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LECTURE 3. MONOIDAL 0co-CATEGORIES

Last week, we introduced oo-categories and defined colimits (and limits) in this context.
To state Lurie’s higher categorical Barr-Beck theorem, we will also need the theory of
monads (and their algebras) in this setting, which in turn relies on the theory of monoidal
(and tensored) oo-categories — these will be the topic of today.

3.1. CoCartesian fibrations. To examine oo-categories in families, we will need:

Definition 3.1 (coCartesian lifts). Given a map of simplicial sets p: C — S and an edge
fix—yin S, an edge

F:a-7
in C is said to be a p-coCartesian lift of f if

a) The edge f lifts f, which means that p(f) = f.
b) The map C]—;—> Cz/ %5,/ Sy is a trivial Kan fibration of simplicial sets.

Condition b) says that in the diagram below, specifying the upper triangle, an element of C 7
is equivalent to compatibly specifying (¥ — %) € Cz and the lower triangle, an element of Sy,.

7

I ]2
1) ;
Ty 1

Definition 3.2 (CoCartesian fibration). A map C %, SinsSet is a coCartesian fibration if

(1) pis an inner fibration, i.e. it satisfies the right lifting property for all inner horns:
A} —>C

|7

A" ——= §

(2) Given x ER y in S and 7 € C with p(T) = x, there is a p-coCartesian lift T ER yof f.

As a heuristic, it might be helpful to think of coCartesian fibrations as bundles with flat
connection; in this picture, coCartesian lifts correspond to paths along the connection.
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3.2. Unstraightening. One can show that coCartesian fibrations over S are equivalent to
functors from S into the co-category Cate, introduced last lecture. The proof of this result
is challenging, and we refer to [Lur09, Section 3.2] for a more comprehensive treatment.

We will content ourselves with constructing coCartesian fibrations for certain functors
to Cate. More precisely, let J be an ordinary category and fix a functor

F:J—sSet.
Definition 3.3 (Relative nerve). The relative nerve Np(J) is the simplicial set over N(J) with
Ng(J)o ={(jo e N(J)o , zo € F(jo)}
Ne (D)1= {(o = j1) eN(Dr , 29, F(jo = 1) (wo) = 1}

Jo —=>J1 F(jo = j2)(z0) — F'(j1 — j2)(x1)
zoeF (jo)  F(jo—j1)(zo)—z1
Np(J)2 = \L , T1€F (1), F(jo—j2)(zo)->z2
z2eF (j2)  F(j1—j2)(z1)—>m2
J2 T2

Exercise 3.4. a) Write down Ng(.J), for all n and check that it is a simplicial set.
b) Show that if FI(j) is an co-category for all j, then Np(J) = N(J) is a coCartesian fibration.

3.3. Monoidal co-categories. We are finally in a position to define monoidal co-categories.
But first, we observe that the category A from Lecture 2 admits an alternative de-
scription. Indeed, the objects of A° can be written as

[0] = (= +), []=(—°+), [2]=(= o e+), [3]=(- oo +)

Morphisms from [n] to are maps which preserve the order and send — to — and + to +:

iVNV//

Exercise 3.5. Show that the category defined in this way indeed agrees with the opposite
of the usual simplex category A.

Informally, we think of the bullets as placeholders of potential elements in a monoidal cat-
egory. The symbols + and — will act as “trashcans”; arrows will parametrise multiplications.
We give a name to the morphisms which “throw away” all but one element:

Definition 3.6. Given n >0 and 1 <i<n, we write p; — [1] for the morphism

N\\L//



This motivates the following definition:

Definition 3.7 (Monoidal oco-categories). A monoidal co-category is a coCartesian fibra-
tion p: C® - N(A) such that for all n, the following morphism is an equivalence:

C[®7’L] M) EC[%] (Segal condition)

(Pi N
@ z ®
m—Cn

] is equipped with a monoidal structure.

Here C®

[n

] denotes the fibre of p over [n], and C 1 is the functor associated with p}'.

®

Informally, we simply say that C =~ C[1

Remark 3.8. The functor (p'): sends z € Cﬁz] to the endpoint of a coCartesian lift of p’
starting at . For a complete definition, we refer to [Lur09, Section 2.2.1].

The monoidal product o is determined, up to equivalence, by the following composite:

® ® = ® m ®
Chy > €y a1 [’

where m : [2] - [1] is the morphism in A represented by the diagram
- [ ] [ J +
- e +.
Exercise 3.9. Define the monoidal unit 1 of a monoidal co-category C® — N(AP).

Notation 3.10. We will often say “let (C,o,1) be a monoidal co-category” instead of “let
C® - N(A) be a monoidal co-category with Cﬁ] ~ C, multiplication o, and unit 1”.

Using the relative nerve from Definition we can now equip oo-categories of endo-
functors C = End(D) with monoidal structures:

Definition 3.11 (Endomorphism oco-categories). Given an oco-category D, we equip
C = End(D) := DP

(cf. Definition 2.7 in Lecture 2) with the structure of a monoidal oco-category as follows.
First, use that C is a simplicial monoid (under composition) to construct a diagram

CxC =—— ¢ ==]0]

Second, apply the relative nerve (cf. Definition to obtain a coCartesian fibration
End(D)® - N(A%).

Exercise 3.12. Check that End(D)® - N(A) is a monoidal co-category.
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3.4. Algebra objects. To generalise the notion of a monad to a higher categorical context,
we first need to define what we mean by an algebra A in a monoidal co-category (C,o,1).

We certainly want to specify a multiplication map Ao A — A, which, by diagram , is
equivalent to lifting the morphism m : [2] — [1] in A°? drawn below along p : C® - N(A%).

N/

We can also specify higher compositions (e.g. Ao Ao A —— Ao A) as lifts of corresponding
maps in A°?. One might hope that algebra objects are simply sections of p: C® — N(AP).

This is almost true, but we need to make sure that certain dull morphisms have dull lifts:

Definition 3.13 (Inert morphism). A morphism f : [n] = [m] in A% is inert if every
bullet e in [m] has a unique preimage in [n]:

N LY

Definition 3.14 (Algebras). An algebra in a monoidal co-category p: C® - N(A%) is a
section s: N(A%) - C® of p sending inert morphisms to p-coCartesian morphisms.

Exercise 3.15. Show that if s : N(A°) — C® specifies an algebra, then s([2]) corresponds

to the pair (s([1]),s([1])) under the equivalence C[%] ~CxC.

Finally, we can generalise Definition 1.30 from Lecture 1 to the setting of co-categories:
Definition 3.16 (Monads). A monad on an oco-category C is an algebra object in End(C).

3.5. Algebras over monads. To state the monadicity theorem, we will need to define
what we mean by algebras over a monad. We will use the setup of tensored oo-categories.

Let C® - N(A) be a monoidal co-category, written informally as (C,®,1).

Definition 3.17 (Tensored oo-categories). A C-tensored oo-category is given by a diagram
of co-categories M® Leed N(A°P) satisfying the following conditions:

a) poq: M® > N(A) is a coCartesian fibration;

b) q: M® - C® is a categorical fibration sending (pog)-coCartesian to p-coCartesian edges;

c¢) For all n, the inclusion {n} c [n] induces an equivalence Mﬁ] 5 Cﬁ] x M?n}.

We say that the co-category M := M%BO] is equipped with a C-tensored structure, written ®.
Informally, elements of M?n] correspond to tuples (c1,ca, ..., ¢y, m) with ¢; € C, m € M;
we think of the ¢;’s as labels of the bullets and m as a label of the +. The (pog)-coCartesian



lifts tensor according to the arrows; for example, the coCartesian lift of the morphism

N Y

starting at a tuple (01,02,03,04705,06,771) ends at the tuple (1,c¢2,1,¢3 ® ¢4 ® c5,c6@m).

Example 3.18. Any oo-category M = D is naturally tensored over the monoidal oo-
category C = End(D), where the tensoring evaluates functors on objects.

To formally construct this tensored structure, observe that the simplicial set M =D is
equipped with an action by the simplicial monoid C = End(D).

We obtain the diagram N(A) x Al - sSet drawn below.

CxCxM=—= CxM =72 M
CxC =—]—— ¢ =——= 0]

Exercise. Applying the relative nerve construction to this diagram gives rise to an C =
End(D)-tensored structure on M =C.

Let C® 2 N(A) be a monoidal co-category and M® 2 €® 5 N(A%) be a C-tensored
oo-category. Fix an algebra object A in C, parametrised by a section s: N(A%) — C® of p.

Definition 3.19 (Modules). An A-module M in M consists of a section s’ : N(A?) - M®
with gos’ = s and such that all morphisms drawn below are sent to (p o ¢)-coCartesian edges:

N

Informally, an A-module is an element M € M with a multiplication map A® M — M
which is unital and associative up to coherent homotopy.

Definition 3.20 (Algebras over monads). Given a monad 7' on an co-category D, i.e.
an algebra object in the monoidal co-category End(D), a T-algebra is simply a T-module
object in the End(D)-tensored oco-category D.

Remark 3.21. One could argue that T-algebras should be called T-modules instead, and
this notational convention is indeed implemented in [Lur07]. However, we decided against
this for higher consistency with the 1-categorical literature on monads.
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