
Grothendieck and differential calculus1

Luc Illusie

0. Introduction

Roughly speaking, differential calculus consists in this: given a good space
X, a good function f on X, and points x, y in X, evaluate f(y)− f(x) when
x and y are infinitesimally close. What does one mean by “infinitesimally
close”? If one just says “close”, one would mean that the point (x, y) belongs
to a neighborhood of the diagonal in X × X. These neighborhoods lead to
the notion of “uniform structure” in Bourbaki, Topologie Générale. But what
would be an infinitesimal neighborhood of the diagonal? Grothendieck was
the first one to give a rigorous definition of this notion. He did it in the
context of analytic geometry, in two remarkable exposés at the Séminaire
Cartan 1960-61 [26], which brought a totally new perspective on sheaves of
differential forms and differential calculus in general.

Let me explain his construction in a simple case. Let X be a smooth
complex analytic variety, of dimension n. Consider the diagonal map i :
X → X × X. This is a closed immersion, defined by a coherent sheaf of
ideals I fitting in the exact sequence

(0.1) 0→ I → OX×X → OX → 0.

In local coordinates (xi) on X, (xi, yi) on X × X, it is locally generated
by (yi − xi), 1 ⩽ i ⩽ n. It coincides with OX×X outside the diagonal.
Grothendieck considered the exact sequence deduced from (0.1) by dividing
OX×X by I2:

(0.2). 0→ I/I2 → OX×X/I
2 → OX → 0.

He observed that:
(a) There is a canonical isomorphism

(0.3) I/I2
∼→ Ω1

X ,

where Ω1
X is the sheaf of 1-forms on X, a vector bundle of rank n, with local

basis (dxi) (1 ⩽ i ⩽ n).
1These notes are a slightly expanded version of colloquium talks given at Clermont-

Ferrand, on Nov. 19, 2024, and at the Institut de Mathématiques de Jussieu, on Dec.
12, 2024. I warmly thank the organizers, Jérôme Dubois (Clermont-Ferrand), and Pierre
Berger and Olivier Debarre (Jussieu) for their invitations.
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(b) If p∗1, p∗2 are the two sections of OX×X/I
2 → OX induced by the

projections X ×X → X, then the map

OX → I/I2, f 7→ p∗2f − p∗1f

coincides via (1.3) with the derivation dX : OX → Ω1
X .

The verification is immediate: (a) follows from the exact sequence

0→ I/I2
dX×X→ i∗Ω1

X×X → Ω1
X → 0,

where the surjection is the sum map: Ω1
X ⊕ Ω1

X → Ω1
X , and (b) expresses

that locally yi − xi mod I2 corresponds to dxi, I/I2 is free with basis the
classes of yi − xi mod I2, and

f(y)− f(x) =
∑

∂f/∂xi(x)(yi − xi)mod I2.

Grothendieck defined the first infinitesimal neighborhood of the diagonal as
the closed analytic subspace ∆1

X(1) ↪→ X × X defined by the ideal I2. It
has the same underlying space as X, and its ring of functions, OX×X/I

2,
also called sheaf of principal parts of order 1 and denoted P1

X , is by (0.2) an
extension of OX by the ideal of square zero I/I2 = Ω1

X . By replacing I2 by
higher powers of I, one gets higher infinitesimal neighborhoods ∆r

X(1) of the
diagonal, leading to differential calculus of higher order.

At the same time, Grothendieck realized that one could reverse the steam,
and define the sheaf of differentials Ω1 by the I/I2 formula, even if X is a
singular analytic space, and even in a relative situation X → S, and that
in this way one obtained a theory with good functoriality properties. He
also saw that one could develop a similar theory in algebraic geometry, for
schemes, which he wrote up a couple of years later in EGA IV [29].

If X → S is a morphism of schemes, Grothendieck defines Ω1
X/S as I/I2,

where I is the ideal of the diagonal immersion X → X ×S X, and the
map dX/S : OX → Ω1

X/S by p∗2 − p∗1, where, as above, p∗1, p∗2 are the two
sections of OX×SX/I

2 → OX given by the two projections. The sheaf Ω1
X/S

is quasi-coherent (locally free of finite type when X/S is smooth), and dX/S

is an OS-derivation. When X and S are affine, so that X → S corresponds
to a homomorphism of rings A → B, then Ω1

X/S is the quasi-coherent sheaf
defined by Ω1

B/A := J/J2, where J is the kernel of the surjection B⊗AB → B,
b1 ⊗ b2 7→ b1b2, and dX/S corresponds to the A-derivation dB/A : B → Ω1

B/A,
dB/A(b) = 1 ⊗ b − b ⊗ 1. One checks that composition with dB/A defines a
functorial isomorphism

HomB(Ω
1
B/A,M)

∼→ DerA(B,M)
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where DerA(B,M) is the B-module of A-derivations of B in a B-module M ,
so that Ω1

B/A thus defined is the module of Kähler differentials of B/A.2

One checks that d : OX → Ω1
X/S uniquely extends to a complex

Ω•
X/S = (OX

d→ Ω1
X/S → · · · → Ωi

X/S
d→ Ωi+1

X/S → · · · ),

called the de Rham complex of X/S, where Ωi
X/S :=

∧i
OX

Ω1
X/S, such that

d(α ∧ β) = dα ∧ β + (−1)iα ∧ dβ for α of degree i.
Grothendieck defined the algebraic de Rham cohomology of X/S by

H∗
dR(X/S) = H∗(X,Ω•

X/S)

(hypercohomology of X for the Zariski topology with coefficients in Ω•
X/S).

This object enjoys nice functoriality properties. Its calculation led to rich
developments.

Let k be a field. For X/k a standard projective space, a projective smooth
curve, or an abelian variety, the de Rham cohomology groups H i

dR(X/k)
are finite dimensional k-vector spaces, with the same dimension (and same
structure) as the transcendental Betti cohomology groups when k = C. But
in general, algebraic de Rham cohomology behaves in quite different ways in
characteristic zero and in characteristic p > 0.

1. Algebraic de Rham cohomology in characteristic zero

Let X be a smooth scheme over C. The set X(C) of its complex points un-
derlies a smooth complex analytic variety Xan. By the holomorphic Poincaré
lemma3 its de Rham complex Ω•

Xan (where we omit /C for short) is a reso-
lution of the constant sheaf CX : the sequence

0→ CX → OXan → Ω1
Xan → · · ·

is exact. In other words, the augmentation

CX → Ω•
Xan

is a quasi-isomorphism, which thus induces an isomorphism

(1.0) H∗(Xan,C) ∼→ H∗
dR(X

an),

2This module, defined by Kähler in 1953 [38], didn’t attract much attention until
Grothendieck used it extensively, already in [25].

3According to de Rham, ([21], p. 646) the C∞ analogue of this lemma, namely the
exactness of the augmented de Rham complex of global C∞-forms on Rn, attributed to
Poincaré, was in fact first proved by Volterra ([53], pp. 407-422, 1889).
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by which a class ω ∈ Hn
dR(X

an) corresponds to the homomorphism

Hom(Hn(X
an,Z),C), γ 7→

∫
γ

ω

(with a suitable sign convention, see ([17], I Th. 1.2, p. 14)).
On the algebraic side, the Poincaré lemma fails: Ω•

X := Ω•
X/C is far from

being a resolution of CX (as is already seen for X the affine line Spec(C[t]):
the form dt/(1 + t) near zero has no algebraic primitive). However, we have
a canonical map of ringed spaces

(1.1) Xan → X,

inducing a map Ω•
X → Ω•

Xan on de Rham complexes, hence on de Rham
cohomology

(1.2) H∗
dR(X)→ H∗

dR(X
an).

Grothendieck proved the following surprising theorem.

Theorem 1.3 [28]. The map (1.2) is an isomorphism, and thus induces
an isomorphism H∗

dR(X)
∼→ H∗(Xan,C).

In particular, dimCH
i
dR(X) = bi, where bi = dimCH

i(Xan,C) is the tran-
scental ith Betti number, and these algebraic de Rham cohomology spaces
are homotopy invariants!

In the proper case, the proof is easy. By Serre’s GAGA theorems, the
map

Hj(X,Ωi
X)→ Hj(Xan,Ωi

Xan)

is an isomorphism, which implies the result by the Hodge to de Rham spec-
tral sequence Eij

1 = Hj(X,Ωi
X) ⇒ H i+j

dR (X). However, in the non-proper
case, the proof is more difficult. Grothendieck uses Hironaka’s resolution
of singularities [33] to compactify X by a divisor with normal crossings at
infinity, and concludes by a local calculation due to Atiyah–Hodge. This
calculation, which involves differential forms with logarithmic poles, will be
revisited by Deligne in his work on mixed Hodge theory ([15], [16]), and later
will be one of the sources of the theory of logarithmic geometry.

Example. Let X := Spec(C[t, t−1]) be the punctured affine line. Then
H0

dR(X) = C, H1
dR(X) = C · (dt/t), and Hn

dR(X) = 0 for n > 1. The class
dt/t is a basis of H1(Xan,C), sending the class of the circle in H1(X

an,Z) to
2πi.
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Let X0 be a smooth scheme over Q, and let X = X0 ⊗ C. Since
H∗

dR(X0/Q)⊗C = H∗
dR(X/C), the isomorphism of Theorem 1.3 gives a period

isomorphism

(1.3.1) H∗
dR(X0/Q)⊗ C ∼→ H∗(Xan,Q)⊗ C.

As H∗(Xan,Q) = Hom(H∗(X
an,Z),Q), the image by (1.3.1) of a class ω ∈

Hn
dR(X0/Q) corresponds to the homomorphism sending γ ∈ Hn(X

an,Z) to∫
γ
ω ∈ C. These numbers are called periods. As the above example shows,

they can be transcendental. Let t(X) be the transcendence degree over Q of
the subfield of C generated by those periods (for all n). Grothendieck asked
for bounds for t(X) and conjectured that t(X) is the dimension of the image
of the motivic Galois group of Q into GL(H∗(Xan,Q)) ([2], 0.4). See [2] for
the state of the art on this conjecture and related ones in 2016.

For X/C projective and smooth, Xan is Kähler, and the Hodge decom-
position for H∗(Xan,C) gives an isomorphism

(1.4) Hn
dR(X)

∼→
⊕
i+j=n

H ij,

with H ij := Hj(X,Ωi
X) and Hji = H ij. In particular, if hn := dimHn

dR(X),
hij := dimHj(X,Ωi

X), we have

(1.5) hn =
∑
i+j=n

hij

for all n, and the Hodge to de Rham spectral sequence degenerates at the
first page. Moreover, we have the Hodge symmetry hij = hji. It was proved
by Deligne ([14], Prop. 5.3) that (1.4) (hence (1.5) and Hodge symmetry)
holds more generally for X/C only proper and smooth.

2. Algebraic de Rham cohomology in characteristic p > 0

Fix a prime number p.
If X is a scheme of characteristic p (i.e., a scheme over Fp), X admits a

natural endomorphism FX , called the Frobenius endomorphism, which is the
identity on the underlying space and is a 7→ ap on OX . If X is a scheme
over S, and S is of characteristic p, then, for a in OX , d(ap) = pap−1da =
0 (where d := dX/S), and for ω ∈ Ωi

X/S, d(apω) = apdω, so that the de
Rham complex Ω•

X/S is not just OS-linear, but also p-linear with respect to
OX . The conjunction of OS-linearity and p-OX linearity is best expressed by
introducing the pull-back X(1)/S of X by FS : S → S, and the S-morphism
F : X → X(1), called the relative Frobenius, through which FX canonically
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factors, and observing that F∗Ω
•
X/S, i.e., Ω•

X/S, considered as a complex of
OX(1)-modules, has anOX(1)-linear differential. In particular, the cohomology
sheaves Hi(F∗Ω

•
X/S) are OX(1)-modules.

These are trivial remarks. But in 1957 Cartier discovered a new operation
on differential forms, which was to later control all differential calculus in
positive characteristic (and, consequently, in mixed characteristic, too, for a
large part). In a presentation due to Deligne and Katz ([39], 7.2), his result
is the following.

Theorem 2.1. (Cartier, [13]). The maps

OX → OX , a 7→ ap,

Ω1
X/S → Ω1

X/S, adf 7→ apfp−1df

induce OX(1)-linear homomorphisms

OX(1) → H0(F∗Ω
•
X/S),

Ω1
X(1)/S → H

1(F∗Ω
•
X/S),

which uniquely extend to a homomorphism of gradedOX(1)-algebras denoted4

C−1 :
⊕
i

Ωi
X(1)/S →

⊕
i

Hi(F∗Ω
•
X/S).

When X/S is smooth, C−1 is an isomorphism.

The proof of the first part is a small calculation (that has recently reap-
peared in the theory of δ-structures and prisms [12]), and for the second one,
an easy dévissage reduces to X = Spec(Fp[t]), where writing Fp[t] as the free
module over Fp[t

p] with basis 1, t, . . ., tp−1, one sees that H0 (resp. H1) has
basis 1 (resp. tp−1dt).

2.2. It follows from Theorem 2.1, that if X = Spec(A) is smooth, affine
over a field k of characteristic p, then H∗

dR(X/k)
∼→

⊕
Ωi

A(p)/k
, hence is of

infinite dimension over k if X is of positive dimension, in contrast with the
case k = C. On the other hand, if X/k is proper and smooth, then the Hodge
spaces Hj(X,Ωi

X/k) have finite dimension hij, so that, by the Hodge to de
Rham spectral sequence

Eij
1 = Hj(X,Ωi

X/k)⇒ H i+j
dR (X/k)

the de Rham cohomology spaces Hn
dR(X/k) are also finite dimensional. How-

ever, in the late 1950’s and early 1960’s it was observed by Serre that
4For historical reasons: Cartier first defined C : ZiF∗Ω

•
X/S → Ωi

X(p)/S
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Hodge symmetry could fail [50], and by Mumford [46] that a strict inequality
hn <

∑
i+j=n h

ij was possible. Concerning this second point, a progress was
made in 1987.

Theorem 2.3 [18]. Assume k perfect and let W (k) be the ring of Witt
vectors on k.5 Let X/k be proper and smooth. Assume that dim(X) ⩽ p, and
X is liftable to W2(k), i.e., there exists a proper, smooth scheme X/W2(k)
whose reduction X ⊗ k on k is isomorphic to X. Then

(2.3.1) hn(X) =
∑
i+j=n

hij(X)

for all n.

This is in fact a corollary of a stronger fact, namely, that assuming only
X/k smooth of dimension ⩽ p and liftable to W2(k), the de Rham complex
F∗Ω

•
X/k, as an object of the derived category D(X(1),OX(1)), is the sum of

its shifted cohomology sheaves, i.e., thanks to the Cartier isomorphism 2.1,
we have an isomorphism ⊕

i

Ωi
X(1)/k[−i]

∼→ F∗Ω
•
X/k

in D(X(1),OX(1)).

A corollary of Theorem 2.3 was an algebraic proof of the Hodge degener-
ation (1.5). However, there remained the following question: does there exist
X/k, proper, smooth of dimension p+ 1, liftable to W2(k), for which (2.3.1)
fails for some n? A positive answer, in a stronger form, was recently given
by A. Petrov.

Theorem 2.4 [47]. There exists a projective, smooth scheme X/W (k)
of relative dimension p+ 1, such that its reduction X := X ⊗ k has

hp <
∑
i+j=p

hij.

The proof is a tour de force. The identification and description of the
obstruction to the degeneration at E1 of the Hodge to de Rham spectral
sequence, or rather, equivalently, of the degeneration at E2 of the conjugate
spectral sequence (coming from the canonical filtration of F∗Ω

•
X/k) uses the

theory of diffracted Hodge complexes of Bhatt–Lurie–Drinfeld [10]. The core
of the proof relies on an extremely ingenious description of extensions in

5W (k) = Zp if k = Fp and W2(k) = W (k)/p2W (k).
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de Rham and Hodge cohomology complexes of abelian schemes over W (k)
endowed with group actions. See Section 4 for the definition of X .

Let δp =
∑

i+j=p hij − hp. Petrov can show that, for his example, δp ⩾ 2.
He hopes that one could get δp = 1 and then that δp could probably take any
positive integer value.

3. Mixed characteristic: crystalline cohomology

The discovery by Grothendieck [30] (and, independently, by Katz–Oda
[40]) of the algebraicity of the classical, analytic, Gauss–Manin connection,
together with results of Monsky–Washnitzer on de Rham cohomology in the
affine case [45], led him to conjecture (in [30]) the following.

Let k be a perfect field of characteristic p > 0. Let X/k be proper,
smooth, and suppose it admits a proper, smooth lifting X/W (k). Then:

(a) H∗
dR(X/W (k)) does not depend on the lifting X , in the sense that the

H∗
dR of the various liftings are related by a transitive system of isomorphisms.

(b) For n ⩾ 1, one can define an inductive system of ringed sites

(3.1) (X/Wn(k))crys,

called the crystalline sites, giving a compatible system of isomorphisms

(3.2) H∗((X/Wn(k))crys,O)
∼→ H∗

dR(Xn/Wn(k)),

for Xn := X ⊗Wn(k), yielding an isomorphism
(3.3)

H∗((X/W (k))crys,O) := lim←−H∗((X/Wn(k))crys,O)
∼→ H∗

dR(X/W (k)).

Berthelot proved these conjectures in his thesis [6], where he developed the
theory of crystalline sites, topoi, and crystalline cohomology in a much more
general framework.

In the case of interest to us, the crystalline site (X/Wn(k))crys is defined
independently of the lifting X/W (k), which may not exist (see Serre’s ex-
amples in ([37], 8.6)), and, in fact, for any scheme X/k. It is the category
of Wn(k)-thickenings U ↪→ T of open subschemes of X, together with a DP
(= divided power structure) x 7→ x[r] on the ideal of T ,6 compatible with
p[r] = pr/r!, with families (Ui ↪→ Ti) covering U ↪→ T if (Ti) Zariski covers
T . In contrast with the étale site, this site is far from the geometric intu-
ition. In particular, it has no final object. If X/k is smooth and Y/Wn(k)
is a smooth lifting, then X ↪→ Y covers the final object of the associated
topos, and cohomology can be calculated by a certain Čech complex, called

6See ([51], Divided Powers. 07GK).
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the Čech-Alexander complex. For n = 1 and Y = X, this complex is the
cosimplicial ring

(3.4) OX̃•

formed by the rings of the divided power envelopes X, X̃ ×k X, ˜X ×k X ×k X,
. . ., of the diagonal in the successive powers of X/k. A crucial point is the
existence of an isomorphism:

(3.5) OX̃•
∼→ Ω•

X/k

in the derived category D(X, k), compatible with the ring structures. This
isomorphism is deep. It is a manifestation of Grothendieck’s extraordinary
insight into differential calculus. Berthelot’s proof in ([6], V Th. 2.3.2), sug-
gested by Grothendieck in ([30], 6.4, 6.5), using linearization of differential
operators, is rather indirect. It is repeated in ([7], 6.14, 7.2). The construc-
tion of an explicit morphism of complexes from (3.4) to Ω•

X/k inducing an
isomorphism in D(X, k) after divided power completion of the left hand side
is given in ([35], VIII, 1.4.4).

All proofs of (3.5) rely, in one way or another, on the following (trivial)
observation.

Lemma 3.6. (DP Poincaré lemma) Let A be any commutative ring, and
let A⟨t⟩ be the divided power algebra ΓA(At) on the free module with basis t,
and let A⟨t⟩ d→ A⟨t⟩dt the differential graded algebra with d(t[n]) = t[n−1]dt.
Then the sequence

0→ A→ A⟨t⟩ d→ A⟨t⟩dt→ 0

of A-modules is exact.

The algebra k⟨t⟩ has a natural comultiplication, which makes it the Hopf
algebra of a commutative unipotent group scheme7 G♯

a (over k). The mor-
phism of group schemes G♯

a → Ga given by k[t]→ k⟨t⟩ defines a ring stack

GdR
a := [G♯

a → Ga],

which in turn, by Bhatt–Lurie’s transmutation ([9], 2.3.8), yields a stack

XdR, R 7→ X(GdR
a (R)),

a gerbe on X(1) banded by the DP -envelope T ♯

X(1) of the tangent sheaf of
X(1)/k. We have

H∗(XdR,O) ∼→ H∗
dR(X/k).

7In the sense of ([19], II 9) (G♯
a is not of finite type).
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The cosimplicial ring (3.4) can be re-interpreted as the ring of the Čech
simplicial complex associated with the cover X → XdR (transmuted from
the cover Ga → GdR

a ). This viewpoint leads to a new proof of (3.5) ([9],
2.5.6). A finer result (taking into account the conjugate filtration of F∗Ω

•
X/k)

is given in ([9], 2.7.2 (3)).

In his famous letter to Tate dated May, 1966, Grothendieck said that
the characteristic properties of a crystal were rigidity and ability to grow in
an appropriate neighborhood. Crystals in O-modules on the crystalline site
(X/Wn(k))crys are defined as sheaves of O-modules for which the transition
maps from one thickening to another are isomorphisms ([6], IV 1.1). A
typical example is de Rham cohomology of liftings Xn of X/k to Wn(k),
incarnating the crystal RΓ((X/Wn(k))crys,O) on (Spec(k)/Spec(Wn(k))crys:
vertical rigidity, horizontal growth:

RΓcrys(X/k)

=

��

RΓcrys(X/Wn(k))oo

=

��
RΓdR(X/k) RΓdR(Xn/Wn(k))oo

A stronger crystalline property of this cohomology was recently proven by S.
Mondal ([43], Theorem 5.0.1): RΓcrys(X/Wn(k)) is the unique (functorial in
X) multiplicative lift of RΓdR(X/k) to Wn(k).

Crystalline cohomology has been intensely studied during the past 50
years and has been the subject of numerous reviews. I will just briefly recall
a few main facts and sketch a couple of recent developments.

Let K := Frac(W (k)). For X/k proper and smooth, H∗
crys(X/W (k)) is

a finite anti-commutative W (k)-algebra (RΓcrys(X/W (k)) in D(W (k)) is a
perfect complex, and a derived commutative algebra), and

X 7→ H∗
crys(X/W (k))⊗K

is a Weil cohomology (satisfying Künneth, Poincaré duality, and having a
cycle class theory), with good Betti numbers : by Katz–Messing [41]

(bi)crys(X) := dimKH
i
crys(X/W (k))⊗K = dimQℓ

H i(Xk,Qℓ)

(ℓ ̸= p), and if X lifts to characteristic zero, then (bi)crys(X) is the ith Betti
number of the resulting complex variety over C.

A distinctive feature of crystalline cohomology is its Frobenius lift. The
endomorphism FX of X induces an endomorphism φ of H∗

crys(X/W (k)) which
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is semi-linear with respect to the automorphism σ of W (k) deduced from
the Frobenius automorphism of k. This endomorphism φ is an isogeny, i.e.,
φ⊗Qp is an isomorphism: more precisely, if X/k is of dimension d, there exists
a σ−1-linear endomorphism v of H∗

crys(X/W (k)) such that φv = vφ = pd. By
[41] again, for X/k proper and smooth, and k = Fq, with q = pa, then
det(1 − φat,H i

crys(X/W (k))) belongs to Z[t] and coincides with the ℓ-adic
analogue det(1− Fqt,H

i(Xk,Qℓ)) for ℓ ̸= p.

Example. Let A/k be an abelian variety of dimension g. Then

H∗
crys(A/W (k)) =

∗∧
H1

crys(A/W (k)).

The W (k)-module H1
crys(A/W (k)) is free of rank 2g. Equipped with F := φ

and V := p−1F , it is canonically isomorphic to the Dieudonné module
M(A[p∞]) of the p-divisible group associated with A. This result, due to
Grothendieck (see ([42], p. VI)), was the starting point of the so-called
crystalline Dieudonné theory, developed by Grothendieck, Messing, Mazur–
Messing, Berthelot–Breen–Messing in the 1970’s and early 1980’s, and re-
cently revived in the prismatic context by several people: [49], [3], [24], [44].

Note that there exists an abelian scheme A/W (k) lifting A, and we have
a canonical isomorphism

H∗
crys(A/W (k))

∼→ H∗
dR(A/W (k)).

Though the Frobenius endomorphism of A rarely lifts to A,8 it does produce
an endomorphism φ of the de Rham cohomology of A/W (k).

Together with its isogeny φ, the W (k)-module H i
crys(X/W (k)) becomes

an F -crystal. As such, it has a Dieudonné–Manin slope decomposition

H i
crys(X/W (k))⊗Qp =

⊕
λ∈Q

(H i
crys(X/W (k))⊗Qp)λ,

where for λ = s/r in canonical form, (H i
crys(X/W (k)) ⊗ Qp)λ is the part

of slope λ, which over W (k)⊗Qp becomes isomorphic to a sum of copies of
(W (k)σ[F ]/(F r−ps))⊗Qp (see ([19], IV 3)). The relation between the Newton
polygon associated with this decomposition and the Hodge numbers of X/k,
and their variation in families (starting with Grothendieck’s observation that
the Newton polygon rises under specialization), have been the subject of a
great number of studies in the 1970’s and 1980’s, by Katz, Mazur, Ogus, Oort,
and many others. The theory of the de Rham-Witt complex [36] gave some

8It does so only when A is ordinary and A is its so-called canonical lifting.
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geometric insight into these questions, which are still actively pursued today
with the new technology provided by the Drinfeld–Bhatt–Lurie prismatic
stacks ([10], [20]) and the theory of prismatic F -gauges [9].

But undoubtedly the most important development of crystalline cohomol-
ogy was the study of its relation with p-adic étale cohomology, which became
known as p-adic Hodge theory.

The starting point is this. Let X/W (k) be proper and smooth, and let
X := X ⊗ k, XK := X ⊗K. Two different kinds of cohomology groups are
associated with XK :

(a) H i
dR(XK/K), canonically isomorphic to H i

crys(X/W (k)) ⊗ K, which
is a finite dimensional K-vector space, of dimension bi, equipped with the
automorphism φ, and the Hodge filtration Fil• coming from the (degenerate)
Hodge to de Rham spectral sequence;

(b) H i(XK ,Qp), a finite dimensional Qp-vector space, of the same di-
mension bi, equipped with the continuous action of the Galois group GK :=
Gal(K/K).

Grothendieck observed that, for X an abelian scheme and i = 1, both (a)
and (b) characterize X up to isogeny,9 and that led him to (boldly) conjecture
that in general (a) and (b) should be related by mysterious functors. A
solution was proposed about ten years later by Fontaine, in the form of a
conjectural period isomorphism [22], ([23], III 6.1.4)10

(3.7) Bcrys ⊗K H∗
dR(XK/K)

∼→ Bcrys ⊗Qp H
∗(XK ,Qp),

where Bcrys is a big K-algebra, equipped with the three types of structure
(φ, Fil•, GK-action). This isomorphism (3.7) should be compatible with the
three structures, and H∗

dR(XK/K) (resp. H∗(XK ,Qp)) should be recovered
from the left (resp. right) hand side by a simple algebraic operation. Af-
ter several special cases were treated by Fontaine, Fontaine–Messing, Kato,
(3.7) was first proved in general by Tsuji [52] (together with a variant involv-
ing semistable reduction). Different proofs were provided later by Faltings,
Niziol, Beilinson.

This was not the end of the story. Indeed, (3.7) is an isomorphism over
Qp, and Grothendieck was dreaming of a comparison between H∗

dR(X/W (k))
and H∗(XK ,Zp) that would not neglect torsion. He even asked whether one

9In the sense that the contravariant functor from the category of abelian schemes
X/W (k) lifting X/k, up to isogeny, to the category of data (a) (H1

dR(XK/K), φ,Fil1)
(resp. (b) (H1(XK ,Qp), GK-action)) is fully faithful, as follows from results of Serre-Tate,
Grothendieck-Messing, Fontaine, Tate.

10See Note III 4, p. 402 of the second edition for remarks on the history of the proof.
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could compare the lengths of the corresponding torsion submodules. This
problem was recently solved by Bhatt–Morrow–Scholze and Bhatt–Scholze,
by the theory of integral p-adic Hodge theory [11] and prismatic cohomology
[12]. These new theories somehow interpolate between the two sides of (3.7).
Concerning torsion, the result is simple: one has

(3.8) lgW (k)H
∗
dR(X/W (k))tors ⩾ lgZp

H∗(XK ,Zp)tors.

The inequality can be strict, and in case of equality, the structures of ele-
mentary divisors can be different ([11], 2.10, 2.11).

For non-smooth schemes, algebraic de Rham cohomology does not behave
well. It was already noted by Grothendieck in EGA IV ([27], 0IV 20.6.26)
that for an A-algebra B, written as a quotient of a polynomial algebra P by
an ideal J , the complex (in degrees −1 and 0)

J/J2
dP/A→ B ⊗P Ω1

P/A

does not depend, up to homotopy, on the choice of the surjective homomor-
phism P → B, and was a finer invariant than its H0 = Ω1

B/A and H−1 (called
imperfection module in loc. cit.). This is the first appearance of the cotan-
gent complex LB/A, in the form of its canonical truncation in degree ⩾ −1.
Grothendieck returned to this in ([32], 5.8), and suggested the use of this
(truncated) complex in the formulation and proof of the Riemann-Roch the-
orem for locally complete intersection morphisms in SGA 6 ([5], Exp. VIII).
He globalized it in [31]. A non-truncated version, in the affine case, was con-
structed independently by M. André [1] and D. Quillen [48]. Globalization
on ringed toposes was made in [34] and [35] (which contain applications to
deformation theory suggested by Grothendieck). Since then, the theory of
the cotangent complex has undergone many developments. Let me just men-
tion that a natural extension of it was the construction of derived de Rham
cohomology. Introduced in ([35], VIII), it has been extensively studied since
2011, starting with seminal papers by B. Bhatt [8] and A. Beilinson [4].

4. Petrov’s example

Choose an elliptic curve E over W (k) with supersingular reduction Ek :=
E ⊗ k (i.e. Ek[p](k) = 0,11 or equivalently, the Frobenius endomorphism
is zero on H1(Ek,O)). Then E[p] is a finite, flat, commutative Fp-module
scheme over W (k). Let q = p2 and consider E[p]⊗Fp F⊕p

q , which is a sum of
2p copies of E[p]. Let SLp(Fq) act on E[p] ⊗Fp F⊕p

q by the trivial action on
E[p] and its natural action on F⊕p

q , and define

G := SLp(Fq)⋉ (E[p]⊗Fp F⊕p
q ).

11As usual, −[p] denotes the kernel of multiplication by p.
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This is a (non-commutative) finite flat group scheme over W (k). By the
Godeaux–Serre–Raynaud approximation technique, one can choose a projec-
tive, smooth scheme X over W (k), equipped with a G-torsor P , such that the
classifying map X → BG defined by P induces, on the reductions X = Xk

and BGk on k, an injection Hp+1(BGk,O) ↪→ Hp+1(X,O).
Then, for X, we have hp <

∑
i+j=p h

ij.

Acknowledgements. I am grateful to Kęstutis Česnavičius, Olivier De-
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