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LECTURE 6: KoSzuL DUALITY FOR ALGEBRAS

Using the Barr—Beck—Lurie theorem, we have proven that if A is a small differential
graded algebra over a field k (cf. Definition 5.18 in Lecture 5), then there is an equivalence

Ind(CohA) ~ MOd@(l)(A)Op.
Here ®(D (A) ~ R Hom 4 (k, k) is the Koszul dual of A, satisfying 7, (D) (A4)) = Ext* (k, k).

Today, we will single out a certain property of algebras known as the Koszul property.
It is often satisfied in practice, and makes the computation of ®) (A) extremely simple.

6.1. The Koszul property. Let A be an augmented differential graded k-algebra with
vanishing differentials, i.e. a homologically graded augmented k-algebra. Set A = ker(A — k).

Writing TM = @ M ®" we consider the complex of graded A-modules

n>0
B(A) =Bar(k, A, k) = (T(A),d),
where d([a1| e |6Ln]) = ?=2(—1)6i [(Ill ce |a¢_1ai| ce |an] with €; = (|a1| + 1) +...+ (|ai_1| + 1)
An element [a1]...|a,] € (Z‘Xm)i = Bar, (k, A, k); lies in “internal degree” i = |ai|+. . .+|ay)|.
Write Tor (k, k), for the bigraded A-module given by the homology of B(A).

Remark 6.1. The chain complex B(A) = k ®% k € Mod, is obtained from the above
chain complex of graded A-modules B(A) by placing [a1]...|a,] in homological degree
(la1| + 1) + ...+ (Jan| + 1). Note the different fonts for B and B.

The key observation is that many algebras A as above admit an additional Adams grading
indexed by the naturals. Write A;[w] for the component in homological degree i and Adams
degree w, and assume that the augmentation induces an isomorphism A, [0] = k.

The Bar construction then picks up a third grading satisfying
B(A)p[w]. = D Alwi]®...® Alwy])«,

w1 +...+Wp=w
Hence, we obtain a chain complex of bigraded A-modules.

0 0 B(A)2[2]. — B(A)1[2]« —> 0
0 0 0 B(A){[1], —> 0
0 0 0 0 k

Write Tor (k, k) [w]; = m,(B(A)[w];) for the component in homological degree n, internal
degree 7, and Adams degree w of the corresponding decomposition in homology.
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Remark 6.2. More conceptually, Tor2 (k, k). [] is the n'* left derived functor of k®4 (-)
on the abelian category of bigraded A-modules. This allows us to use other resolutions of k.

From the Bar resolution above, it is clear that Tor’ (k, k) [w] vanishes whenever n > w.
The following definition of Priddy asserts that vanishing also occurs for all n < w:

Definition 6.3. Let A be an augmented k-algebra with a homological grading and an
Adams grading as above. A is said to be Koszul if for all n # w, we have

Tord (k, k). [w] = ker(B(A)u[w], — B(A)n1[w].)/im(B(A)ni [w]. —~ B(A)u[w],) =0
Warning 6.4. In his original work [Pri70], Priddy calls these homogeneous Koszul algebras.
For simplicity, we will assume from now on that our ground field k satisfies char(k) # 2.

Definition 6.5 (Polynomial and exterior algebras). If xy,...,x, are generators in Adams
degree 1 and arbitrary homological degree, we define

Elzy,...,zn] =T (z1,...,20)[(x; ® xj — 2 @ 7;);

Elzi,...,xn] =T (21,...,20)[(zi ®xj + 2; ® 2;).

As we have not imposed the Koszul sign rule, k[z1, ..., x,] need not be graded-commutative.
Before studying Koszul algebras in more detail, we give several simple examples.

Example 6.6. Consider A = k[z] generated in Adams degree 1 and homological degree a.
We use the following bigraded resolution of the A-module k:

1>z

o> 0o X%[z][+1] —> k[z] = 0> ....
Here [+1] denotes a shift by 1 in Adams grading and X% is a shift by a in homological grading.
Applying k ®;[,] (=), we obtain ... - 0 - X%[+1] % k5050 .... Hence A is Koszul.

Example 6.7. Consider the exterior algebra A = E[e] = k[e]/e? on a generator in homo-
logical degree b and Adams degree 1. The bigraded A-module k£ admits a resolution

= S (k[e] /) [+2] =5 S (R[e]/2)[+1] =5 k[e] /2.
Applying k®4 (=) gives ... » N2k[+2] 2 YOk[+1] k>0 ., hence A is Koszul.

Exercise 6.8.

a) Show that if A, A" are Koszul algebras, then so is A® A’.

b) Given generators x1,...,Z, in Adams degree 1 and arbitrary homological degree, show
that both k[x1,...,z,] and E[z1,...,z,] are Koszul.

Exercise 6.9. Prove directly that the following algebras in homological degree 0 are Koszul:

(1) The polynomial algebra k[z,y] with x,y in Adams degree 1.
(2) The exterior algebra F(z,y) with z,y in Adams degree 1.
(3) The quantum algebra A = T'(z,y)/(x®y—qy®x) for any fixed nonzero scalar g € k*.
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6.2. Quadratic generation. We will prove that all Koszul algebras are of the following type:

Definition 6.10 (Quadratic algebras). Given a graded k-vector space V and a homoge-
neous subspace R cV ® V| we define the following augmented k-algebra:

T(V;R) =T(V)/(R).

Here (R) denotes the two-sided ideal generated by the subspace R. The algebra T(V; R)
inherits a homological grading and an Adams grading, as the space of relations Rc V@V
is homogeneous for both the homological and the Adams grading on T(V).

An augmented bigraded k-algebra A is quadratic if A= T(V;R) for some V,RcV V.
Proposition 6.11. Every Koszul algebra is quadratic.

Proof. We will prove this result in two steps (following an argument presented in [Rez12]).
Given w > 1, the assumption Tor{ (k, k) [w]. = 0 implies that the following map is surjective:
B(A)[wl.= @ (Alw1]® A[wz])s —— Afw]s = B(A)1[w]..

wi1tw2=w
w;>0

Hence A is generated in Adams degree 1. Applying Bar(-) to the surjection T'(A[1]) ENY

and taking the kernel gives an exact sequence of complexes of bigraded A-modules:

(1) 0 - K — Bar(T(A[1])) - Bar(A) - 0.

In degree 1 of this chain complex, our sequence is given by 0 - K; — T(A[1]) - A - 0.
To prove the result, it suffices to show that the following map is surjective for all w > 2:

(2) @D  Fi[un] @ A[1]%"” @ A[1]°"" ® Ki[ws]) — Ki[w].
fnso

Indeed, let us restrict attention to degree 1 and degree 2 of the chain complexes in :
fef

0—> Kg[w] E— @ Z[l]®w1 ®Z[1]®w2 EEE—— @ Z[wl] ®Z[w2]
. w11::u>20:w \L wl;;?fozw \L
0 —> Ki[w] Af1]ee ! Aw]

Consider the natural map

] ((Ki[w] @ A[1]%"2) @ (A[1]%" ® K1 [ws])) ——— @ Apeedpe.
w;>0 w;>0

and its lift w1%=w (K1 [wi] ® A[1]®*?) @ (A[1]%7* ® K1[w2])) N Ky[w].
w;>0
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The map f is surjective. Indeed, for any decompositions w = w; +wz, we tensor the short
exact sequences Ki[wq] - A[1]®** - A[w1] and K;[ws] - A[1]®%2 - A[ws] to obtain a
diagram

K1 [wl] ®K1[w2] — Z[”@wl ® K1 [wg] — Z[wl] ® K1 [U)Q]

) ! )

Ki[wi] ® A[1]®%2 — A[1]®¥1 @ A[1]®¥2 —> A[w;] ® A[1]®*2

) } }

Ki[wi] ® Alws] —= A[1]®"' ® A[wy] —> A[wy] ® A[ws]
Since k-vector spaces are flat, all columns and rows are exact. A diagram chase shows that
(K [w1] ® A[1]%"2) @ (A[1]®"* ® K1[w3]) — ker(A[1]®"* @ A[1]®"2 > A[w] ® A[w2])
is surjective, which implies that the map § is surjective as well.

As H,(Bar(k,T(A[1]),k)[w].) = Tor:{(z[l])(k:,k)*[w] =0 for all w > 1, the homology
long exact sequence induced by (T]) shows that Hy (K,[w]) & Tord (k, k). [w] = 0 for all w > 2.
As Ko[w] = 0, this implies that Ks[w] 2 K;i[w] is surjective for all w > 2, and hence

D  ((Ki[w] @ A[1]%"2) @ (A[1]®" ® Ki[ws])) — K [w] is also surjective. [

w1 twz=w
w;>0

6.3. Dualising Koszul algebras. Computing the dual of a Koszul algebra is not hard:

Theorem 6.12. Let A be a Koszul algebra with quadratic presentation A = T'(V; R).
Assume that A;[n] and T(X71VV; X2 R*); are finite-dimensional for all i, n.

Then the Koszul dual is formal and given by (1) (A4) = RHomy (k, k) = T(X'VY; ©2RY),
where V'V = Mapyjoq, (V, k) and R* ¢ VY@V is spanned by all $®) vanishingon R c VeV

Proof. Consider the differential graded coalgebra B(A) = (T(XA),d), where

n

d([ar]...Jam]) = 3 (-1)“[aa] .. - |ai-rai] .. . |an]
i=2
with €; = (ai|+1)+...+(|a;—1|+1). Anelement [a1]...|a,] € (Z®n)i lies in homological degree
i =lay|+. . .+|an|+n in B(A). Comultiplication sends [a1]. .. |an] to > [a1]...|ar] ® [aks1]- - - |am].

k
The graded differential graded coalgebra B(A4) ~ @ B(A)[w] can be dualised in two ways:

(1) Applying Mapyy.q4, (=, k) gives the differential graded k-algebra M (4) =B(A)Y;
(2) Taking the Adams-graded dual gives an Adams-graded differential graded k-algebra
with
(M) (A4)[n] = Mapygoa, (B(A) [1], k).
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These are related by a multiplicative comparison map @MY (A)[w] - DM (4)
given by ‘

(3) EBB(A)[U)]V — I—[B(A)[w]V ~B(4)".

We begin by computing @B(A) [w]”. Duahsmg the maps

Tor;, (k, k) [n]en 2 ker (B(A)n[n]e-n = B(A)n-1[n]s-n) — B(A)[n].
gives maps B(A)[n]y - Ext’y (k, k)[n]+rn. As A is Koszul, these assemble to an equivalence

DB(A)n]! SN DBt (k. ) [n] o

We can represent elements in

Ext™ (k, k) [n]wsn 2 coker(?(z[l]v)@’k ® A[2]Y ® (A[1]V)8*1 5 (A[1]V)®") sin

by expressions [aq]. .. |a,] with a; € A[1]Y = VV. Here, we used dimy(4;[n]) < oo for all i,n.
The product on @,, B(A)[w] corresponds to the product on @,, Ext’ (k, k) [w]++n send-
ing elements represented by [aq]...|ax] and [ag41]. .- |am], respectively, to [aq]...|am].
The image of (V®2/R)Y = A[2]Y — (A[1]V)®? 2 (VV)®? is spanned by all elements a ®
vanishing on R. Hence Ext¥ (k, k)[2]«+2 & ((VY)®*/RY)ur2 = (Z7'VV)®2/272RY),, and
more generally Ext’, (k, k) [w], = (£7'VY) ®“}/U( (V)8 g (S2RY) @ (B YY) ®(w e 1>)..
k
These observations combine to give an equivalence @,, Ext* (k, k) [w]. ~ T(S1VV; £72RY).
Since T(X71VV; ¥ 2 R*Y); is assumed to be finite-dimensional for all 4, this also shows that
the comparison map is an equivalence. O
We illustrate Theorem in several examples.

Example 6.13. Let V be the graded k-vector space with basis x1,...,x, in degree 0.
Taking R = (z; ® xj + 2 ® x;) gives the exteriour algebra A =T(V;R) = E[x1,...,xy].

Consider the dual basis z7,...,z;, of VY. An element v* = ¥, ; \jj; #] ® 2} e VY @ V"
vanishes on R iff \;j = -X;; =0 for all 7, j, which happens iff v* e Rt = (x ®r; - 2] ® x}).
Writing y; = X7 (z}), we deduce from Theorem |6.12] that

OW(E[21,...,20]) = k[y1, ..., yn]
Exercise 6.14. Prove that there is an equivalence @ (k[y1,...,yn]) = E[21,...,20].

*
J
*
J

This biduality is in fact a general phenomenon, which can be proven (under mild
finiteness assumptions) using the Koszul complex. We refer to [BGS96, Secion 2.9] for
a precise statement.

Remark 6.15. To see that the finiteness assumption in Theorem [6.12]is indeed necessary,
consider the Koszul algebra E[x] with x in Adams degree 1 and homological degree —1.
Then ©M (A) = k[[y]] is a power series ring generated by y in homological degree 0, while
Theorem would predict a polynomial ring.
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6.4. Poincaré Series. Proposition leads to the question whether every quadratic
algebra is Koszul. To see that this is not the case, we use the following classical notion (in
a form presented in [Ber14]):

Definition 6.16 (Poincaré Series). Let A =@, ., A;[w] be an Adams-graded graded alge-
bra with dimy(A;[w]) < oo for all i,w. The Poincaré series of A is given by

A(t,z) = Zdimk(Ai[w])zitw € k[z,t].

We have the following criterion:

Proposition 6.17. If A =@, , A;[w] is a Koszul algebra as in Theorem then
o\l
Poayay(t,2) = Pa (—;72) -
Proposition can be used to construct examples of quadratic algebras which are not
Koszul. We work through an example of Lech:

Exercise 6.18. Consider the following quadratic algebra with its natural Adams grading,
concentrated in homological degree i = 0:
A= k[, 20, x3,24] (23, 3, 23, 25, 2129 + T374)
(1) Show that Pa(t,z) =1 + 4w + 5w?.
(2) Compute Pg1)(ay, and use the answer to prove that A is not a Koszul algebra.

6.5. PBW algebras. Theorem allows us to dualise an algebra A = T'(V; R) once we
know that it is Koszul, but checking this property still requires some knowledge about the
groups Tord(k, k). [*].

We will now introduce a simple condition on bases of V' which implies that T(V; R)
is Koszul: Priddy’s PBW-property (cf. [PP05, Chapter 4] for a more detailed treatment).

Let V be a graded vector space with basis x1,...x,, and suppose that Rc V®YV is a
homogeneous submodule of relations. Using the lexicographic order, we define

S = { (Zvj) | L4l ¢ Span(wTws)(r,s)di,j) c (V®V)/R }
Exercise 6.19. Show that the set { z;x; | (i,7) € S } forms a basis of (V®V)/R.
In particular, for any (i,5) ¢ S, we can write
TiT; = Z cijzrrs € T(V; R)
(r8)<(i,5)
for uniquely determined scalars ¢;; € k.
Definition 6.20. We say that x1,...,x, is a PBW basis for the quadratic algebra T(V'; R)
if the following polynomials form a basis for T'(V; R):
{:leij <o Ty, € T(V; R) | (jlan)’ (jz,j3), ceey (jn—lajn) € S}
For n =0, the above product is 1 by convention.

Priddy then established the following useful criterion:



Theorem 6.21. If A=T(V;R) admits a PBW-basis, then A is a Koszul algebra.

Example 6.22. For V = (21, 25) and R = (23, z122+2921, 23), we have E(z1,22) = T(V; R).
We observe that S = {(1,2)}. Since {1,z1, 22,2122} is a basis for F(x1,x2), Theorem
gives an alternative proof that E(x1,z2) is Koszul.

Theorem then has the following consequence:

Corollary 6.23. Let z1,...,z, be a PBW-basis for A = T(V;R). Assume that all A;[n]

and T(X71VV; ©72R'); are finite-dimensional. Write T = Z cffa:,«xs € Afor (i,7) ¢S.
(r,5)<(i,)

Then ®(1 (A) is generated by y1, ..., y, with y; in degree —|z;] -1 subject to the relations:

(-)"iyy; + Y, (1) cyys=0 if  (i,5) €S
(k)¢S

Here vap = [yal + (Iyal = 1) (Iyn] = 1)-

We conclude this lecture by stating two classical applications of Koszul algebras in topology.

6.6. Application 1: The Homology of Loop Spaces. Koszul duality can be used to
compute the homology of loop spaces (cf. [Berl4] for a detailed treatment):

Proposition 6.24. Let X be a simply connected space whose algebra of rational cochains

C*(X;Q) ~ H*(X,Q) is both formal and Koszul.
Then the homology of the loop space of X is given by the Koszul dual of H*(X;Q):

H. (2X;Q) 2 20 (H*(X;Q)).
Example 6.25. For X = S2 the cochain algebra C*(X,Q) is given by E[z] with 2 in

homological degree —2. As this algebra is Koszul, we deduce H, (5% Q) ~ DM (E[z]) ~
Q[y] with y in degree 1. An alternative proof uses the James splitting 2Q¥.S' = ¥ \/ S™.

m>0
6.7. Application 2: The Adams Spectral Sequence. We begin by recalling the Steen-
rod algebra, which is of key importance in topology:

Definition 6.26 (The Steenrod algebra). The Steenrod algebra A (at p = 2) is the asso-
ciative algebra generated by elements Sq”, Sq', Sq?, ... subject to the following relations:

(1) S¢° = 1; |
(2) If i < 24, then Sq’ Sqf = X2} §q*iF 8¢,
Given any space X, the Fa-valued cohomology H*(X,F3) is equipped with a natural

action by the Steenrod algebra satisfying the following well-known conditions:
a) Sq": H*(X,Fy) - H**"(X,Fy) shifts degree by n;
b) Sq"(x) =0 if x € H™(X,Fq) wirth m < n;
¢) Sq"(x) =z ux for x € H"(X,Fy);
d) Sqa"(z U Y) = Tap=n Sa*(z) USA"(y).

T
T
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Descent along the morphism of Ee-rings S — Fy can be used to prove the following
result of Adams — we refer to [Lurl0, Lecture 8] for a more detailed discussion.

Theorem 6.27 (Adams spectral sequence). There is a spectral sequence of signature
Bt = Extiit(Fg,IFg) = 7(9)%

We depict the Ea-term of this spectral sequence (in Adams convention), cf. [Rav78]|:

v
y.

N DN @

[
s=0 O
t-s=0 1 2 3456 78 9 10112

It is therefore an important computational problem to compute the algebra Eajti’lt(IE‘g, Fy),
and our previous discussion leads to the hope that Koszul algebras might be helpful.

Since the defining relations of A are not homogeneous, the natural grading on the tensor
algebra T(Sq",Sq?,...) does not descend to an Adams-grading on .A. However, it induces
an ascending filtration whose n'" stage F™(A) is spanned by all products of at most n
generators Sq’, Sqt, . . ..

The associated graded Gr(.A) of this filtration admits an Adams grading, and Theo-

rem can be used to prove that Gr(A) is a Koszul algebra. Priddy then refines the
analysis carried out in Theorem to prove the following result:

Theorem 6.28. The Koszul dual ) (A) of the Steenrod algebra is given by the A-
algebra, which is the differential graded Fs-algebra generated by A1, A2, A3, ... subject to
relations

|_ 2(a3+b) J

—i-1
Al = Y (aj_ﬂ% )AjAaH,_j if a>2b>0

with differential

[32] .
a-7-1
CHED i S PO
g=1 J

The A-algebra provides a valuable tool in the computation of stable and unstable ho-
motopy groups of spheres; we refer to [Rav03, Chapter 3| for a detailed discussion.
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