II. Fonctions holomorphes

Exercices

Exercice II.1. 1. Soit $f: \mathbb{C} \to \mathbb{C}$ l'application définie par $z \mapsto \overline{z}$.

- (a) Démontrer que l'application f est différentiable (vue comme application entre espace vectoriels réels) mais qu'elle n'est pas holomorphe sur \mathbb{C} .
- (b) Déterminer les points en lesquels f est dérivable au sens complexe.
- 2. Même question pour l'application $g: \mathbb{C} \to \mathbb{C}$ donnée par

$$z \mapsto \begin{cases} \frac{z^3}{\overline{z}} & \text{si } z \neq 0\\ 0 & \text{sinon.} \end{cases}$$

Exercice II.2. Soit Ω un ouvert connexe de \mathbb{C} .

- 1. Soit $f \in \mathcal{H}(\Omega)$. Démontrer que si $f(\Omega) \subset \mathbf{R}$, alors f est constante.
- 2. Soit $f \in \mathcal{H}(\Omega)$. Démontrer que les assertions suivantes sont équivalentes :
 - (i) L'application f est constante;
 - (ii) L'application $\Im(f)$ est constante;
 - (iii) L'application $\Re(f)$ est constante;
 - (iv) L'application $|f|: z \mapsto |f(z)|$ est constante;
 - (v) L'application $\overline{f}: z \mapsto \overline{f(z)}$ est holomorphe;
- 6. On note $\overline{\Omega} = \{\overline{z}, z \in \Omega\}$, Démontrer qu'une application $f : \Omega \to \mathbf{C}$ est holomorphe si et seulement si l'application $z \mapsto \overline{f(\overline{z})}$ de $\overline{\Omega}$ dans \mathbf{C} l'est.
- 7. Soient f et $g \in \mathcal{H}(\Omega)$ des applications telles que $f\overline{g}(\Omega) \subset \mathbf{R}$. On suppose en outre que g ne s'annule pas sur Ω . Démontrer qu'il existe $c \in \mathbf{R}$ tel que f = cg.
- 8. Considérons les opérateurs différentiels

$$\partial = \frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \quad \text{et} \quad \overline{\partial} = \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

- (a) Soit f une application différentiable de Ω dans \mathbf{C} . Démontrer que f est holomorphe si et seulement si $\overline{\partial} f = 0$ et que $f' = \partial f$ dans ce cas.
- (b) Démontrer l'identité $\overline{\partial} f = \overline{\partial} \overline{\overline{f}}$.
- (c) Si f est deux fois différentiable, démontrer les égalités $\partial \overline{\partial} f = \overline{\partial} \partial f = \frac{1}{4} \Delta f$ où $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ est l'opérateur laplacien.

Exercice II.3. Soit Ω un ouvert connexe de \mathbb{C} , et $f \in \mathcal{H}(\Omega)$. On suppose qu'il existe trois nombres réels non tous nul a, b et c tels que

$$a\Re(f) + b\Im(f) = c.$$

Démontrer que l'application f est constante.

Exercice II.4 (Conformité des fonctions holomorphes). Soit f une application différentiable d'un ouvert Ω de \mathbb{C} dans \mathbb{C} . Démontrer que $f \in \mathscr{H}(\Omega)$ si et seulement si pour tout couple de courbes différentiables $\gamma_1, \gamma_2 : [-1, 1] \to \Omega$ telles que $\gamma_1(0) = \gamma_2(0)$, $\gamma'_1(0) \neq 0$, $\gamma'_2(0) \neq 0$ et la différentielle de f en $\gamma_1(0)$ est non nulle, l'angle orienté $(\gamma'_1(0), \gamma'_2(0))$ est égal à l'angle orienté $((f \circ \gamma_1)'(0), (f \circ \gamma_2)'(0))$.

Exercice II.5 (Transformation de Möbius). On note \mathbf{D} le disque ouvert unité et $\mathcal{H} = \{z \in \mathbf{C} \mid \Im(z) > 0\}$ le demi-plan de Poincaré, et $\overline{\mathcal{H}}$ son image par la conjugaison. Considérons l'homographie :

$$h: z \longmapsto \frac{z - i}{z + i}$$
.

1. Démontrer que $1 \not\in \text{Im}(h)$ et $h(\mathbf{R}) = \partial \mathbf{D} - \{1\}$. En déduire que

$$h(\mathcal{H}) \cup h(\overline{\mathcal{H}} - \{-i\}) = \mathbf{C} - \partial \mathbf{D}$$

Déterminer $h(\mathcal{H})$ à l'aide d'un argument de connexité.

2. Soit λ un nombre complexe de module 1 et $a \in \mathbf{D}$. Considérons l'homographie

$$h_{\lambda,a}: z \longmapsto \lambda \frac{a-z}{1-\overline{a}z}.$$

Démontrer que $h_{\lambda,a}(\partial \mathbf{D}) \subset \partial \mathbf{D}$. En cherchant l'expression de l'application réciproque de $h_{\lambda,a}$, démontrer que $h_{\lambda,a}(\partial \mathbf{D}) = \partial \mathbf{D}$ puis démontrer que $h_{\lambda,a}(\mathbf{D}) = \mathbf{D}$.