TD 6

Convergences p.s., L^p , en probabilité et en loi

Exercice 1 Implications et réciproques

Faire un diagramme d'implications, réciproques partielles, exemples, contre-exemples, pour les convergences L^p , L^q ($1 \le p \le q$), L^1 , en probabilité, presque sûre et en loi.

Exercice 2 Convergence en loi et en probabilité

Soit (X_n) une suite de variables aléatoires à densité par rapport à la mesure de Lebesgue, la densité de X_n étant égale à $f_{X_n}: x \to \frac{n}{\pi(1+n^2x^2)}$. Étudier la convergence en loi, et en probabilité de la suite (X_n) .

Exercice 3 Stabilité de la convergence en loi

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles convergeant en loi vers X. Soit f une fonction continue. La suite $f(X_n)$ converge-t-elle en loi vers f(X)?

Exercice 4 Quelques convergences en loi

- 1. Pour tout entier $n \geq 1$, soit X_n une variable aléatoire qui suit une loi binomiale $\mathcal{B}(n, p_n)$ avec $np_n \to \lambda > 0$. Montrer que la suite $(X_n)_{n\geq 1}$ converge en loi vers une variable aléatoire X qui suit une loi de Poisson de paramètre λ .
- 2. Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoire i.i.d. de loi Exp(1). Montrer que la variable aléatoire $\max(X_1,\ldots,X_n) \log n$ converge en loi. Quelle est sa limite?
- 3. Montrer qu'une variable de Poisson de grand paramètre, bien recentrée et renormalisée, converge en loi vers une variable gaussienne.
- 4. Soit λ un nombre réel strictement positif. Pour tout $n > 1/\lambda$, on se donne une variable aléatoire X_n de loi géométrique de paramètre λ/n . Montrer que la suite (X_n/n) converge en loi vers une variable exponentielle dont on précisera le paramètre.

Exercice 5 La convergence p.s. est-elle topologisable?

Démontrer que la convergence presque sûre ne provient pas d'une topologie sur l'ensemble des variables aléatoires.

Indication: on pourra utiliser (ou même démonter) le résultat suivant: si E est un espace topologique, alors une suite $(x_n)_{n\geq 0}$ d'éléments de E converge vers $x\in E$ si et seulement si pour tout suite extraite $(x_{\varphi(n)})_{n\geq 0}$, il existe une sous-suite extraite $(x_{\varphi\circ\psi(n)})_{n\geq 0}$ qui converge vers x.

Exercice 6 Convergence en loi de couples de variables aléatoires

Soient $(X_n)_{n\geq 0}$ et $(Y_n)_{n\geq 0}$ deux suites de variables alétoires réelles convergeant en loi vers des variables aléatoires X et Y.

- 1. On suppose que pour tout $n \geq 0, X_n$ et Y_n sont indépendantes. Montrer que $(X_n, Y_n)_{n\geq 0}$ converge en loi. Est-ce que la limite est la loi de (X, Y)?
- 2. Sans supposer d'indépendance, est-ce que $(X_n, Y_n)_{n>0}$ converge en loi?
- 3. (Lemme de Slutsky) On suppose qu'il existe $c \in \mathbb{R}$ tel que Y = c p.s.
 - (a) Montrer que $(Y_n)_{n\geq 0}$ converge en probabilité vers Y.
 - (b) Montrer que $(X_n, Y_n)_{n>0}$ converge en loi vers (X, Y).

Exercice 7 Théorème de Glivenko-Cantelli

Soient $X_1, ..., X_n$ indépendantes de même loi que X. Soit $\forall n \in \mathbb{N}$,

$$F_n : \mathbb{R} \times \Omega \to [0, 1]$$

 $(x, w) \mapsto \frac{1}{n} \sum_{i=1}^n 1_{X_i \le x}(w)$

Soit F la fonction de répartition de X. On notera de plus $F(x^-) = \mathbb{P}(X < x)$ et

$$F_n(x^-, w) = \frac{1}{n} \sum_{i=1}^n 1_{X_j < x}(w)$$

- 1. Montrer que l'événement $\{w \in \Omega | F_n(w, .) \text{ converge uniformément vers } F\}$ est mesurable.
- 2. Montrer que si D est dénombrable alors il existe N ensemble de mesure nulle tel que

$$\forall w \in \Omega \backslash N, \forall x \in D, F_n(x, w) \to F(x), F_n(x^-, w) \to F(x^-)$$

3. Montrer qu'il existe N ensemble de mesure nulle tel que

$$\forall w \in \Omega \backslash N, \forall x \in \mathbb{R}, F_n(x, w) \to F(x), F_n(x^-, w) \to F(x^-)$$

Indication : Considérer $D = \mathbb{Q} \cup (\mathbb{R} \backslash \text{Cont}(F))$ où Cont(F) désigne l'ensemble des points de continuité de F.

4. Soit $\omega \in \Omega \backslash N$. On pose $f_n = F_n(w, .)$ et pour $k \in \mathbb{N}$,

$$\begin{cases} x_{j,k} = \sup\{x \in \mathbb{R} | F(x^-) \le \frac{j}{k} \le F(x)\} & \text{si } 1 \le j \le k \quad (\sup \emptyset = +\infty) \\ x_{0,k} = -\infty \\ \Delta_{n,k} = \max\{|f_n(x_{j,k}) - F(x_{j,k})|, 1 \le j \le k - 1\} \\ \Delta_{n,k}^- = \max\{|f_n(x_{j,k}^-) - F(x_{j,k}^-)|, 1 \le j \le k - 1\} \end{cases}$$

Montrer que $\sup_{x \in \mathbb{R}} |f_n(x) - F(x)| \le \max(\Delta_{n,k}, \Delta_{n,k}^-) + \frac{1}{k}$.

5. En déduire que $\mathbb{P}(w \in \Omega | F_n(w, .)$ converge uniformément vers F) = 1.