∣κ(r)(X(n)
ρµ )

∣∣ ≤ rr−2
(

2k2

n

)r−1

.

REMARK 11.4.2. Using Theorem 9.2.2, one can also obtain a bound for joint cumu-
lants of the X(n)

ρµ , namely,

∣∣∣κ
(

X(n)
ρ

µ1 , . . . , X(n)
ρµr

)∣∣∣ ≤ k1 · · · kr
(
r · max

1≤i≤r
ki
)r−2

(
2
n

)r−1

for integer partitions µ1, . . . , µr of sizes k1, . . . , kr. In the following, we shall focus
on the case of simple random variables X(n)

ρµ , though most results also hold in the
multi-dimensional setting. Actually, in order to compute the asymptotics of the first
cumulants of Xρµ , it will be a bit clearer to manipulate joint cumulants of variables
Σµ1 , . . . , Σµr with arbitrary integer partitions.
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11.4.2. Limits of the second and third cumulants. Because of Lemma 11.3.3 and
Proposition 11.4.1, for any fixed integer partitions,

κ
(

X(n)
ρ

µ1 , . . . , X(n)
ρµr

)
n1−r ' κ

(
Σµ1 , . . . , Σµr

)
nk1+···+kr−(r−1)

converges to a constant. Let us compute this limit when r = 2 or 3; we use the same
reasoning as in Section 10.3.2.

As κ is invariant by simultaneous conjugacy of its arguments, the summand in
Equation (54) depends only on the graph G = GA associated to the collection A =
(A1, . . . , Ar), and we shall denote it κ(G). We fix partitions µ1, . . . , µr of respective
sizes k1, . . . , kr, and write

κ(Σµ1 , . . . , Σµr) = ∑
G

κ(G) NG.

Here, as in Chapter 10, NG denotes the number of list A of arrangements with associ-
ated graph G.

When r = 2, we have to look for graphs G on vertex set Vk = [k1] t [k2] with 1-
contraction connected and at least k1 + k2 − 1 connected components, because these
are the ones that will give a contribution for the coefficient of nk1+k2−1. For i ∈ [`(µ1)]
and j ∈ [`(µ2)], denote

(µ1 on µ2)(i, j) = (µ1 \ µ1
i ) t (µ2 \ µ2

j ) t {µ1
i + µ2

j − 1}.
This is the cycle type of a permutation ρµ1(A1) ρµ2(A2), where GA is the graph with
one edge joining an element of A1 in the cycle of length µ1

i with an element of A2 in the
cycle of length µ2

j . These graphs are the only ones involved in our computation, and
they yield

κ(G) = p(µ1onµ2)(i,j)(ω)− pµ1tµ2(ω),

where for a partition µ we denote pµ(ω) the product ∏
`(µ)
i=1 pµi(ω). So,

PROPOSITION 11.4.3. For any partitions µ and ν, the limit of n κ(X(n)
ρµ , X(n)

ρν ) is

`(µ)

∑
i=1

`(ν)

∑
j=1

µi νj
(

p(µonν)(i,j)(ω)− pµtν(ω)
)
.

In particular, for cycles µ = (k) and ν = (l),

lim
n→∞

n κ
(

X(n)
k , X(n)

l

)
= kl

(
pk+l−1(ω)− pk,l(ω)

)
.

On the other hand, if µ = ν, then the limit of n κ(2)(X(n)
ρµ ) is

(pµ(ω))2 ∑
1≤i,j≤`(µ)

µi µj

(
p(µiµj−1)(ω)

pµi(ω) pµj(ω)
− 1

)
.

When r = 3, we look for graphs G on vertex set Vk = [k1] t [k2] t [k3] with 1-
contraction connected and at least k1 + k2 + k3− 2 connected components. They are of
three kinds:
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(1) One cycle in ρµ2(A2) is connected to two cycles in ρµ1(A1) and ρµ3(A3), but
not by the same point in this cycle of ρµ2(A2). This gives for the product
ρµ1(A1) ρµ2(A2) ρµ3(A3) a permutation of cycle type

(µ1 on µ2 on µ3)(i, j, k) = (µ1 \ µ1
i ) t (µ2 \ µ2

j ) t (µ3 \ µ3
k) t {µ1

i + µ2
j + µ3

k − 2};
and the corresponding cumulant is

κ(G) = pµ1tµ2tµ3(ω) + p(µ1onµ2onµ3)(i,j,k)(ω)

− p((µ1onµ2)(i,j))tµ3(ω)− p((µ2onµ3)(j,k))tµ1(ω).

In this description, one can permute cyclically the indices 1, 2, 3, and this gives
3 different graphs.

(2) One cycle in ρµ2(A2) is connected to two cycles in ρµ1(A1) and ρµ3(A3), and
by the same point in this cycle of ρµ2(A2). In other words, there is an identity
a1

s = a2
t = a3

u. This gives again for ρµ1(A1) ρµ2(A2) ρµ3(A3) a permutation of
cycle type (µ1 on µ2 on µ3)(i, j, k), but the corresponding cumulant takes now
the form

κ(G) = 2 pµ1tµ2tµ3(ω) + p(µ1onµ2onµ3)(i,j,k)(ω)− p((µ1onµ2)(i,j))tµ3(ω)

− p((µ2onµ3)(j,k))tµ1(ω)− p((µ1onµ3)(i,k))tµ2(ω).

Here, there is no need to permute cyclically the indices in the enumeration for
NG.

(3) Two distinct cycles in ρµ2(A2) are connected to a cycle of ρµ1(A1) and to a cycle
of ρµ3(A3), which gives a permutation of cycle type

(µ1 on µ2 on µ3)(i, j; k, l)

= (µ1 \ µ1
i ) t (µ2 \ {µ2

j , µ2
k}) t (µ3 \ µ3

l ) t {µ1
i + µ2

j − 1, µ2
k + µ3

l − 1}.
The cumulant corresponding to this last case is

κ(G) = pµ1tµ2tµ3(ω) + p(µ1onµ2onµ3)(i,j;k,l)(ω)

− p((µ1onµ2)(i,j))tµ3(ω)− p((µ2onµ3)(k,l))tµ1(ω),

and again one can permute cyclically the indices 1, 2, 3 to get 3 different graphs.

Consequently:

PROPOSITION 11.4.4. For any partitions µ, ν and δ, the limit of n2 κ(X(n)
ρµ , X(n)

ρν , X(n)
ρδ

) is

∑
Z/3Z

(
`(µ)

∑
i=1

`(ν)

∑
j=1

`(δ)

∑
k=1

µi νj (νj − 1) δk

( pµtνtδ(ω)+p(µonνonδ)(i,j,k)(ω)

−p((µonν)(i,j))tδ(ω)−p((νonδ)(j,k))tµ(ω)

)

+
`(µ)

∑
i=1

`(ν)

∑
(j 6=k)=1

`(δ)

∑
l=1

µi νj νk δl

( pµtνtδ(ω)+p(µonνonδ)(i,j;k,l)(ω)

−p((µonν)(i,j))tδ(ω)−p((νonδ)(k,l))tµ(ω)

)



+
`(µ)

∑
i=1

`(ν)

∑
j=1

`(δ)

∑
k=1

µi νj δk

(2 pµtνtδ(ω)+p(µonνonδ)(i,j,k)(ω)−p((µonν)(i,j))tδ(ω)

−p((νonδ)(j,k))tµ(ω)−p((µonδ)(i,k))tν(ω)

)
,
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where ∑Z/3Z means that one permutes cyclically the partitions µ, ν, δ.

In particular, for cycles µ = (k), ν = (l) and δ = (m), limn→∞ n2 κ(X(n)
k , X(n)

l , X(n)
m ) is

equal to

klm
(
(k + l + m− 1) pk,l,m(ω) + (k + l + m− 2) pk+l+m−2(ω)

− (k + l − 1) pk+l−1,m(ω)− (l + m− 1) pl+m−1,k(ω)− (l + m− 1) pk+m−1,l(ω)
)
.

One recovers for k = l = m the values of σ2 and L announced in Theorem 11.2.4. On

the other hand, if µ = ν = δ, then the limit of
n2 κ(3)(X(n)

ρµ )

(pµ(ω))3 is

∑
1≤i,j,k≤`(µ)

3 µi µ2
j µk

(
1 +

pµi+µj+µk−2(ω)

pµi(ω) pµj(ω) pµk(ω)
−

pµi+µj−1(ω)

pµi(ω) pµj(ω)
−

pµj+µk−1(ω)

pµj(ω) pµk(ω)

)

+ ∑
1≤i,j 6=k,l≤`(µ)

3 µi µj µk µl

(
1−

pµi+µj−1(ω)

pµi(ω) pµj(ω)

)(
1− pµk+µl−1(ω)

pµk(ω) pµl(ω)

)

+ ∑
1≤i,j,k≤`(µ)

µi µj µk

(
3

pµi+µj−1(ω)

pµi(ω) pµj(ω)
− 2

pµi+µj+µk−2(ω)

pµi(ω) pµj(ω) pµk(ω)
− 1

)
.

11.5. Asymptotics of the random character values and partitions

Fix an integer k ≥ 2, and consider the random variable

Vn,k = n2/3 (X(n)
ρ − pk(ω)),

where ρ is a k-cycle. If p2k−1(ω)− (pk(ω))2 > 0, then the previous results show that

E[ezVn,k ] = exp

(
n1/3

2
σ2 z2 +

1
6

L z3

)
(1 + o(1)),

where σ and L are the quantities given in the statement of Theorem 11.2.4. This ends
the proof of Theorem 11.2.4 and Corollary 11.2.5. Note that the speed of convergence of
the cumulants is each time a O((αn)−1) because of the polynomial behavior established
in Lemma 11.3.3; therefore, one can indeed apply Proposition 5.2.1 with αn = n and
βn = n−1. The theorem can be extended to other permutations ρ of S(∞) than cycles:
if ρ has cycle-type µ, then define

Vn,µ = n2/3 (X(n)
ρ − pµ(ω)).

The generating series of Vn,µ is asymptotically given by:

E[ezVn,µ ] = exp

(
n1/3

2
σ2(µ) z2 +

1
6

L(µ) z3

)
,

where σ2(µ) = limn→∞ n κ(2)(X(n)
ρµ ) and L(µ) = limn→∞ n2 κ(3)(X(n)

ρµ ) are the limit-
ing quantities given in Section 11.4.2. Hence, provided that σ2(µ) > 0, one has mod-
Gaussian convergence of Vn,µ, and the limiting variance σ2(µ) is non-zero under the
same conditions as those given in Remark 11.2.6. Under these conditions, one can also
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easily establish mod-Gaussian convergence for every vector of renormalised random
character values (Vn,µ1 , . . . , Vn,µ`

)

REMARK 11.5.1. There is one case which is not covered by our theorem, but is of
particular interest: the case ω = ((0, 0, . . .), (0, 0, . . .)). This parameter of the Thoma
simplex corresponds to the Plancherel measures of the symmetric groups, and in this
case, since p2(ω) = p3(ω) = · · · = 0, the parameters of the mod-Gaussian conver-
gence are all equal to 0. Indeed, the random character values under Plancherel mea-
sures do not have fluctuations of order n−1/2. For instance, Kerov’s central limit theo-
rem (cf. [Hor98, IO02]) ensures that the random character values

nk/2 χ̂λ(ck)√
k

on cycles ck of lengths k ≥ 2 converges in law towards independent Gaussian vari-
ables; so the fluctuations are of order n−k/2 instead of n−1/2. One still expects a mod-
Gaussian convergence for adequate renormalisations of the random character values;
however, the combinatorics underlying the asymptotics of Plancherel measures are
much more complex than those of general central measures — see [Śni06a] — and we
have not been able to prove mod-Gaussian convergence here.

From the estimates on the laws of the random character values, one can prove
many estimates for the parts λ1, λ2, . . . of the random partitions taken under central
measures. The arguments of algebraic combinatorics involved in these deductions
are detailed in [FM12, Mél12], so here we shall only state results. Given a partition
λ = (λ1, . . . , λ`) of size n, the Frobenius coordinates of λ are the two sequences

(
λ1 −

1
2

, λ2 −
3
2

, . . . , λd − d +
1
2

)
,
(

λ′1 −
1
2

, λ′2 −
3
2

, . . . , λ′d − d +
1
2

)

where λ′1, λ′2, etc. are the sizes of the columns of the Young diagram of λ, and d is
the size of the diagonal of the Young diagram. Denote (a1, . . . , ad), (b1, . . . , bd) these
coordinates, and

Xλ =
d

∑
i=1

ai

n
δ(

ai
n )

+
d

∑
i=1

bi

n
δ(− bi

n

).

This is a (random) discrete probability measure on [−1, 1] whose moments

pk(λ) = nk
∫ 1

−1
xk−1 Xλ(dx)

are also the moments of the Frobenius coordinates, so Xλ encodes the geometry of the
Young diagram λ. We shall also need

Xω =
d

∑
i=1

αi δ(αi)
+

d

∑
i=1

βi δ(−βi)
+ γ δ(0),

which will appear in a moment as the limit of the random measures Xλ. Here, γ =

1−∑∞
i=1 αi −∑∞

i=1 βi. Notice that En,ω[X
(n)
k ] = τω(ck) = Xω(xk−1).

It is shown in [IO02] that for any partition λ of size n and for any k,

pk(λ) = Σk(λ) + remainder,
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where the remainder is a linear combination of symbols Σµ with |µ| < k. It fol-
lows that the cumulants of the pk’s satisfy the same estimates as the cumulants of the
Σk’s. Therefore, the rescaled random variable ∇(xk−1) = n2/3 (Xλ(xk−1)− Xω(xk−1))
converges in the mod-Gaussian sense with parameters n1/3 σ2 and limiting function
ψ(z) = exp(L z3

6 ), where σ2 and L are given by the same formula as in the case of the

random character value X(n)
k , that is to say

σ2 = k2 (p2k−1(ω)− pk(ω)2);
L = k3 ((3k− 2) p3k−2(ω)− (6k− 3) p2k−1(ω) pk(ω) + (3k− 1) pk(ω)3).

Actually, one has mod-Gaussian convergence for any finite vector of random variables
∇(xk−1), k ≥ 1.

We don’t know how to obtain from there a moderate deviation result for the parts
λ1, λ2, . . . of the partition; but one has at least a central limit theorem when one has
strict inequalities α1 > α2 > · · · > αi > · · · and β1 > β2 > · · · > βi > · · · (see
[Mél12], and also [Buf12]). Indeed, for any smooth test function ψi equal to 1 around
αi and to 0 outside a neighbourhood of this point, one has

Xλ(ψi)− Xω(ψi) =
ai

n
− αi (55)

with probability going to 1, and then the quantities in the left-hand side renomalised
by
√

n converge jointly towards a Gaussian vector with covariance

κ(i, j) = δij αi − αiαj. (56)

So, the fluctuations
√

n
(

λi

n
− αi

)

of the rows of the random partitions taken under central measures Pn,ω converge
jointly towards a Gaussian vector with covariances given by Equation (56), and one
can include in this result the fluctuations

√
n

(
λ′j
n
− β j

)

of the columns of the random partitions, with a similar formula for their covariances.

The reason why it becomes difficult to get by the same technique the moderate de-
viations of the rows and columns is that in Equation (55), one throws away an event
of probability going to zero (because of the law of large numbers satisfied by the rows
and the columns, see e.g. [KV81]). However, one cannot a priori neglect this event in
comparison to rare events such as {ai − nαi ≥ n2/3 x}; indeed, these rare events are
themselves of probability going exponentially fast to zero. Also, there is the problem
of approximation of smooth test functions by polynomials, which one has to control
precisely when doing these computations. One still conjectures these moderate devia-
tions to hold, and n2/3 ( ai

n − αi
)

to converge in the mod-Gaussian sense with parame-
ters n1/3(αi − α2

i ) and limiting function

ψ(z) = exp

(
αi − 3α2

i + 2α3
i

6
z3

)
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— this is what one obtains if we ignore the previous caveats, and still suppose the αi
and β j all distinct. As explained in [Mél12] (see also [KV86]), this would give mod-
erate deviations for the lengths of the longest increasing subsequences in a random
permutation obtained by generalised riffle shuffle.
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[Ruc88] A. Ruciński. When are small subgraphs of a random graph normally dis-
tributed? Probab. Th. Rel. Fields, 78(1):1–10, 1988.

[Sag01] B. E. Sagan. The Symmetric Group: Representations, Combinatorial Algo-
rithms and Symmetric Functions, volume 203 of Graduate Texts in Mathematics.
Springer-Verlag, 2nd edition, 2001.

[Sch61] C. Schensted. Longest increasing and decreasing subsequences. Canadian
Journal of Mathematics, 13:179–191, 1961.

[Sel54] A. Selberg. Note on a paper by LG Sathe. J. Indian Math. Soc, 18:83–87, 1954.

[SH04] F. W. Steutel and K. Van Harn. Infinite divisibility of probability distributions
on the real line, volume 259 of Monographs and textbooks in pure and applied
mathematics. Marcel Dekker, 2004.
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