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Lecture 6: Koszul Duality for Algebras

Using the Barr–Beck–Lurie theorem, we have proven that if A is a small differential
graded algebra over a field k (cf. Definition 5.18 in Lecture 5), then there is an equivalence

Ind�CohA� �ModD�1��A�op .

Here D�1��A� � RHomA�k, k� is the Koszul dual of A, satisfying π��D�1��A�� � Ext�A�k, k�.
Today, we will single out a certain property of algebras known as the Koszul property.

It is often satisfied in practice, and makes the computation of D�1��A� extremely simple.

6.1. The Koszul property. Let A be an augmented differential graded k-algebra with
vanishing differentials, i.e. a homologically graded augmented k-algebra. SetA � ker�A� k�.

Writing TM �?
nC0

Man, we consider the complex of graded A-modules

B�A� � Bar�k,A, k� � �T �A�, d�,
where d��a1S . . . San�� � Pn

i�2��1�ϵi�a1S . . . Sai�1aiS . . . San� with ϵi � �Sa1S � 1� � . . . � �Sai�1S � 1�.
An element �a1S . . . San� > �Aan�i � Barn�k,A, k�i lies in “internal degree” i � Sa1S�. . .�SanS.

Write TorA
�
�k, k�� for the bigraded A-module given by the homology of B�A�.

Remark 6.1. The chain complex B�A� � k aL
A k > ModA is obtained from the above

chain complex of graded A-modules B�A� by placing �a1S . . . San� in homological degree
�Sa1S � 1� � . . . � �SanS � 1�. Note the different fonts for B and B.

The key observation is that many algebras A as above admit an additional Adams grading
indexed by the naturals. Write Ai�w� for the component in homological degree i and Adams
degree w, and assume that the augmentation induces an isomorphism A��0� � k.

The Bar construction then picks up a third grading satisfying

B�A�n�w�� � ?
w1�...�wn�w

�A�w1�a . . .aA�wn���,
Hence, we obtain a chain complex of bigraded A-modules.

. . . > 0 > B�A�3�3�� > B�A�2�3�� > B�A�1�3�� > 0

. . . > 0 > 0 > B�A�2�2�� > B�A�1�2�� > 0

. . . > 0 > 0 > 0 > B�A�1�1�� > 0

. . . > 0 > 0 > 0 > 0 > k

Write TorAn �k, k��w�i � πn�B�A��w�i� for the component in homological degree n, internal
degree i, and Adams degree w of the corresponding decomposition in homology.
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Remark 6.2. More conceptually, TorAn �k, k����� is the nth left derived functor of kaA ���
on the abelian category of bigraded A-modules. This allows us to use other resolutions of k.

From the Bar resolution above, it is clear that TorAn �k, k���w� vanishes whenever n A w.
The following definition of Priddy asserts that vanishing also occurs for all n @ w:

Definition 6.3. Let A be an augmented k-algebra with a homological grading and an
Adams grading as above. A is said to be Koszul if for all n x w, we have

TorAn �k, k���w� � ker�B�A�n�w�� � B�A�n�1�w���~ im�B�A�n�1�w�� � B�A�n�w��� � 0

Warning 6.4. In his original work [Pri70], Priddy calls these homogeneous Koszul algebras.

For simplicity, we will assume from now on that our ground field k satisfies char�k� x 2.

Definition 6.5 (Polynomial and exterior algebras). If x1, . . . , xn are generators in Adams
degree 1 and arbitrary homological degree, we define

k�x1, . . . , xn� �� T �x1, . . . , xn�~�xi a xj � xj a xi�;
E�x1, . . . , xn� �� T �x1, . . . , xn�~�xi a xj � xj a xi�.

As we have not imposed the Koszul sign rule, k�x1, . . . , xn� need not be graded-commutative.

Before studying Koszul algebras in more detail, we give several simple examples.

Example 6.6. Consider A � k�x� generated in Adams degree 1 and homological degree a.
We use the following bigraded resolution of the A-module k:

. . .� 0� Σak�x���1� 1(x
ÐÐ� k�x�� 0� . . . .

Here ��1� denotes a shift by 1 in Adams grading and Σa is a shift by a in homological grading.

Applying k ak�x� ���, we obtain . . .� 0� Σak��1� 0
Ð� k � 0� 0� . . .. Hence A is Koszul.

Example 6.7. Consider the exterior algebra A � E�ϵ� � k�ϵ�~ϵ2 on a generator in homo-
logical degree b and Adams degree 1. The bigraded A-module k admits a resolution

. . .� Σ2b�k�ϵ�~ϵ2���2� 1(ϵ
ÐÐ� Σb�k�ϵ�~ϵ2���1� 1(ϵ

ÐÐ� k�ϵ�~ϵ2.
Applying k aA ��� gives . . .� Σ2bk��2� 0

Ð� Σbk��1� 0
Ð� k � 0� . . ., hence A is Koszul.

Exercise 6.8.

a) Show that if A, A� are Koszul algebras, then so is AaA�.
b) Given generators x1, . . . , xn in Adams degree 1 and arbitrary homological degree, show

that both k�x1, . . . , xn� and E�x1, . . . , xn� are Koszul.

Exercise 6.9. Prove directly that the following algebras in homological degree 0 are Koszul:

(1) The polynomial algebra k�x, y� with x, y in Adams degree 1.
(2) The exterior algebra E�x, y� with x, y in Adams degree 1.
(3) The quantum algebra A � T �x, y�~�xay�qyax� for any fixed nonzero scalar q > k�.
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6.2. Quadratic generation. We will prove that all Koszul algebras are of the following type:

Definition 6.10 (Quadratic algebras). Given a graded k-vector space V and a homoge-
neous subspace R ` V a V , we define the following augmented k-algebra:

T �V ;R� � T �V �~`Re.
Here `Re denotes the two-sided ideal generated by the subspace R. The algebra T �V ;R�
inherits a homological grading and an Adams grading, as the space of relations R ` V aV
is homogeneous for both the homological and the Adams grading on T �V �.

An augmented bigraded k-algebra A is quadratic if A � T �V ;R� for some V,R ` V a V .

Proposition 6.11. Every Koszul algebra is quadratic.

Proof. We will prove this result in two steps (following an argument presented in [Rez12]).
Given w A 1, the assumption TorA1 �k, k��w�� � 0 implies that the following map is surjective:

B�A�2�w�� � ?
w1�w2�w

wiA0

�A�w1�aA�w2��� ÐÐÐ� A�w�� � B�A�1�w��.

Hence A is generated in Adams degree 1. Applying Bar��� to the surjection T �A�1�� f
Ð� A

and taking the kernel gives an exact sequence of complexes of bigraded A-modules:

(1) 0�K � Bar�T �A�1���� Bar�A�� 0.

In degree 1 of this chain complex, our sequence is given by 0 � K1 � T �A�1�� � A � 0.
To prove the result, it suffices to show that the following map is surjective for all w A 2:

(2) ?
w1�w2�w

wiA0

�K1�w1�aA�1�aw2
`A�1�aw1

aK1�w2��Ð�K1�w�.

Indeed, let us restrict attention to degree 1 and degree 2 of the chain complexes in (1):

0 > K2�w� > ?
w1�w2�w

wiA0

A�1�aw1
aA�1�aw2

faf
> ?

w1�w2�w
wiA0

A�w1�aA�w2�

0 > K1�w�

δ

∨
> A�1�aw

∨
f

> A�w�
∨

Consider the natural map

?
w1�w2�w

wiA0

��K1�w1�aA�1�aw2�` �A�1�aj1 aK1�w2��� β
ÐÐÐÐÐÐ� ?

w1�w2�w
wiA0

A�1�aw1
aA�1�aw2 .

and its lift ?
w1�w2�w

wiA0

��K1�w1�aA�1�aw2�` �A�1�aj1 aK1�w2��� β
ÐÐ�K2�w�.
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The map β is surjective. Indeed, for any decompositions w � w1�w2, we tensor the short
exact sequences K1�w1� � A�1�aw1

� A�w1� and K1�w2� � A�1�aw2
� A�w2� to obtain a

diagram

K1�w1�aK1�w2� > A�1�aw1 aK1�w2� > A�w1�aK1�w2�

K1�w1�aA�1�aw2

∨
> A�1�aw1 aA�1�aw2

∨
> A�w1�aA�1�aw2

∨

K1�w1�aA�w2�
∨

> A�1�aw1 aA�w2�
∨

> A�w1�aA�w2�
∨

Since k-vector spaces are flat, all columns and rows are exact. A diagram chase shows that

�K1�w1�aA�1�aw2�` �A�1�aw1
aK1�w2��Ð� ker�A�1�aw1

aA�1�aw2
� A�w1�aA�w2��

is surjective, which implies that the map β is surjective as well.

As H��Bar�k, T �A�1��, k��w��� � Tor
T �A�1��
� �k, k���w� � 0 for all w A 1, the homology

long exact sequence induced by (1) shows thatH1�KY�w�� � TorA2 �k, k���w� � 0 for all w A 2.

As K0�w� � 0, this implies that K2�w� δ
Ð� K1�w� is surjective for all w A 2, and hence

?
w1�w2�w

wiA0

��K1�w1�aA�1�aw2�` �A�1�aw1
aK1�w2��� δXβ

ÐÐÐ�K1�w� is also surjective. □

6.3. Dualising Koszul algebras. Computing the dual of a Koszul algebra is not hard:

Theorem 6.12. Let A be a Koszul algebra with quadratic presentation A � T �V ;R�.
Assume that Ai�n� and T �Σ�1V -;Σ�2RÙ�i are finite-dimensional for all i, n.

Then the Koszul dual is formal and given byD�1��A� � RHomA�k, k� � T �Σ�1V -;Σ�2RÙ�,
where V - �MapModk

�V, k� and RÙ ` V -
aV - is spanned by all ϕaψ vanishing on R ` V aV .

Proof. Consider the differential graded coalgebra B�A� � �T �ΣA�, d�, where
d��a1S . . . Sam�� � n

Q
i�2

��1�ϵi�a1S . . . Sai�1aiS . . . Sam�

with ϵi � �Sa1S�1��. . .��Sai�1S�1�. An element �a1S . . . San� > �Aan�i lies in homological degree

i � Sa1S�. . .�SanS�n in B�A�. Comultiplication sends �a1S . . . Sam� to Q
k

�a1S . . . Sak�a �ak�1S . . . Sam�.
The graded differential graded coalgebra B�A� �?

w
B�A��w� can be dualised in two ways:

(1) Applying MapModk
��, k� gives the differential graded k-algebra D�1��A� � B�A�-;

(2) Taking the Adams-graded dual gives an Adams-graded differential graded k-algebra
with

�D�1��Gr�A��n� ��MapModk
�B�A��n�, k�.
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These are related by a multiplicative comparison map ?
w
�D�1��Gr�A��w� � D�1��A�

given by

(3) ?
w

B�A��w�- Ð�M
w

B�A��w�- � B�A�-.
We begin by computing?

w
B�A��w�-. Dualising the maps

TorAn �k, k��n���n � ker �B�A�n�n���n 0 B�A�n�1�n���n�Ð� B�A��n��
gives maps B�A��n�-

�
� ExtnA�k, k��n���n. As A is Koszul, these assemble to an equivalence

?
w

B�A��n�-
�

�
ÐÐÐ�?

n
ExtnA�k, k��n���n.

We can represent elements in

ExtnA�k, k��n���n � coker�?
k

�A�1�-�ak aA�2�- a �A�1�-�a�n�k�1�
Ð� �A�1�-�an���n

by expressions �α1S . . . Sαn� with αi > A�1�- � V -. Here, we used dimk�Ai�n�� @ª for all i, n.

The product on>w B�A��w�-
�
corresponds to the product on>w Ext�A�k, k��w���n send-

ing elements represented by �α1S . . . Sαk� and �αk�1S . . . Sαm�, respectively, to �α1S . . . Sαm�.
The image of �V a2~R�- � A�2�- Ð� �A�1�-�a2 � �V -�a2 is spanned by all elements αa β

vanishing on R. Hence Ext�A�k, k��2���2 � ��V -�a2~RÙ���2 � ��Σ�1V -�a2~Σ�2RÙ��, and
more generally Ext�A�k, k��w�� � �Σ�1V -�aw~�

k

��Σ�1V -�ak a �Σ�2RÙ�a �Σ�1V -�a�w�k�1��..
These observations combine to give an equivalence>w Ext�A�k, k��w�� � T �Σ�1V -;Σ�2RÙ�.
Since T �Σ�1V -;Σ�2RÙ�i is assumed to be finite-dimensional for all i, this also shows that
the comparison map (3) is an equivalence. □

We illustrate Theorem 6.12 in several examples.

Example 6.13. Let V be the graded k-vector space with basis x1, . . . , xn in degree 0.
Taking R � `xi a xj � xj a xie gives the exteriour algebra A � T �V ;R� � E�x1, . . . , xn�.

Consider the dual basis x�1 , . . . , x
�

n of V -. An element v� � Pi,j λij x
�

i a x
�

j > V -
a V -

vanishes on R iff λij � �λji � 0 for all i, j, which happens iff v� > RÙ � `x�i a x�j � x�j a x�i e.
Writing yi � Σ�1�x�i �, we deduce from Theorem 6.12 that

D�1��E�x1, . . . , xn�� � k�y1, . . . , yn�
Exercise 6.14. Prove that there is an equivalence D�1��k�y1, . . . , yn�� � E�x1, . . . , xn�.

This biduality is in fact a general phenomenon, which can be proven (under mild
finiteness assumptions) using the Koszul complex. We refer to [BGS96, Secion 2.9] for
a precise statement.

Remark 6.15. To see that the finiteness assumption in Theorem 6.12 is indeed necessary,
consider the Koszul algebra E�x� with x in Adams degree 1 and homological degree �1.

Then D�1��A� � k��y�� is a power series ring generated by y in homological degree 0, while
Theorem 6.12 would predict a polynomial ring.
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6.4. Poincaré Series. Proposition 6.11 leads to the question whether every quadratic
algebra is Koszul. To see that this is not the case, we use the following classical notion (in
a form presented in [Ber14]):

Definition 6.16 (Poincaré Series). Let A �>i,wAi�w� be an Adams-graded graded alge-
bra with dimk�Ai�w�� @ª for all i,w. The Poincaré series of A is given by

A�t, z� �Q
i,w

dimk�Ai�w��zitw > k�z, t�.
We have the following criterion:

Proposition 6.17. If A �>i,wAi�w� is a Koszul algebra as in Theorem 6.12, then

PD�1��A��t, z� � PA �� t
z
, z��1 .

Proposition 6.17 can be used to construct examples of quadratic algebras which are not
Koszul. We work through an example of Lech:

Exercise 6.18. Consider the following quadratic algebra with its natural Adams grading,
concentrated in homological degree i � 0:

A � k�x1, x2, x3, x4�~�x21, x22, x23, x24, x1x2 � x3x4�
(1) Show that PA�t, z� � 1 � 4w � 5w2.
(2) Compute PD�1��A�, and use the answer to prove that A is not a Koszul algebra.

6.5. PBW algebras. Theorem 6.12 allows us to dualise an algebra A � T �V ;R� once we
know that it is Koszul, but checking this property still requires some knowledge about the
groups TorA

�
�k, k�����.

We will now introduce a simple condition on bases of V which implies that T �V ;R�
is Koszul: Priddy’s PBW-property (cf. [PP05, Chapter 4] for a more detailed treatment).

Let V be a graded vector space with basis x1, . . . xn, and suppose that R ` V a V is a
homogeneous submodule of relations. Using the lexicographic order, we define

S � � �i, j� S xixj ¶ span�xrxs��r,s�@�i,j� ` �V a V �~R � .
Exercise 6.19. Show that the set � xixj S �i, j� > S � forms a basis of �V a V �~R.

In particular, for any �i, j� ¶ S, we can write

xixj � Q
�r,s�@�i,j�

crsij xrxs > T �V ;R�
for uniquely determined scalars crsij > k.

Definition 6.20. We say that x1, . . . , xn is a PBW basis for the quadratic algebra T �V ;R�
if the following polynomials form a basis for T �V ;R�:

�xj1xj2 . . . xjn > T �V ;R� S �j1, j2�, �j2, j3�, . . . , �jn�1, jn� > S�.
For n � 0, the above product is 1 by convention.

Priddy then established the following useful criterion:
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Theorem 6.21. If A � T �V ;R� admits a PBW-basis, then A is a Koszul algebra.

Example 6.22. For V � `x1, x2e andR � `x21, x1x2�x2x1, x22e, we have E�x1, x2� � T �V ;R�.
We observe that S � ��1,2��. Since �1, x1, x2, x1x2� is a basis for E�x1, x2�, Theorem 6.21
gives an alternative proof that E�x1, x2� is Koszul.

Theorem 6.12 then has the following consequence:

Corollary 6.23. Let x1, . . . , xn be a PBW-basis for A � T �V ;R�. Assume that all Ai�n�
and T �Σ�1V -;Σ�2RÙ�i are finite-dimensional. Write xixj � Q

�r,s�@�i,j�

crsij xrxs > A for �i, j� ¶ S.

Then D�1��A� is generated by y1, . . . , yn with yi in degree �SxiS�1 subject to the relations:

��1�νi,jyiyj � Q
�k,l�¶S

��1�νk,lcijrsyrys � 0 if �i, j� > S.
Here νab � SyaS � �SyaS � 1��SybS � 1�.
We conclude this lecture by stating two classical applications of Koszul algebras in topology.

6.6. Application 1: The Homology of Loop Spaces. Koszul duality can be used to
compute the homology of loop spaces (cf. [Ber14] for a detailed treatment):

Proposition 6.24. Let X be a simply connected space whose algebra of rational cochains
C��X;Q� �H��X,Q� is both formal and Koszul.

Then the homology of the loop space of X is given by the Koszul dual of H��X;Q�:
H��ΩX;Q� �D�1��H��X;Q��.

Example 6.25. For X � S2, the cochain algebra C��X,Q� is given by E�x� with x in

homological degree �2. As this algebra is Koszul, we deduce H��ΩS2;Q� � D�1��E�x�� �
Q�y� with y in degree 1. An alternative proof uses the James splitting ΣΩΣS1

� Σ �
mA0

Sm.

6.7. Application 2: The Adams Spectral Sequence. We begin by recalling the Steen-
rod algebra, which is of key importance in topology:

Definition 6.26 (The Steenrod algebra). The Steenrod algebra A (at p � 2) is the asso-
ciative algebra generated by elements Sq0,Sq1,Sq2, . . . subject to the following relations:

(1) Sq0 � 1;

(2) If i @ 2j, then Sqi Sqj � P

 i
2
�

k�0 Sqi�j�k Sqk.

Given any space X, the F2-valued cohomology H��X,F2� is equipped with a natural
action by the Steenrod algebra satisfying the following well-known conditions:

a) Sqn �H��X,F2��H��n�X,F2� shifts degree by n;
b) Sqn�x� � 0 if x >Hm�X,F2� wirth m @ n;
c) Sqn�x� � x 8 x for x >Hn�X,F2�;
d) Sqn�x 8 y� � Pa�b�n Sq

a�x� 8 Sqb�y�.
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Descent along the morphism of Eª-rings S � F2 can be used to prove the following
result of Adams – we refer to [Lur10, Lecture 8] for a more detailed discussion.

Theorem 6.27 (Adams spectral sequence). There is a spectral sequence of signature

Es,t
s � Exts,t

A
�F2,F2� � πs

�
�S�,2

We depict the E2-term of this spectral sequence (in Adams convention), cf. [Rav78]:

It is therefore an important computational problem to compute the algebra Exts,t
A

�F2,F2�,
and our previous discussion leads to the hope that Koszul algebras might be helpful.

Since the defining relations of A are not homogeneous, the natural grading on the tensor
algebra T �Sq0,Sq1, . . .� does not descend to an Adams-grading on A. However, it induces
an ascending filtration whose nth stage Fn�A� is spanned by all products of at most n
generators Sq0,Sq1, . . ..

The associated graded Gr�A� of this filtration admits an Adams grading, and Theo-
rem 6.21 can be used to prove that Gr�A� is a Koszul algebra. Priddy then refines the
analysis carried out in Theorem 6.12 to prove the following result:

Theorem 6.28. The Koszul dual D�1��A� of the Steenrod algebra is given by the Λ-
algebra, which is the differential graded F2-algebra generated by λ1, λ2, λ3, . . . subject to
relations

λaλb �



2�a�b�

3
�

Q
j�2b

�a � j � 1

j � 2b
�λjλa�b�j if a C 2b A 0

with differential

δ�λa� �

 2a

3
�

Q
j�1

�a � j � 1

j
�λjλa�j

The Λ-algebra provides a valuable tool in the computation of stable and unstable ho-
motopy groups of spheres; we refer to [Rav03, Chapter 3] for a detailed discussion.
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