
The posterity of Residues and Duality1

Luc Illusie

1. Derived categories

Derived and triangulated categories have changed the face of homologi-
cal algebra. Since their introduction in [RD]2 and Verdier’s notes [46], the
theory has undergone considerable developments (among the most notable
ones, let me just mention filtered derived categories, t-structures and per-
verse sheaves, derived ∞-categories). It is of common use today in almost
all parts of algebraic geometry and homotopy theory. I will limit myself here
to discussing a few points that are more or less directly related to [20] and
[RD].

1.1. Signs. Sign problems have plagued homological algebra since the
very beginning. Derived categories and derived functors and the ensuing
formalism of six operations made it hard to elaborate a coherent system of
conventions of signs. Deciding whether a given diagram involving canonical
maps between various derived functors commutes is often a highly nontrivial
matter. Grothendieck didn’t pay too much attention to signs, considering
that it was a matter of “routine verification”. Some discrepancies in [RD]
were observed by Deligne in ([16], Appendice, Signes). Here he proposes
a system of conventions, which he thinks is coherent. They are based on
those he developed in ([1], XVII, 1.1, 1.2) (see ([2], p. 312) for an erratum).
A concise summary of them is given in ([10], 0.3). Sign conventions are
also discussed in detail in section 1.3 of Conrad’s book [14], the purpose of
which is to provide proofs for delicate compatibilities left over in [RD] and
straighten the signs. However, discrepancies were later found in it by Gabber
(see Conrad’s homepage for corrections and updates).

1.2. Unbounded derived categories. Leaving aside the questions of finite-
ness (such as coherence or constructibility of cohomology sheaves), it was
long tacitly assumed that the definition of the usual derived functors such
as Rf∗, Lf

∗, ⊗L, etc., required degree restrictions on their sources. For ex-
ample, for a morphism of schemes f : X → Y , denoting by D(X) (resp.

1This text, written at the suggestion of R. Hartshorne, was supposed to be included
in [25], of which I was to be a co-editor. The editors of the collection had given their
agreement. However, in May 2023 they explained to me that Grothendieck’s children
would grant their permission to publish only if I withdrew from the project, which I did.
Hence, despite the (pleasant) collaboration I had had with R. Hartshorne on this project
from 2019 to 2023, I was not a co-editor, my text was removed, and all references to my
name were eradicated, except for a one line of thanks at the end of the preface.

2[RD] stands for [23].
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D(Y )) the derived category of OX-modules (resp. OY -modules), if no as-
sumption of finiteness or cohomological dimension was made, the functor
Rf∗ was defined only on the bounded below category D+(X). In the early
1960’s Grothendieck asked whether, if one worked with good abelian cate-
gories (such as the category of OX-modules on a scheme, or a ringed topos,
or more generally what is now called a Grothendieck abelian category ([29],
8.3.24)), one could get rid of these restrictions (see e.g. ([20], 2.2.3 (3))). It is
only in 1988 that a satisfactory solution was proposed, by Spaltenstein [45],
using the new notion of homotopically injective (resp. projective) resolution.
A more systematic treatment is given in ([29], §§14, 18). However, this the-
ory had no great bearing on duality, as duality theorems (whether global or
local) require a combination of boundedness and finiteness assumptions. 3

1.3. Descent in derived categories. As recalled in [24], morphisms or
objects of derived categories in general do not glue on open covers. A notable
exception was discovered long after [RD], namely perverse sheaves in the étale
context ([9], 3.2.4). Grothendieck was of course well aware of the difficulty,
and that led him to sketch his theory of pseudo-complexes in ([20], 5.2), which
brought a partial solution to the gluing problem. I remember his excitement
when in a talk at the IHES in the mid 1960’s (see [27]) Deligne explained
his theory of cohomological descent (later written up by Saint-Donat ([1],
V bis)), which fully solved the problem. However, the conjectural approach
via “pseudo-complexes” can be seen as a first attempt to defining a “higher”
way of gluing in derived categories, which has nowadays been achieved by
the enhancement of derived categories to derived ∞-categories. Classical
derived functors can be enhanced to functors between derived ∞-categories,
and objects of these enhanced categories can be glued on open covers, see
([34], [35], [36]). This formalism, which supersedes that of Deligne, is being
increasingly used today. In [43], it is shown how it can be combined with
inputs from Huber’s adic geometry to yield another approach to the f ! functor
of [20] and [RD], and even to a full 6-operation formalism of coherent duality.
See the end of section 3 for more references.

2. The avatars of the f ! functor

The central object in [20] and [RD] is the f ! functor. As recalled in [24],
Grothendieck in [20] discussed two ways of constructing it. In the appendix

3(Added in November, 2023.) Bogdan Zavyalov (private communication) points out
that nowadays it is possible to drop boundedness assumptions in Poincaré duality type
results. For example, see ([37], Prop. 2.9.31) for the case of discrete adic spaces (and
schemes), and ([50], Theorem 1.3.1/1.3.2) for étale cohomology of schemes/adic spaces.
In fact, the categorical approach used to construct 6-functor formalisms in [37] or [50]
requires functors to be defined on the unbounded categories D.
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to [RD] Deligne proposed a third construction.

2.1. The three constructions.

For a noetherian scheme Z, let D+
coh(Z) denote the full subcategory of

D+(Z,OZ) consisting of complexes with coherent cohomology sheaves. Let
f : X → Y be a morphism of finite type between noetherian schemes. There
are three ways of constructing

f ! : D+
coh(Y )→ D+

coh(X).

Each one requires additional hypotheses. Let me briefly recall the construc-
tions.

(a) Via embeddings into a smooth scheme. Assume that we have a fac-
torization f = gi, where i : X → Z is a closed immersion, and g : Z → Y
is smooth, of pure relative dimension d. Using the fundamental local iso-
morphism (([20], 3.1.4), ([RD], III 7)), Grothendieck proves that, up to a
transitive system of isomorphisms, the composite functor

i!(g∗(−)⊗ Ωd
Z/Y [d]) : D

+
coh(Y )→ D+

coh(X),

sending M to i!(g∗M ⊗ Ωd
Z/Y [d]), where i!L is RHomOZ

(i∗OX , L) restricted
to X, is independent of the factorization. The corresponding limit of this
system is denoted by f !. He then shows (([20], 3.4), (RD III 11)) that, for
f projective, f ! is right adjoint to Rf∗ : D+

coh(X) → D+
coh(Y ). This uses the

construction of a trace map Rf∗f
! → Id (and reduction to the projection of

a standard projective space onto its base scheme).

(b) Using residual complexes and biduality. Assume that Y admits a dual-
izing complex KX , and thatX and Y are of finite Krull dimension4. ThenKY

determines a codimension function on Y , hence a canonical filtration of the
underlying set of Y by subsets stable under specialization, and a correspond-
ing Cousin complex E(KY ), which is isomorphic to KY in Db

coh(Y ). Then
E(KY ) is what Grothendieck calls a residual complex on Y , i.e., a dualizing
complex, which, as a graded OY -module is isomorphic to the direct sum over
all points y of Y of iy∗I(y), where I(y) = H

dy
{y}(OY,y) is an injective envelope of

the residue field k(y), with dy = dim(OY,y), and iy : {y} = Spec(k(y))→ Y .
Using his (conjectural) theory of pseudo-complexes and rigidity properties of
residual complexes, Grothendieck shows in [20] that the Cousin complexes
of the various E(i!(g∗(E(KY ))⊗ Ωd

Z/Y [d])) for closed embeddings i : U ↪→ Z
of open subschemes U of X in smooth schemes g : Z → Y can be glued to a

4This ensures that dualizing complexes on X and Y are bounded, and that pointwise
dualizing complexes are dualizing.
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residual complex E(KX) on X associated with a dualizing complex KX . A
proof independent of the theory of pseudo-complexes is given in ([RD] VI). Is-
sues in ([RD] IV 3.2, 3.4) concerning the equivalence between dualizing and
residual complexes are fixed in ([14], 3.1.3), and a proof of the unchecked
compatibilities ([RD], VI 3.1 VAR 5, VII 3.4 (a))) is given in ([14], 3.3.1).
Then, putting DX := RHom(−, KX), DY := RHom(−, KY ), the f ! functor
is defined as

f ! := DXLf
∗DY : D+

coh(Y )→ D+
coh(X)

For f proper, f ! thus defined is again shown to be a right adjoint to Rf∗, using
a trace map defined by means of a residue homomorphism. The formulas
stated in ([RD], III 9) for the corresponding residue symbol are proved in
([14], A2) . Various sign issues concerning it are discussed in [15].

(c) Using formal adjunction. Assume that Y is of finite Krull dimension
and f is compactifiable, i.e., that there exists a factorization f = gj, where
j : X → Z is an open immersion, and g : Z → Y is proper, with Z of
finite Krull dimension. Using an analogue of Verdier’s construction of the f !

functor in the topological case [47], Deligne shows in ([RD], Appendix) that
the functor Rg∗ : D+

coh(Z) → D+
coh(Y ) admits a right adjoint g!. Then f ! is

defined as
j∗g! : D+

coh(Y )→ D+
coh(X).

The fact that, up to a transitive system of isomorphisms, j∗g! is independent
of the factorization is non-trivial.

In ([RD], Appendix) Deligne sketches one method to do it. For f not
necessarily proper, he defines a functor Rf! : proDb

coh(X) → proDb
coh(Y )

between categories of pro-objects, by Rf! = Rg∗j!, where j! is a pro-coherent
version of the extension by zero, obtained by sending a coherent sheaf F on
X to the pro-coherent sheaf “ lim←−

′′ InF , where F is a coherent extension of
F on Z and I an ideal of OZ defining a closed subscheme with support Z −
X. The independence of j∗g! of the compactification is then reduced to the
independence of Rf!, which is easy by standard Artin-Rees-Krull arguments.
By a different method, a full proof is given by Verdier in ([49], Cor. 1).

Verdier’s construction of f ! in the topological case as a right adjoint to
Rf!, and its subsequent use by Deligne, first in the coherent context in [RD,
Appendix], and later in the étale one in ([1] XVIII) relies on an elemen-
tary lemma to the effect that any contravariant functor from a Grothendieck
abelian category to abelian groups transforming arbitrary small inductive
limits into projective ones is representable. A precursor of this lemma can
be found in Gabriel’s thesis. Variants and generalizations for triangulated
categories (see ([29], 10.5.3, 14.2.3)), inspired by Brown’s representability
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theorem, were later developed (and applied to coherent duality) by Neeman,
Lipman et al. ([40], [33]). However, these apply to “classical derived cate-
gories”. In the ∞-categorical setting, the adjoint functor theorem of ([34],
Cor. 5.5.2.9) for presentable ∞-categories is in general needed.

2.2. Comparison and base change.

For each of the three constructions several natural compatibilities for
composition and base change have to be checked. This is done only partially
in the original texts. Also, while for f proper the fact that f ! is right adjoint
to Rf∗ ensures the existence and uniqueness of isomorphisms between the
three approaches in their common domain of definition, the extension of
these to the non-proper case raises delicate questions.

Comparison between (a) and (b) is carried out in [RD] and with many
more details in [14], where a main base change theorem for the trace map for
proper, flat Cohen-Macaulay maps is proved ([14], th. 3.6.5).

Comparison between (a) (or (b)) and (c) is more difficult. Some cases (e.
g., f compactifiable, flat, and locally of complete intersection) are sketched in
([RD], Appendix). The smooth case is (fully) treated by Verdier in ([49], th.
3). In addition, Verdier proves a base change theorem for f ! for a flat base
change ([49], th. 2), from which the calculation of f !G, G ∈ D+

coh(Y ) for f of
finite tor-dimension is reduced to the case where G = OY . Another approach
to this calculation is given in [28]. However, there remained delicate issues
concerning explicit forms of the trace and residue maps and compatibility of
f ! with non-flat base change. These have been recently addressed by Nayak
and Sastry ([38], [39]). One can also consult the stacks project [51].

2.3. Further developments.

Let me discuss a few problems mentioned in [20] that were tackled later
or are still of interest today.

(1) The non-noetherian case

Grothendieck insisted on eliminating noetherian hypotheses. To him it
was the relative structure of a morphism that mattered, not its base. This
is already apparent at various places of [20]. Over a non-noetherian scheme
the notion of coherent sheaf is no longer adapted. In 3.2.4 Grothendieck
introduces the notion of sheaf of modules of ∞-finite presentation, which he
generalizes into that of pseudo-coherent complex in 4.1.1 (e). He also defines
the notion of pseudo-coherent morphism in 5.4.5. These notions were to be
systematically studied and developed in ([4], I – III). Complexes that are
both pseudo-coherent and of finite tor-dimension, considered on p. 80, will
be called perfect in [4]. They are interesting already in the noetherian case
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and they have since then played a crucial role in many parts of arithmetic
geometry. In 5.8 (B) Grothendieck sketches the construction of the deter-
minant of a perfect complex, a fundamental invariant, defined and studied
in detail by Knudsen and Mumford in [30], and which is still an object of
attention today in the framework of derived geometry. Partial generaliza-
tions of the duality theorem to the non-noetherian case (using the notion of
pseudo-coherence) and to diagrams of schemes were given in [33] (see e.g.,
Cor. 4.4.2). However, a full 6-functor formalism in the non-noetherian case
was constructed only recently [37], systematically using derived geometry
and condensed mathematics.

(2) Cotangent complex and self-intersection complex

In ([20], 5.8) Grothendieck defines the (truncated of length one) cotangent
complex of a homomorphism of rings A → B. This is, historically, the first
appearance of this object. As he told me, he got the idea from his work with
Dieudonné on imperfection modules in ([6], 10.6): he conjectured that these
modules should be (in good cases) interpreted as H1 of a finer invariant, the
cotangent complex of A → B, whose H0 would be the classical module of
Kähler differentials. At about the same time, and independently, Lichten-
baum and Schlessinger defined a (truncated of length 2) cotangent complex
of A → B [32]. However, the two problems mentioned by Grothendieck in
([20], 5.8), namely, (i) getting a theory giving a transitivity triangle for a
composition A → B → C, (ii) globalizing to morphisms of schemes, were
solved only a few years later. As for (ii), that was done by Grothendieck
himself for the (truncated of length one) complex in [21]. Problem (i) was
solved by Quillen [41] (a definition and study of the homology and cohomol-
ogy objects of the cotangent complex was made independently by M. André
[7]). The globalization of Quillen’s construction was carried out in [26].

Already the cotangent complex played a key role in the formulation of the
Riemann-Roch theorem for projective morphisms f : X → Y that are lci, i.e.,
locally of complete intersection5, Y being quasi-compact and admitting an
ample line bundle ([4], 3.6). It is also in [20] that the notion of lci morphism
appears for the first time ([20], 4.8 C). The basic formula ([20], 5.8.2 (ii)),
to the effect that for X → Y flat and lci, of relative dimension d, f !OY =
det(LX/Y )[d] was not reproduced in [RD] (perhaps for lack of a suitable
reference for the construction of the determinant of a perfect complex), and,
curiously, not even in [14]. The flat lci morphisms, later called syntomic
morphisms, were to play an important role in p-adic Hodge theory.

In ([20], p. 60) Grothendieck describes a construction of Cartier of the
residue homomorphism for a morphism of rings A → B, based on what

5In this case the truncated cotangent complex agrees with the full one.
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he calls the self-intersection complex of B/A, namely B ⊗L
B⊗AB B, which

he denotes by L•B/A. The analogy of notation with the cotangent complex
LB/A of B/A is not fortuitous. Deep relations between this self-intersection
complex and LB/A, for B flat over A, and in general, with B⊗L

B⊗ABB replaced
by B⊗L

B⊗L
AB

B were discovered by Quillen ([41], 8) in relation with associative

algebra cohomology and Hochschild cohomology. This topic is still actively
studied today in relation with p-adic Hodge theory.

(3) Complexes of differential operators

In ([20], 3.5) Grothendieck proposes an extension of the duality theorem
to complexes of differential operators. As far as I know, the problem has not
yet been addressed in general. Over complex manifolds, duality theorems
involving D-modules and complexes of differential operators are established
in [42].

(4) Homology, cycle classes, Lefschetz-Verdier formula

Let f : X → S be a morphism of finite type between noetherian schemes
of finite dimension, where S admits a dualizing complex KS and KX := f !KS

is the corresponding dualizing complex on X. In ([20], 8.4), elaborating on
ideas he had sketched in his talk at the 1958 ICM, Grothendieck defines, for
L ∈ D−(S,OS), the homology groups of X with coefficients in L as

H−iRHom(L,KX) = H−i(X,RHom(L,KX)) = Ext−i(L,KX).

This definition was later transposed in the settings of topological spaces
(by Verdier ([17], VI)), and étale cohomology (by Grothendieck in the oral
seminar SGA 5 6). Since then it has often been abusively called Borel-Moore
homology, by reference to [11], where no derived categories, a fortiori, no
dualizing complexes appear. Grothendieck intended to write in section 9
properties of variance for these groups, and use them to construct a theory
of cycle classes of Hodge style, satisfying compatibilities with cup-products
and Gysin maps. As explained in [24], this part was not written. In [18] El
Zein discusses variants of these cycle classes in de Rham and Hodge homology
groups.

In his letter to Serre of Aug. 8, 1964 ([13], p. 165), Grothendieck thus
comments on the Woods-Hole Lefschetz fixed point formula that Serre had
described in the first section of his letter of Aug. 2–3, 1964: “Le n. 1 ne
m’excite guère, malgré les jolies applications ; le théorème des points fixes
lui-même ne me semble pas plus qu’un exercice sur un air connu !”. In [20], at
the end of Commentaires, Grothendieck hinted that such fixed point formulas

6Written up later by Laumon ([17], VIII) and Deligne ([2], Cycle).
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would follow from his duality formalism. It was at that time that Verdier was
elaborating his general Lefschetz fixed point formula for cohomological cor-
respondences in étale cohomology, later called the Lefschetz-Verdier formula
[48], ([3], III), relying on the étale analogue of the duality formalism of [RD].
A variant of this formula in the coherent setting was later established in ([3],
III 6. Appendice), generalizing the Woods-Hole formula. Hodge cohomology
classes and residues of ([RD], III 9) play a crucial role in it.

3. Glimpses of duality in other contexts

The duality formalism of [RD] has inspired similar theories in many other
contexts. A full description of them, or even of the state of the art today,
would require a whole volume. I will list some of them below, with no
references, as the literature is too large.

• Topological spaces : Verdier (1965).

• Complex analytic spaces : Ramis-Ruget, Verdier (1971).

• Étale cohomology : Artin-Grothendieck-Verdier, Deligne, Gabber, and
many others (1964 –).

• D-modules and mixed Hodge theory : Bernstein, Deligne, Kashiwara-
Schapira, Mebkhout, M. Saito, and many others (1970 –).

• Crystalline cohomology, rigid cohomology : Berthelot, Ekedahl, Kedlaya,
and many others (1970 –).

It is by far the étale theory that has undergone the most extensive devel-
opments (up to today). In many respects, it has served as a model for the
others.

Quite recently there has been a renewal of interest in the general formal-
ism of the six operations7 in various settings, in connection with the new tools
provided by the language of derived geometry and the theory of condensed
mathematics, see [43], [8], [12], [44], [50], [37].

For a historical study of Grothendieck’s work, ideas and reflections on the
theme of duality in the light of [22], see L. Lafforgue’s essay [31].

Acknowledgements. I warmly thank Hélène Esnault and Bogdan Zavyalov
for their careful reading of this text and several helpful comments and sug-
gestions.

7“formalisme des six opérations” was Grothendieck’s terminology in [22]. Nowadays,
“6-functor formalism” is a preferred terminology.
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[47] Verdier, Jean-Louis. Dualité dans la cohomologie des espaces localement
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