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ABSTRACT. We generalize to the lci case decomposition, degeneration, and van-
ishing theorems of [18]. The main tool is a comparison theorem between certain
derived de Rham and de Rham-Witt complexes modulo pth-steps of Hodge and
Nygaard filtrations.
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0. Introduction

Let k be a perfect field of characteristic p > 0. Let X be a k-scheme.
Let X ′ be the pull-back of X by the Frobenius automorphism of k, and let
F : X → X ′ denote the relative Frobenius morphism. One of the main
results of [18] is that, if X is smooth and liftable to W2(k), a lifting of X to
W2(k) defines a decomposition

(0.1) ⊕0⩽i<pΩ
i
X′/k[−i]

∼→ τ<pF∗Ω
•
X/k

in D(X ′,OX′). We extend this to the lci case. We prove (see 4.8 for a slightly
more general statement):

Theorem 0.2. Assume X is lci and admits a (flat) lifting to W2(k).
Then any such lifting defines a decomposition

(0.2.1) ⊕0⩽i<pLΩ
i
X′/k[−i]

∼→ Filconjp−1F∗LΩ
•
X/k
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in D(X ′,OX′).
Here LΩ•

X/k denotes the derived de Rham complex, and LΩi
X′/k := LΛiLX′/k

is the i-th piece of the associated graded for the Hodge filtration, where
LX′/k = LΩ1

X′/k is the cotangent complex of X ′/k.
Combining 0.2 with cohomological amplitude estimates due to Bhatt (5.3)

we deduce the following degeneration and vanishing results:

Theorem 0.3 (6.1). Assume X/k is proper, lci, of pure dimension d < p,
and liftable to W2(k). Let s be the dimension of the singular locus of X.
Then, for n < d− s− 1 we have

dimkH
n(X,LΩ̂•

X/k) =
∑
0⩽i⩽d

dimkH
n(X,LΩi

X/k[−i]),

and
Hn(X,LΩi

X/k[−i]) = 0

for i > d.
Here LΩ̂•

X/k is the derived Hodge completion of LΩ•
X/k, i.e., R lim←−n

LΩ•
X/k/Fil

n,
where Filn denotes the Hodge filtration.

Theorem 0.4 (7.1). Let X/k satisfy the assumptions of (0.3). Let L be
an ample invertible sheaf on X. Then, for n < min(d, d− s− 1) and all i,

Hn(X,LΩi
X/k[−i]⊗ L−1) = 0.

By the usual spreading out arguments, 0.3 and 0.4 imply similar results
in characteristic zero, with no restriction on the dimension (6.4, 7.5). In
particular, we recover a slightly weaker form of the vanishing theorem of
Bhatt-Blickle-Lyubeznik-Singh-Zhang ([14], Th. 3.2) (i.e., with d − s − 1
instead of d− s).

Liftings of X to W2(k) are controlled by τ⩾−1LX/W2(k). In this lci case,
τ⩾−1LX/W2(k)

∼→ LX/W , and we deduce 0.2 from a general comparison theorem
between suitably truncated derived de Rham complexes of X/W and derived
de Rham-Witt complexes of X. More precisely:

Theorem 0.5 (2.9). One can construct, functorially in the k-scheme X,
a filtered isomorphism in the derived ∞-category D(X,W )

(0.5.1) LΩ•
X/W/Filp

∼→ LWΩ•
X/N p,

where the left hand side is filtered by the quotient of the Hodge filtration
Filr and the right hand side by the quotient of the Nygaard filtration N r.
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On the associated graded pieces this isomorphism induces, for r < p, an
isomorphism in D(X ′,OX′)

(0.5.2) LΩr
X′/W [−r] ∼→ Filconjr F∗LΩ

•
X/k.

The existence of such an isomorphism was suggested to me by the stan-
dard proof of the comparison theorem between crystalline and de Rham-Witt
cohomology ([25], II 1.4), and a conversation with Mathieu Florence about
([15], §5) which pointed to a connection between liftings mod p2 and the
Nygaard filtration.

Let me now briefly describe the contents of the paper.
The morphism (0.5.1) is constructed by left Kan extension from finitely

generated polynomial algebras over k. These are lci over W (k). In section
1, we examine more generally the case of a weakly lci A-algebra B (1.1),
for a Z(p)-algebra A, and construct a model for the truncated derived de
Rham complex LΩ•

B/A/Fil
p in terms of usual de Rham complexes Ω•

P/A, for
P a polynomial algebra mapping surjectively to B (1.8.1). The truncation
by Filp originates in Quillen’s décalage formula for LΛi and the fact that,
if I is the ideal of P → B, the canonical morphism Sn

B(I/I
2) → Γn

B(I/I
2)

is an isomorphism only for n < p in general. In section 2, we specialize to
A = W (k), and construct (0.5.1) in two steps: (i) for X = Spec(B), B a
finitely generated polynomial algebra over k, by using the model (1.8.1) and
a lifting of Frobenius on P ; (ii) in the general case, by left Kan extension
from (i) and sheafification. A crucial ingredient in the proof of 0.5 is the
concrete description of the Nygaard filtration of WΩ•

B for B a finitely gener-
ated polynomial algebra over k, in terms of the de Rham complex Ω•

P/W of
a finitely generated polynomial algebra P over W lifting B, equipped with
a lifting of Frobenius, via the interpretation of the de Rham-Witt complex
WΩ•

B as the strict saturation of Ω•
P/W ([10], 8.3.5).

The rest of the paper builds on 0.5. In section 4, using 0.5 and standard
deformation theory, we show that, for X lci over k, liftings of X to W2(k)
correspond bijectively, up to isomorphisms, to splitting of the 1-step of the
conjugate filtration Filconj1 F∗LΩ

•
X/k (4.4). For this we need a slight refinement

(3.3) of (0.5.2) for r = 1. The decomposition theorem 0.2 follows. If X is
an lci k-scheme, its cotangent complex LX/k = LΩ1

X/k is of perfect amplitude
in [−1, 0], hence LΩi

X/k[−i] is of perfect amplitude in [0, i], but already for
isolated singularities, does not vanish for i large ([8], 2.1). However, Bhatt
proved that, if X is of pure dimension d and the singular locus of X is of
dimension s, then, for all i > d, LΩi

X/k[−i] belongs to D⩾d−s(X,OX) (and
similar results hold for derived boundaries and cycles) (5.3 (b)). In section
6, we derive 0.3 from these estimates and (0.2.1). Th. 0.4 generalizes the
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vanishing theorem of ([18], (2.8.2)). Its proof is similar, based again on (0.2.1)
and the estimates of section 5. The key tool is a variant (7.3) of Raynaud’s
lemma ([18], 2.9).

This paper was completed in March, 2020. Since then, Bhargav Bhatt and
Akhil Mathew have proposed far reaching generalizations and refinements of
its main results, especially 2.9, 4.4, 4.8. I hope these new developments will
be worked out soon.

1. Weakly lci morphisms and truncated derived de Rham com-
plexes

1.1. Let A → B be a homomorphism of rings. We say that B is weakly
lci over A if

toramp(LB/A) ⊂ [−1, 0].
This definition is similar to that of a quasisyntomic map in ([9], Def. 4.9),
except that we don’t impose any condition of p-flatness or p-completion. It
was introduced in ([23], III 3.3.4). If A is noetherian and B is of finite type
over A, then if B is lci over A, B is weakly lci over A by a theorem of Quillen
([30], Th. 5.4), and the converse is true by a theorem of Avramov [4].

1.2. Let B be a weakly lci A-algebra, and let P → B a surjective homo-
morphism of A-algebras, of ideal I, with P a free A-algebra i.e., of the form
A[(Xi)i∈S] for a set S). Then we have a natural isomorphism in D(B)

(1.2.1) LB/A
∼→ (I/I2

d→ B ⊗P Ω1
P/A),

where I/I2 is placed in degre −1, d is induced by dP/A, and I/I2 (resp. Ω1
P/A

is flat over B(resp. P ) ([23], III 3.3.6). If Q → B is a second surjective
homomorphism from a free A-algebra Q, with ideal J , and P → Q is a
homomorphism of A-algebras compatible with the surjections to B, then we
have a commutative diagram

(1.2.2) LB/A
//

''OO
OOO

OOO
OOO

OO
(I/I2

d→ B ⊗P Ω1
P/A)

��

(J/J2 d→ B ⊗Q Ω1
Q/A)

,

where the vertical map is the natural map, and, hence, is a quasi-isomorphism.

1.3. With P → B as in 1.2, consider the filtration on the de Rham
complex Ω•

P/A given by
(1.3.1)

InΩ•
P/A := (In → In−1Ω1

P/A → · · · → IΩn−1
P/A → Ωn

P/A → Ωn+1 → · · · )

4



for n ∈ N. This is a decreasing, multiplicative filtration, with I0Ω•
P/A =

Ω•
P/A. The associated graded object is a B-dga (differential graded algebra),

with

(1.3.2) gr1IΩ
•
P/A = (I/I2

d→ B ⊗P Ω1
P/A),

i.e., the complex on the right hand side of (1.2.1), with I/I2 placed in degree
0. As I is weakly regular ([23], III, 3.3.1, 3.3.6), the canonical map

SB(I/I
2)→ grIP

is an isomorphism, and it induces an isomorphism of B-dga

(1.3.3) (SB(I/I
2)⊗B Λ(B ⊗P Ω1

P/A), d)
∼→ grIΩ

•
P/A,

where the left hand side is the Koszul algebra constructed on gr1 (1.3.2),
defined similarly to ΓB(I/I

2) ⊗B Λ(B ⊗P Ω1
P/A) ([23], I 4.3.1.2), where d is

the unique B-derivation of bidegree (-1,1) such that d(x ⊗ 1) = 1 ⊗ dx for
x ∈ I/I2 and d(1⊗ x) = 0 for x ∈ B ⊗P Ω1

P/A.

1.4. Let p be a prime number, and assume that A is a Z(p)-algebra.
Recall that if M is a flat B-module, then, for each n ⩾ 1, the canonical map
Γn
B(M)→ TSn

B(M) is an isomorphism ([2], XVII 5.5.2.5), and that, by ([31],
Prop. III.3), the canonical map Sn

B(M) → Γn
B(M) is an isomorphism for

n < p. With the notation of 1.3, consider the complex

Ω•
P/A/I

p := Ω•
P/A/I

pΩ•
P/A.

It is filtered by the quotient filtration of the filtration (1.3.1), and

grI(Ω
•
P/A/I

p) = (grIΩ
•
P/A)<p,

where < p denotes the part of degree < p. Let (ΓB(I/I
2)⊗BΛ(B⊗PΩ

1
P/A), d)

be the Koszul algebra constructed on gr1 (1.3.2) ([23], I 4.3.1.2). By what
we have recalled, as I/I2 is flat over B, the canonical morphism (of B-dga)

(SB(I/I
2)⊗B Λ(B ⊗P Ω1

P/A), d)→ (ΓB(I/I
2)⊗B Λ(B ⊗P Ω1

P/A), d)

induces an isomorphism in degree < p. From (1.3.3) we thus get isomor-
phisms

(ΓB(I/I
2)⊗B Λ(B ⊗P Ω1

P/A), d)<p
∼←− (SB(I/I

2)⊗B Λ(B ⊗P Ω1
P/A), d)<p

(1.4.1)
∼−→ grI(Ω

•
P/A/I

p).
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By ([27], Lemma 1.2.6), for all n ≥ 1, (1.2.1) induces an isomorphism of
D(B)

LΛn
BLB/A[−n]

∼−→ (ΓB(I/I
2)⊗B Λ(B ⊗P Ω1

P/A), d)n

(where the index n means the homogeneous component of degree n), and
therefore, in view of (1.4.1), an isomorphism (of D(B))

(1.4.2). ⊕n<pLΛ
n
BLB/A[−n]

∼−→ grI(Ω
•
P/A/I

p).

1.5. Let A→ B be as in 1.4, and, as in 1.2, let u : P → Q be a homomor-
phism of free A-algebras compatible with surjective homomorphisms P → B,
Q → B of ideals I and J . The homomorphism u induces a homomorphism
of A-dga

u : Ω•
P/A → Ω•

Q/A,

compatible with the filtrations I and J , hence a homomorphism of B-dga

gr(u) : grIΩ
•
P/A → grJΩ

•
Q/A,

compatible in an obvious way with the isomorphisms (1.4.1). Therefore we
get a commutative diagram

(1.5.1), ⊕i<pLΛ
i
BLB/A[−i] //

))RR
RRR

RRR
RRR

RRR
grI(Ω

•
P/A/I

p)

gr(u)

��
grJ(Ω

•
Q/A/J

p)

in which the horizontal and the slanted arrow are isomorphisms in D(B),
and hence the vertical arrow is a quasi-isomorphism. In particular, the map

(1.5.2) u : Ω•
P/A/I

p → Ω•
Q/A/J

p

is a filtered quasi-isomorphism.
For i = 1, 2, let vi : Pi → B be a surjective homomorphism, with Pi a

free A-algebra, and ideal Ii. We have a commutative diagram

(1.5.3) P1
j1 //

v1
$$JJ

JJJ
JJJ

JJJ
P1 ⊗A P2

v1v2
��

P2
j2oo

v2
zzuuu

uuu
uuu

uu

B ,

where j1(x) = x ⊗ 1, j2(y) = 1 ⊗ y, and v1v2(x ⊗ y) = v1(x)v2(x). Let I be
the ideal of v. By (1.5.2) we get filtered quasi-isomorphisms

Ω•
P1/A

/Ip1 → Ω•
(P1⊗AP2)/A

/Ip ← Ω•
P2/A

/Ip2 ,
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hence a filtered isomorphism

(1.5.3) ε(P2, P1) : Ω
•
P1/A

/Ip1
∼→ Ω•

P2/A
/Ip2

in the derived ∞-category D(A), inducing a graded isomorphism

(1.5.4) gr ε(P2, P1) : gr(Ω
•
P1/A

/Ip1 )
∼→ gr(Ω•

P2/A
/Ip2 )

in the derived ∞-category D(B). For P → B running through the (small)
set of surjective A-homomorphisms with P free over A, these isomorphisms
ε form a transitive system, i.e., satisfy ε(P3, P2)ε(P2, P1) = ε(P3, P1), as one
sees by considering v1v2v3 : P1⊗P2⊗P3 → B. In particular, for u : P1 → P2

such that v2u = v1, the maps u of (1.5.2) coincides with ε(P2, P1) (as is seen
by considering P1 ⊗ P2 → P2, x ⊗ y 7→ u(x)y). Imitating the convention of
([17], 1.1), we denote by

(1.5.5) Ω̃•
B/A/Ip

the projective limit (in D(A)) of the Ω•
B/A/I

p along the isomorphisms ε. It is
a filtered object, with associated graded object in D(B) the projective limit
of the gr(Ω•

P/A/I
p) along the isomorphism gr ε. By definition, Ω̃•

B/A/Ip comes
equipped with (filtered) isomorphisms

(1.5.5a) σP : Ω̃•
B/A/Ip

∼→ Ω•
P/A/I

p

for P → B as above, satisfying ε(Q,P )σP = σQ.
The isomorphisms (1.4.2) induce an isomorphism of D(B)

(1.5.6) ⊕i<pLΩ
i
B/A[−i]

∼→ grI(Ω̃
•
B/A/Ip)

(where LΩi
B/A := LΛiLB/A).

1.6. Let A be a Z(p)-algebra, and let f : B → C a homomorphism of
weakly lci A-algebras. Let u : P → B (resp. v : Q → C) be a surjective
homomorphism, with ideal I (resp. J) and P (resp. Q) free over A. We have
a commutative diagram

(1.6.1) B

f

��

Puoo

��
P ⊗A Q

w
{{ww
ww
ww
ww
w

C Q
voo

OO
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where the right vertical arrows are the canonical ones, and w(x ⊗ y) :=
(fu)(x)v(y). Let K be the ideal of w. This diagram induces filtered mor-
phisms

Ω•
P/A/I

p → Ω•
(P⊗Q)/A/K

p ← Ω•
Q/A/J

p,

where the second one is a quasi-isomorphism. We thus get a filtered mor-
phism

(1.6.2) Ω•
P/A/I

p → Ω•
Q/A/J

p

in D(A). This morphism is, by construction, compatible with the isomor-
phisms ε of (1.5.3), hence defines a morphism

(1.6.3) f : Ω̃•
B/A/Ip → Ω̃•

C/A/Ip

in D(A) (and an associated graded morphism grf in D(B)). One checks that
this makes B 7→ Ω̃•

B/A/Ip functorial in the weakly lci A-algebra B.

1.7. Let B be an A-algebra. Recall that the derived de Rham complex

LΩ•
B/A ∈ D(A)

is defined by left Kan extension of the functor P 7→ Ω•
P/A on the category

of free (or even finitely generated free) A-algebras. It can be calculated as
the total complex of the de Rham complex of P• over A, where P• is a free
simplicial resolution of B/A (i.e., P• → B is a quasi-isomorphism, and Pn is
a free A-algebra for all n), e.g., the standard simplicial free resolution P•A(B)
(cf. ([24], VIII), ([9], 2.1)), and the totalization is calculated by sums:

LΩ•
B/A

∼→ Tot(LP•/A).

It comes equipped with a decreasing filtration, the Hodge filtration

(1.7.1) FiliHdgLΩ
•
B/A

∼→ Tot(Ω⩾i
P•/A

).

The associated graded grHdgLΩ
•
B/A ∈ D(B) is given by

(1.7.2) griHdgLΩ
•
B/A

∼→ LΩi
B/A[−i],

where we have put
LΩi

B/A := LΛiLB/A

(in particular, LΩ1
B/A = LB/A, and we will use either notation indifferently).

We will often omit Hdg from the notation when no confusion can arise.
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1.8. Let A be a Z(p)-algebra and let B be a weakly lci A-algebra. We will
construct a functorial, filtered isomorphism in D(A)

(1.8.1) LΩ•
B/A/Fil

p ∼→ Ω̃•
B/A/Ip,

such that the isomorphism induced on the graded pieces

(1.8.2) ⊕i<pLΩ
i
B/A[−i]

∼→ grI(Ω̃
•
B/A/Ip)

coincides with (1.5.6).

Lemma 1.9. Under the assumptions of 1.8, let u : P• → B be a free
resolution of B/A. Let I• ⊂ P• be the ideal of u.

(a) The map

(1.9.1) Ω•
P•/A/Ω

⩾p
P•/A
→ Ω•

P•/A/I
p
•Ω

•
P•/A

deduced from the inclusion Ω⩾p ⊂ Ip•Ω
•
P•/A

induces a filtered quasi-isomorphism
on the total complexes. The associated graded map gr(1.9.1) induces a quasi-
isomorphism on the total complexes.

(b) The map

(1.9.2) Ω•
P0/A

/Ip0 → Ω•
P•/A/I

p
• ,

deduced from the inclusion P0 → P•, where P0 is considered as a constant
simplicial ring, induces a quasi-isomorphism of the total complexes.

Proof. (a) It suffices to show the last assertion. By (1.4.1) grI•(Ω
•
P•/A

/Ip• )

is identified to (ΓB(I•/I
2
• ) ⊗ Λ(B ⊗P• Ω

1
P•/A

), d)<p, and the map gr(1.9.1) is
identified with LΛ<p of its component of degree 1

(∗) (B ⊗P• Ω
1
P•/A)[−1]→ (I•/I

2
• → B ⊗P• Ω

1
P•/A).

To show that (*) induces a quasi-isomorphism on the total complexes, it
suffices to show:

(i) Ω1
P•/A
→ B ⊗ Ω1

P•/A
is a quasi-isomorphism;

(ii) the complex I•/I
2
• is acyclic.

Assertion (i) follows from the fact that P• → B is a quasi-isomorphism
and Ω1

P•/A
is flat over P• ([23], I 3.3.2.1) (this gives the case i = 1 of (1.7.2)).

For (ii) we observe that, as I• is weakly regular in each degree, the transitivity
triangle relative to A→ P• → B reads

I•/I
2
• → B ⊗P• Ω

1
P•/A → LB/A → .

9



Hence I•/I2• is acyclic, as by definition B⊗P•Ω
1
P•/A
→ LB/A is an isomorphism

in D(B).

1.10. Let us construct (1.8.1). By (1.7.1) we have

(1.10.1). LΩ•
B/A/Fil

p ∼→ Tot(Ω•
P•/A/Ω

⩾p
P•/A

)

By 1.9 (a) the map (1.9.1) induces an isomorphism

(1.10.2) Tot(Ω•
P•/A/Ω

⩾p
P•/A

)→ Tot(Ω•
P•/A/I

p
•Ω

•
P•/A).

By 1.9 (b) the map (1.9.2) induces an isomorphism

(1.10.3) Ω•
P0/A

/Ip0
∼→ Tot(Ω•

P•/A/I
p
• ).

Finally, we have the isomorphism of (1.5.5)

(1.10.4). σP0 : Ω̃
•
B/A/Ip

∼→ Ω•
P0/A

/Ip0 .

The composition
LΩ•

B/A/Fil
p ∼→ Ω̃•

B/A/Ip

of (1.10.1), (1.10.2), (1.10.3)−1, (1.10.4)−1 is the desired isomorphism (1.8.1).
One must check that it doesn’t depend on the choice of the resolution

P•. If P ′
• → B is a second free resolution of B, and if we have a morphism

P ′
• → P• of resolutions, the independence is clear. One can reduce to this

case in the following way. Let P•A(B) be the standard free resolution of B.
By ([23], II 1.2.6.2 (a)), applied to P• → B there exists morphisms of free
resolutions of B:

P• ← Q• → P•A(B)

where Q• is the diagonal object of the bisimplicial algebra P•A(P•).
It follows from the description of gr(1.9.1) in the proof of 1.9 (a) that

(1.8.1) induces (1.5.6) on the graded pieces.
The isomorphism (1.8.1) is functorial in the A-algebra B. To see this,

one can use the standard free resolution P•A(B), which is functorial in B.

2. Comparing the Hodge filtration and the Nygaard filtration
in degree < p

2.1. In this section we fix a perfect field k of characteristic p > 0. Let
W = W (k) be its Witt ring. We denote by σ the Frobenius automorphism
of W . Recall that if R is a smooth k-algebra, the de Rham-Witt complex
WΩ•

R is endowed with the Nygaard filtration

(2.1.1) N 0WΩ•
R = WΩ•

R ⊃ N 1WΩ•
R ⊃ · · · ⊃ N iWΩ•

R ⊃ N i+1WΩ•
R ⊃ · · ·

10



(([9], 8.1), ([10], 8.1.1)), where N rWΩ•
R is the subcomplex defined by

N rWΩn
R = pr−n−1VWΩn

R

for n < r, and N rWΩn
R = WΩn

R for n ⩾ r (we use the notation of ([10],
8.1.1)). This is a decreasing, N-indexed, multiplicative filtration. By a the-
orem of Nygaard ([28], th. 1.5) (see ([10], 8.2.1, 4.3.2, 2.7.2) for an alternate
proof in a more general setting), the mapN rWΩ•

R → Ω•
R/k sending pr−n−1V x

to x for n < r, x to Fx for n = r and x to 0 for n > r induces a σ-linear
quasi-isomorphism of complexes of R-modules

(2.1.2) grrNWΩ•
R → τ⩽rΩ

•
R/k.

2.2. Let R be a k-algebra. In addition to the Hodge filtration (1.7.1),
LΩ•

R/k is endowed with an increasing filtration, the conjugate filtration ([6],
Prop. 2.3)

(2.2.1) Filconji LΩ•
R/k

∼→ Tot(τ⩽iΩ
•
P•/k).

The derived Cartier isomorphism ([6], Prop. 3.5) induces a σ-R-linear iso-
morphism

(2.2.2) C−1 : LΩi
R/k[−i]

∼→ grconji LΩ•
R/k,

For R/k smooth, this is the usual Cartier isomorphism. It is actually better
to view the conjugate filtration as a filtration of the (R′-linear) complex
F∗LΩ

•
R/k ∈ D(R′), where R′ is the pull-back of R by σ and F : Spec(R) →

Spec(R′) is the relative Frobenius. Then C−1 is an R′-linear isomorphism
from LΩi

R′/k[−i] to the right hand side of (2.2.2).
The derived de Rham-Witt complex

(2.2.3) LWΩ•
R ∈ D̂(W )

is defined by left Kan extension of the functor B 7→ WΩ•
B from the category

of finitely generated free k-algebras B to the ∞-category D̂(W ) of derived
p-complete objects of D(W ) ([9], 8.2). It comes equipped with the Nygaard
filtration (a decreasing, N-indexed filtration in D̂(W ))

(2.2.4) N rLWΩ•
R ⊂ LWΩ•

R.

The isomorphism (2.1.2) is derived into a σ-R-linear isomorphism

(2.2.5) grrNLWΩ•
R

∼→ Filconjr LΩ•
R/k

11



([9], 8.2 (3)).

2.3. Let B be a finitely generated free k-algebra. Thus B is lci over
W . Let u : P → B a surjective homomorphism of W -algebras, with P
finitely generated and free over W . Let I be the ideal of u. Choose a lift
F : P → P of the absolute Frobenius of P ⊗W k, compatible with σ (e.g.,
if P = W [x1, · · · , xn], F defined by F (xi) = xp

i ). As in ([25], 0 (1.3.16)), let
sF : P → W (P ) denote the unique section of W (P )→ P which is compatible
with F and the canonical Frobenius endomorphism of W (P ). Consider the
(W -linear) composite morphism

(2.3.1) tF : P
sF→ W (P )

W (u)→ W (B).

It induces a homomorphism of W -dga

(2.3.2) Ω•
P/W → Ω•

W (B)/W .

Composing with the canonical maps

Ω•
W (B)/W → lim←−Ω•

Wn(B)/Wn
→ lim←−WnΩ

•
B = WΩ•

B

(where the second map is induced by the canonical (surjective) maps Ω•
Wn(B)/Wn

→
WnΩ

•
B ([25], I 1.3)), we get a homomorphism of W -dga

(2.3.3) t•F : Ω•
P/W → WΩ•

B.

As sF is a section of the projection W (P ) → P , we have tF (I) ⊂ VW (B),
hence

t•F (IΩ
•
P/W ) ⊂ N 1WΩ•

B,

and consequently, by multiplicativity of the Nygaard filtration,

t•F (I
rΩ•

P/W ) ⊂ N rWΩ•
B

for all r ∈ N. In other words, t•F (2.3.3) is a filtered morphism, with respect
to the I-adic filtration on the left hand side and the Nygaard filtration on
the right hand side. In particular, t•F induces a filtered morphism

(2.3.4) t•F : Ω•
P/W/Ip → WΩ•

B/N p

If v : Q → B is a second surjective homomorphism, with ideal J , with Q a
finitely generated free W -algebra endowed with a σ-compatible lifting G of

12



Frobenius, and f : P → Q is a morphism of W -algebras such that vf = u
and fF = Gf , then the diagram

Ω•
P/W

f

��

t•F

##G
GG

GG
GG

GG

Ω•
Q/W

t•G //WΩ•
B

is commutative, and f is compatible with the I and J-adic filtrations, hence
induces a commutative diagram

(2.3.5) Ω•
P/W/Ip

f

��

t•F

&&MM
MMM

MMM
MM

Ω•
Q/W/Jp

t•G //WΩ•
B/N p

.

In the situation of (1.5.3), with A = W , and Pi free finitely generated
over W , let Fi be a (σ-compatible) lift of Frobenius on Pi. Endow P1 ⊗ P2

with the lifting F = F1 ⊗ F2 of Frobenius. Then ji in (1.5.3) is compatible
with Fi and F , and therefore the diagram

Ω•
P1/W

/Ip1

ε(P2,P1)

��

t•F1

&&MM
MMM

MMM
MM

Ω•
P2/W

/Ip2
t•F2 //WΩ•

B/N p

commutes. It follows that the composition

(2.3.6) tB : Ω̃•
B/W/Ip ∼→ Ω•

P/I
p t•F→ WΩ•

B/N p,

where the first map is the isomorphism σP (1.5.5a), is independent of the
choice of (u : P → B,F ).

Proposition 2.4. The morphism tB (2.3.6) is an isomorphism. On the
associated graded pieces it induces, for r < p, an isomorphism in D(B)

(2.4.1) grrI(Ω̃
•
B/W/Ip) ∼→ grrN (WΩ•

B/N p),

hence, composing with (2.1.2), a σ-linear isomorphism

(2.4.2) grrI(Ω̃
•
B/W/Ip) ∼→ τ⩽rΩ

•
B/k.

13



Proof. Choose P to be a lifting of B. Then I = pP , and the map t•F
(2.3.3) is the canonical map

(2.4.3) Ω•
P/W →WSat(Ω•

P/W ),

where the right hand side calculates WΩ•
B via the Dieudonné algebra struc-

ture on Ω•
P/W given by the lifting F of Frobenius on P ([10], 4.2.3). By

([10], 8.3.5), (2.4.3) is a filtered quasi-isomorphism, the left hand side being
equipped with the I-filtration (1.3.1), and the right hand side with the Ny-
gaard filtration. In particular, (2.3.4), is a filtered quasi-isomorphism, hence
(2.3.6) is a filtered isomorphism.

2.5. Let f : B → C a homomorphism of finitely generated free k-algebras,
and, as in 1.6, let u : P → B (resp. v : Q → C) be a surjective homo-
morphism of W -algebras, with ideal I (resp. J) and P (resp. Q) finitely
generated and free over W . Choose liftings of Frobenius F on P and G on
Q, and let F ⊗ G be the associated lifting of Frobenius on P ⊗W Q. The
right vertical maps of (1.6.1) are thus compatible with the Frobenius lifts.
By ([25], 0 (1.3.19)) and the commutativity of (1.6.1), the diagram

P
tF //

��

W (B)

W (f)

��

P ⊗W Q
tF⊗G

%%KK
KKK

KKK
KK

Q
tG //

OO

W (C)

commutes. With the notation of 1.6, it generates a commutative diagram

Ω̃•
B/Ip

∼→ //

��

Ω•
P/W/Ip

t•F //

��

WΩ•
B/N p

WΩ•
f

��

Ω•
(P⊗WQ)/W/Kp

t•F⊗G

''PP
PPP

PPP
PPP

P

Ω̃•
C/Ip

∼→ //

∼→
88ppppppppppp
Ω•

Q/W/Jp
t•G //

OO

WΩ•
C/N p

where the left vertical arrow is (1.6.3). One checks that this makes tB (2.3.6)
functorial in B.

2.6. Composing tB with (1.8.1) we get a filtered isomorphism in D(W )

(2.6.1) LΩ•
B/W/Filp

∼→ WΩ•
B/N p
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By 2.5 and the functoriality of (1.8.1), this isomorphism is functorial in B.
As LWΩ•

−/W (resp. LΩ•
−/W ) is deduced by left Kan extension from

WΩ•
−/W on the category Pk of finitely generated free k-algebras (resp. from

its restriction to Pk), (2.6.1) extends to a filtered isomorphism

(2.6.2) LΩ•
R/W/Filp

∼→ LWΩ•
R/N p

for any k-algebra R, functorial in R. It induces, for i < p, an isomorphism
in D(R) on the graded pieces

(2.6.3) LΩi
R/W [−i]( ∼→ griHdgLΩ

•)
∼→ griNLWΩ•

R
∼→ Filconji LΩ•

R/k,

where the second isomorphism is the σ-linear isomorphism (2.2.5).

Remark 2.7. The quotients by Filp andN p in (2.6.1) cannot be removed.
Bhatt (letter to the author, Jan. 19, 2019) has shown that

(2.7.1) R lim←−
n

(LΩ•
k/W ⊗L Wn)

∼→ Ŵ ⟨x⟩/(x− p),

where (−)̂ means p-adic completion, and W ⟨x⟩ is the W -divided power alge-
bra on x. In particular, Ŵ ⟨x⟩/(x−p)(

∼→ Ŵ ⟨y⟩/(y)) has non-trivial p-torsion
(e.g., y[p]).

Here is Bhatt’s proof of (2.7.1). Consider the morphism of short exact
sequences of pro-objects

0 //W•[x]

x 7→0
��

x−p //W•[x]

x 7→0
��

//W•

��

// 0

0 //W•
−p //W• // k // 0,

where (−•) denotes the pro-object (−n)n⩾1. It implies that the right square
is tor-independent, i.e.,

(W•[x]→ W•)⊗L
W•[x] W• → (W• → k)

is an isomorphism. Therefore

LΩ•
W•/W•[x] ⊗

L
W•[x]

W• → LΩ•
k/W•

is an isomorphism, too. By ([6], Th. 3.27, or 3.40), we have

LΩ•
W•/W•[x]

∼→ W•⟨x⟩,
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hence
LΩ•

k/W•

∼→ W•⟨x⟩/(x− p),

and (2.7.1) follows by taking completions. The above argument is essentially
that of ([6], 3.40).

One can show (Bhatt) that (2.7.1) underlies a filtered isomorphism, the
left hand side being endowed with the Hodge filtration, and the right hand
side by the images of the ideals (x)[n]. In particular, one gets

LΩ•
k/W/Filp

∼→ Ŵ ⟨x⟩/((x)[p] + (x− p))
∼→ W [[x]]/((x)p + (x− p)

∼→ W/(p)p

thus recovering (2.6.1) in this case (R = k).

2.8. Let X be a k-scheme. As in ([10] 5.2), denote by Uaff(X) the collec-
tion of all affine open subschemes of X. The derived de Rham complex

LΩ•
X/W ∈ D(X,W )

is the sheaf associated to the presheaf on Uaff(X) defined by U 7→ LΩ•
OX(U)/W .

The derived de Rham-Witt complex

LWΩ•
X ∈ D̂(X,W )

is (defined as) the sheaf associated to the presheaf on Uaff(X) defined by
U 7→ LWΩ•

OX(U) (where D̂(X,W ) denotes the category of derived p-complete
objects of D(X,W )).

The Hodge filtration (1.7.1) globalizes to

FiliHdgLΩ
•
X/W ⊂ LΩ•

X/W ,

with associated graded

griHdgLΩ
•
X/W

∼→ LΩi
X/W [−i].

Let X ′ be the pull-back of X by the Frobenius of k and F : X → X ′ be
the relative Frobenius. Then F∗LΩ

•
X/k is defined as an object of D(X ′) :=

D(X ′,OX′), and the conjugate filtration (2.2.1) globalizes to

Filconji F∗LΩ
•
X/k ⊂ F∗LΩ

•
X/k,

with associated graded given by the derived Cartier isomorphism (in D(X ′))

C−1 : LΩi
X′/k[−i]

∼→ grconji F∗LΩ
•
X/k.
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The Nygaard filtration (2.2.4) globalizes to

N rLWΩ•
X ⊂ LWΩ•

X ,

with associated graded given by the isomorphism (in D(X ′))

grrNLWΩ•
X′

∼→ Filconjr F∗LΩ
•
X/k.

Finally, the isomorphisms (2.6.2), (2.6.3) globalize. We have obtained:

Theorem 2.9. Let X be a k-scheme. The isomorphisms (2.6.2) globalize
to a filtered isomorphism in D̂(X,W )

(2.9.1) LΩ•
X/W/Filp

∼→ LWΩ•
X/N p,

where the left hand side is filtered by the Hodge filtration and the right
hand side by the Nygaard filtration. On the associated graded pieces (2.9.1)
induces, for r < p, an isomorphism in D(X ′)

(2.9.2) LΩr
X′/W [−r] ∼→ Filconjr F∗LΩ

•
X/k.

These isomorphisms are functorial in X/k in a natural way.
One can ask which filtration on the left hand side does the conjugate one

on the right hand side correspond to. This is the subject of the next section.

3. The Koszul filtration

3.1. Recall that for a short exact sequence 0 → E ′ → E → E ′′ → 0 of
flat modules over a ringed topos, and any integer r ⩾ 0, we have the (finite
increasing) Koszul filtration on ΛrE,

0 ⊂ Kos0Λ
rE ⊂ Kos1Λ

rE ⊂ · · · ⊂ KosrΛ
rE = ΛrE,

KosiΛ
rE = Im(Λr−iE ′ ⊗ ΛiE → ΛrE)

with associated graded

grKos
i ΛrE = Λr−iE ′ ⊗ ΛiE ′′.

This extends to complexes, the Λi being derived. In particular, the short
exact sequence of cotangent complexes associated with a composition of mor-
phisms of schemes X

f→ Y → S ([23], 2.1.5.2) defines a Koszul filtration on
LΩi

X/S := LΛiLX/S,

(3.1.1) Kos
X/Y/S
i LΩr

X/S
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(0 ⩽ i ⩽ r), denoted Kosi when no confusion can arise, with associated
graded

(3.1.2) grKos
i LΩr

X/S = f ∗LΩr−i
Y/S ⊗ LΩi

X/Y .

Proposition 3.2. With the notation and under the assumptions of 2.9,
for r < p, the isomorphism (2.9.2) underlies a filtered isomorphism, where the
right hand side is filtered by the conjugate filtration, and the left hand one
by the Koszul filtration Kosi relative to X ′/Spec(k)/Spec(W ). In particular,
we have

(3.2.1) (KosiLΩ
r
X′/W )[−r] ∼→ LΩi

X′/W [−i],

and the square

(3.2.2) LΩi
X′/W [−i]

∼→ //

��

Filconji F∗LΩ
•
X/k

��
LΩr

X′/W [−r]
∼→ // Filconjr F∗LΩ

•
X/k,

where the horizontal isomorphisms are (2.9.2), and the left vertical map is
Kosi ↪→ Kosr, commutes. We have

(3.2.3) grKos
i LΩr

X′/W [−r] ∼→ LΩi
X′/k[−i],

and on the associated graded pieces, (2.9.2) induces the derived Cartier iso-
morphism (2.2.2)

C−1 : LΩi
X′/k[−i]

∼→ grconji F∗LΩ
•
X/k.

The case r = 1 will be of special interest to us. As Lk/W = k[1], we have:

Corollary 3.3. The isomorphisms (3.2.2) induce an isomorphism of dis-
tinguished triangles

(3.3.1) OX′ //

∼→
��

LΩ1
X′/W [−1] //

∼→
��

LΩ1
X′/k[−1] //

∼→
��

Filconj0 F∗LΩ
•
X/k

// Filconj1 F∗LΩ
•
X/k

// grconj1 F∗LΩ
•
X/k

// .

Proof of 3.2. It suffices to treat the case where X = Spec(B), with
B is a finitely generated free k-algebra. As in the proof of 2.4, choose a
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finitely generated free W -algebra lifting B together with a (σ-compatible)
endomorphism F of P lifting Frobenius. By ([23], II 2.2.3), the lifting P
decomposes LB/W into

LB/W
∼→ LB/P ⊕ LB/k = B[1]⊕ Ω1

B/k.

Then

LΩr
B/W

∼→ ⊕0⩽i⩽rLΛ
r−i(B[1])⊗L Ωi

B/k
∼→ ⊕0⩽i⩽rB[r − i]⊗ Ωi

B/k,

and the Koszul filtration relative to W → k → B is given by

(∗) KosiLΩ
r
B/W

∼→ ⊕0⩽j⩽iB[r − j]⊗ Ωj
B/k

∼→ LΩi
B/W ,

which proves (3.2.1). On the other hand, we have the isomorphism (1.8.2)

LΩr
B/W [−r] ∼→ grrpPΩ

•
P/W ,

and the identification

(∗∗) grr(p)Ω
•
P/W

∼→ ⊕0⩽i⩽rΩ
i
B/k[−i],

given by division by pr−i in degree i. By (*), the description of (1.8.2) via
(1.4.2) shows that the composite isomorphism

(∗ ∗ ∗) LΩr
B/W [−r] ∼→ ⊕0⩽i⩽rΩ

i
B/k[−i]

is compatible with the Koszul filtration, i.e., the square (with horizontal maps
(***))

(3.3.2) (KosiLΩ
r
B/W )[−r] = LΩi

B/W [−i] //

��

⊕0⩽j⩽iΩ
j
B/k[−j]

��
LΩr

B/W [−r] // ⊕0⩽i⩽rΩ
i
B/k[−i],

commutes. The composition of the quasi-isomorphism (2.4.3)

grrt•F : grr(p)Ω
•
P/W

∼→ grrNWΩ•
B/k

and the quasi-isomorphism (2.1.2)

grrNWΩ•
B → τ⩽rΩ

•
B/k

can be rewritten, via (**), as the quasi-isomorphism

Fr : ⊕0⩽i⩽rΩ
i
B/k[−i]→ τ⩽rΩ

•
B/k
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induced by p−iF in degree i. As the square

(3.3.3) ⊕0⩽j⩽iΩ
j
B/k[−j]

Fi //

��

τ⩽iΩ
•
B/k

��
⊕0⩽j⩽rΩ

j
B/k[−j]

Fr // τ⩽rΩ
•
B/k

trivially commutes, the composition of (3.2.2) and (3.2.3) gives (3.2.2). The
remaining assertions of 3.2 are immediate, Fr inducing by definition the
Cartier isomorphism in each degree.

4. Liftings mod p2 and partial decompositions

4.1. We keep the notation of 2.1. If S is a scheme, and X is an S-scheme,
we say that X is weakly lci if

toramp(LX/S) ⊂ [−1, 0].

For X = Spec(B) and S = Spec(A), this is equivalent to saying that B is
weakly lci over A (1.1). If X is lci over S in the sense of ([5], VIII 1.1), i.e.,
locally embeddable by a regular immersion into a smooth S-scheme, then
X is weakly lci over S, and LX/S is of perfect amplitude in [−1, 0] ([23], III
3.2.6). If f : X → Y is an S-morphism, and if f is weakly lci, and Y weakly
lci over S, then X is weakly lci over S ([23], III 3.3.5). In particular, if X is
a weakly lci k-scheme, X is weakly lci over W .

Proposition 4.2. Let X/k be weakly lci.
(i) The transitivity triangle for X → Spec(k) → Spec(W2) induces, by

truncation, a distinguished triangle

(4.2.1) OX [1]→ τ⩾−1LX/W2 → LX/k → .

(ii) The canonical morphism LX/W → τ⩾−1LX/W2 is an isomorphism, and
sits in an isomorphism of distinguished triangles

(4.2.2) OX [1] //

Id
��

LX/W

∼→
��

// LX/k
//

Id

��
OX [1] // τ⩾−1LX/W2

// LX/k
// .

Proof. As Lk/W = k[1], the upper triangle in (4.2.2) is the transitiv-
ity triangle for X → Spec(k) → Spec(W ). The transitivity triangle for
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Spec(k) → Spec(W2) → Spec(W ) gives Lk/W2 = k[2] ⊕ k[1]. Therefore
Spec(W2)→ Spec(W ) induces a morphism of distinguished triangles

(∗) OX [1] //

��

LX/W
//

��

LX/k
//

Id

��
OX [2]⊕OX [1] // LX/W2

// LX/k
// ,

in which the left vertical arrow is the identity on OX [1]. As H−2(LX/k) = 0
since X/k is weakly lci, the cohomology sequence of the lower triangle in (*)
gives the short exact sequence

0→ OX → H−1(LX/W2)→ H−1(LX/k)→ 0,

and the morphism of cohomology sequences defined by (*) induces an iso-
morphism H−1(LX/W )

∼→ H−1(LX/W2). It follows that the vertical map of
(*) induces an isomorphism LX/W

∼→ τ⩾−1LX/W2 , and (*) gives (4.2.2), and,
in particular, (i).

4.3. Let X/k be weakly lci. Let X̃ be a W2-extension of X by OX as an
ideal of square zero. The cartesian square

(4.3.1) X //

��

X̃

��
Spec(k) // Spec(W2)

defines an OX-linear map

u(X̃) : OX → OX .

For X̃ to be a lifting of X to W2, i.e., to be flat over W2, it is necessary and
sufficient that u(X̃) is an isomorphism. Recall ([23], III 1.2.3) that X̃ defines
a morphism

(4.3.2) c(X̃) ∈ Hom(LX/W2 ,OX [1]) = Hom(τ⩾−1LX/W2 ,OX [1])

and that
u(X̃) = δ(c(X̃)),

where δ : Hom(LX/W2 ,OX [1]) → Hom(OX ,OX) is the coboundary map de-
duced from the map OX [1] → LX/W2 in the transitivity triangle of X →
Spec(k)→ Spec(W2). We shall say that X̃ is a normalized lifting if u(X̃) =
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Id. Unless otherwise stated we will consider only normalized liftings. Thus,
for such a lifting, c(X̃) (4.3.2) is a retraction of the left arrow in (4.2.1). As
OX [1]

∼→ LX/X̃ , the corresponding decomposition

(4.3.3) τ⩾−1LX/W2

∼→ OX [1]⊕ LX/k

is also that defined by (4.3.1) ([23], II 2.2.3), and c(X̃) is the first projection.
Thanks to 4.2 (ii), we will identify (4.3.3) with a decomposition

(4.3.4) LΩ1
X/W [−1] ∼→ OX ⊕ LΩ1

X/k[−1]

of the upper triangle of (3.3.1). Combining with 3.3, we obtain:

Theorem 4.4. Let X/k be weakly lci. Isomorphism classes of liftings of
X to W2 (or, equivalently, of liftings of X ′ to W2) correspond bijectively to
isomorphism classes of splittings of Filconj1 F∗LΩ

•
X/k:

(4.4.1) Filconj1 F∗LΩ
•
X/k

∼→ grconj0 F∗LΩ
•
X/k ⊕ grconj1 F∗LΩ

•
X/k.

4.5. Assume X/k smooth. Then LΩ•
X/k

∼→ Ω•
X/k, and Filconji F∗Ω

•
X/k =

τ⩽iF∗Ω
•
X/k. In this case, 4.4 recovers ([18], 3.6 (a)) as splittings (4.4.1) are

decompositions of τ⩽1F∗Ω
•
X/k in D(X ′,OX′) in the sense of ([18], 3.1). In

particular, the class
e(K) ∈ Ext2OX′ (Ω

1
X′/k,OX′)

of K = τ⩽1F∗Ω
•
X/k is the obstruction to the existence of a lifting of X to W2.

Conditions for the vanishing of such extension classes were recently examined
by Schröer ([32], 9.1).

Local liftings of X to W2 form a gerbe Lift(X/W2) banded by T = TX/k =
(Ω1

X/k)
∨ (([20], VII 1.2), ([18], 3.4)). Local splittings (4.3.3) of τ⩾−1LU/W2

form a (T -banded) gerbe Split(τ⩾−1LX/W2). Associating to a lifting of an
open subscheme U of X to W2 (or, equivalently, X ′) the corresponding de-
composition (4.3.3) yields an equivalence

(4.5.1) Lift(X/W2)
∼→ Split(τ⩾−1LX/W2)

Similarly, local splittings (4.4.1) (or decompositions of K) form a gerbe
Split(τ⩽1F∗Ω

•
X/k) banded by TX′/k. Thus (3.3.1) yields an equivalence

(4.5.2) Lift(X/W2)(
∼→ Lift(X ′/W2))

∼→ Split(τ⩽1F∗Ω
•
X/k).

This is ([18], 3.5) in the case S = Spec(k), S̃ = W2.
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In the general setting of loc. cit., we have an equivalence similar to (4.5.1)

(4.5.3) Lift(X ′/S̃)
∼→ Split(τ⩾−1F∗(LX′/S̃)).

Using ([29], (2.26.3), and A7), one can construct a canonical equivalence

(4.5.4) Split(τ⩾−1LX′/S̃)
∼→ ch(RHom(τ⩾−1LX′/S̃,OX′)[1]),

where ch(K) is theOX′-linear Picard stack associated with K ∈ D[−1,0](X ′,OX′)
in the notation of ([2], XVIII 1.4.11) and ([16], 1 (B)). On the other hand,
as τ⩽1F∗Ω

•
X/S is of perfect amplitude in [0, 1], with H0(F∗Ω

•
X/S) = OX′ , we

have a canonical equivalence

(4.5.5) Split(τ⩽1F∗Ω
•
X/S)

∼→ ch(RHom(τ⩽1F∗Ω
•
X/S,OX′)).

Thus, in view of (4.5.3) – (4.5.5), ([18], 3.5) yields an isomorphism

RHom(τ⩾−1LX′/S̃,OX′)[1]
∼→ RHom(τ⩽1F∗Ω

•
X/S,OX′),

hence, by duality, an isomorphism

(4.5.6) τ⩾−1(LX′/S̃)[−1]
∼→ τ⩽1F∗Ω

•
X/S.

Though there is no longer any de Rham-Witt complex available here, one
can directly construct such an isomorphism, independently of ([18], 3.5) –
and thus reproving it – by using, in the affine case, embeddings of X into
smooth S̃-schemes equipped with liftings of their relative Frobenius maps.

4.6. Let’s come back to the hypotheses of 4.4. In general, local liftings of
X to W2 no longer form a gerbe, but they form an OX-linear Picard stack
Lift(X/W2). By ([29], A7) this stack can be shown to correspond to the stack
of local decompositions (4.3.3), which we will denote by Split(τ⩾−1(LX/W2))

Lift(X/W2)
∼→ Split(τ⩾−1(LX/W2))

(note that the right hand side is in general different from the stack of local de-
compositions of τ⩾−1(LX/W2) as a sum of its H i[−i] in the derived category).
We thus get a canonical equivalence

Lift(X/W2)
∼→ ch(RHom(τ⩾−1(LX/W2),OX)[1]),

and in the right hand side, τ⩾−1(LX/W2) can be replaced by LX/W . Local split-
tings (4.4.1) of Filconj1 F∗(LΩ

•
X/k) also form a Picard stack Split(Filconj1 F∗(LΩ

•
X/k)),

and we have a canonical equivalence

Split(Filconj1 F∗(LΩ
•
X/k))

∼→ RHomOX′ (Fil
conj
1 F∗(LΩ

•
X/k),OX′)
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as grconj0 F∗(LΩ
•
X/k))

∼→ OX′ . Putting this together, we get a canonical equiv-
alence

Lift(X/W2)
∼→ Split(Filconj1 F∗(LΩ

•
X/k)),

which refines 4.4, and generalizes (the case S = Spec(k), S̃ = W2 of) ([18],
3.5).

4.7. Let X/k be weakly lci. Assume that X admits a lifting X̃ to W2.
Then X̃ defines a decomposition (4.3.4). For r < p, applying LΛr to LΩ1

X/W ,
we get a decomposition

(4.7.1) LΩr
X/W [−r] ∼→ ⊕0⩽i⩽rLΩ

i
X/k[−i].

Combining with (2.9.2) and 3.2, we get:

Theorem 4.8. Let X/k be weakly lci and admit a lifting X̃ to W2. Then
X̃ defines, for r < p, an isomorphism (in D(X ′))

(4.8.1) ⊕0⩽i⩽rLΩ
i
X′/k[−i]

∼→ Filconjr F∗(LΩ
•
X/k),

compatible with the conjugate filtration on the right hand side and the fil-
tration of the graduation on the left hand one, inducing the derived Cartier
isomorphism on the graded pieces.

For X/k smooth, (4.8.1) recovers ([18], 2.1). For X/k lci, in the affine
case, assuming the existence of a lifting of Frobenius on X̃, a decomposition
of the form (4.8.1), with no restriction on r, was proved by Bhatt in ([6],
3.17), see also ([8] 1.5 (4)).

4.9. Variants of 2.9, 4.4, 4.8 could be considered:
(a) in the logarithmic setup: around th. 2.3 of [33] (generalizing results

of Kato [26]);
(b) in the prismatic setup: around theorems of Bhatt, Bhatt-Scholze and

Anschütz-Le Bras ([13], 15.6), ([1], 3.2.1).
We may return to these questions later.

5. Cohomological amplitude estimates (after B. Bhatt)

The results in this section are due to Bhatt. We extract them from [12].

5.1. We keep the notation of 2.1. If X is a k-scheme, we denote by X ′ its
pull-back by the Frobenius of k, and by F : X → X ′ the relative Frobenius
morphism. The complex F∗Ω

•
X/k is OX′-linear. We denote by ZΩi

X/k (resp.
BΩi

X/k) the sheaf of cycles (resp. boundaries) of Ω•
X/k in degree i. We will

view it as a sub-OX′-module of F∗Ω
i
X/k. If X/k is smooth, then Ωi

X/k is
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locally free of finite type over OX , and F∗Ω
i
X/k, ZΩ

i
X/k, BΩi

X/k are locally
free of finite type over OX′ ([25], 0 2.2.8), and we have exact sequences

(5.1.1) 0→ ZΩi
X/k → F∗Ω

i
X/k → BΩi+1

X/k → 0,

(5.1.2) 0→ BΩi
X/k → ZΩi

X/k → Hi(F∗Ω
•
X/k)→ 0,

with the Cartier isomorphism

(5.1.3) C−1 : Ωi
X′/k

∼→ Hi(F∗Ω
•
X/k).

5.2. The previous local freeness assertions do not extend to the singular
case, as, by Kunz’ theorem, if X is of finite type over k, X is regular if
and only if F is flat. However, they imply that, by left Kan extension, the
functors P 7→ ZΩi

P/k, P 7→ BΩi
P/k on finitely generated free algebras can be

derived into functors R → LZΩi
R/k, R 7→ LBΩi

R/k on arbitrary k-algebras.
These constructions globalize on k-schemes, and the sequences (5.1.1), (5.1.2)
globalize to exact sequences (in the derived ∞-category D(X ′,OX′))

(5.2.1) 0→ LZΩi
X/k → F∗LΩ

i
X/k → LBΩi+1

X/k → 0,

(5.2.2) 0→ LBΩi
X/k → LZΩi

X/k → grconji (F∗Ω
•
X/k)→ 0,

and we have the derived Cartier isomorphism (2.2.2)

(5.2.3) C−1 : LΩi
X′/k

∼→ grconji (F∗Ω
•
X/k).

In particular,

(5.2.4) OX′ = LΩ0
X′/k

∼→ LZΩ0
X/k

∼→ grconj0 (F∗Ω
•
X/k).

Finally, (5.2.1) gives the exact sequence

(5.2.5) 0→ Filconji F∗LΩ
•
X/k → F∗(LΩ

•
X/k/Fil

i+1
Hdg)→ LBi+1

X/k[−i]→ 0,

which will not be used until 5.5.

Proposition 5.3. ([12], Prop. 2.3) Let X be an lci k-scheme of finite
type, of pure dimension d. Let s be the dimension of the singular locus of X.

(a) The complex LΩi
X/k[−i] is of perfect amplitude in [0, i].

(b) The complexes F∗LΩ
i
X/k[−i], LZΩi

X/k[−i], LBΩi
X/k[−i] lie inD⩾0

coh(X
′)

2. For i > d, they all lie in D⩾d−s(X ′) (and are zero if X/k is smooth).
2The susbscript ”coh” means that the cohomology sheaves are coherent.
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For the proof we need the following lemma:

Lemma 5.4. ([12], Lemma 2.4) Let A be a regular local noetherian
ring of dimension d. Let K ∈ D(A) be a non-zero perfect complex with
toramp(K) ⊂ [0,+∞). Let j ⩾ 0 be such that H i(K) = 0 for i < j
and Hj(K) ̸= 0. Then, for any associated prime p of Hj(K), we have
dim(A/p) ⩾ d−j. In particular, any irreducible component of Supp(Hj(K))
has dimension ⩾ d− j.

Proof (loc. cit.). By ([5], II 2.2.9 (b), 2.2.10), K can be represented by
a bounded complex of finite free A-modules concentrated in degree ⩾ 0. Let
Q := Kj/Im(Kj−1). Then the complex

0→ K0 → K1 → · · · → Kj−1 → Kj → Q→ 0

is acyclic. Therefore proj.dim(Q) ⩽ j. As Q ̸= 0 since Hj(K) ⊂ Q, by
Auslander-Buchsbaum’s formula [3] ([21], 0IV 17.3.4) in this case), this gives
depth(Q) ⩾ d − j. Thus, by ([21], 0IV 16.4.6.2), for any associated prime p
of Q, we have dim(A/p) ⩾ d − j. Then the same holds for any associated
prime p of Hj(K).

Proof of 5.3 (loc. cit.). (a) As X/k is lci, by ([23], III 3.2.6) we have

perf.amp(LΩ1
X/k) ⊂ [−1, 0].

Hence, as LΩi
X/k = LΛiLΩ1

X/k, by ([23], I 4.2.2.5) we have

perf.amp(LΩi
X/k) ⊂ [−i, 0].

(b) The first assertion follows from (a) by induction on i via (5.2.2) –
(5.2.4). Let us prove the second one. Fix i > d. The question is local,
so we may assume that X is affine. Choose a finite surjective morphism
π : X ′ → Y := Ad

k. As X (resp. X ′) is lci, X (resp. X ′) is Cohen-Macaulay.
Therefore, by ([21], 0IV 17.3.5 (ii)), both π : X ′ → Y and πF : X → Y are
finite, locally free. As perf.amp(LΩi

X/k[−i]) ⊂ [0, i], we thus have, for all i,

(i) perf.amp(π∗LΩ
i
X/k[−i]) ⊂ [0, i].

in other words,

(ii) perf.amp(π′
∗(F∗LΩ

i
X/k)[−i]) ⊂ [0, i].

Let us now prove, by induction on i that

(iii) perf.amp(π′
∗LZΩ

i
X/k[−i]) ⊂ [0, i],
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(iv) perf.amp(π′
∗LBΩi

X/k[−i]) ⊂ [0, i].

for all i. For i = 0, LBΩi
X/k = 0. By (5.2.4), LZΩ0

X/k

∼→ OX′ , hence
π′
∗LZΩ

0
X/k is finite and flat, i.e., of perfect amplitude in [0]. Fix j ⩾ 0.

Assume that (iii) and (iv) have been proved for i ⩽ j, and let us prove them
for i = j + 1. As π′

∗LZΩ
j
X/k and π′

∗(F∗LΩ
j
X/k) are of perfect amplitude in

[−j, 0], by applying π′
∗ to (5.2.1) we get perf.amp(π′

∗LBΩj+1
X/k) ⊂ [−j − 1, 0],

i.e., (iv). By (a) applied to X ′, we have perf.amp(LΩj+1
X′/k) ⊂ [−j − 1, 0],

hence perf.amp(π′
∗LΩ

j+1
X′/k) ⊂ [−j − 1, 0]. Therefore, by (iv) and π′

∗ applied
to (5.2.2) and (5.2.3) (for i = j+1) we get perf.amp(π′

∗LZΩ
j+1
X/k) ⊂ [−j−1, 0],

i.e. (iii).
Now, fix i > d, and let K be any of the complexes

F∗LΩ
i
X/k[−i], LZΩi

X/k[−i], LBΩi
X/k[−i].

Assume that K ̸= 0, and let j be the minimum of the integers r such that
Hr(K) ̸= 0. As, by (ii) – (iv), π′

∗K is of perfect amplitude in [0,+∞), by
5.4, any irreducible component of Supp(Hj(π′

∗K)), hence of Supp(Hj(K))
is of dimension ⩾ d − j. But, if S := Sing(X ′) is the singular locus of X ′,
K|(X ′ − S) = 0 as i > d, hence Supp(Hj(K)) ⊂ S, and therefore d− j ⩽ s,
i.e., j ⩾ d− s, in other words, K ∈ D⩾d−s(X ′). The last assertion is trivial.

5.5. Let X be a k-scheme. In order to exploit 5.3, it will be convenient
to use the Hodge completed derived de Rham complex

(5.5.1) LΩ̂•
X/k := R lim←−

n⩾0

(LΩ•
X/k/Fil

n
Hdg).

It inherits the Hodge filtration of LΩ•
X/k,

(5.5.2) FiliHdgLΩ̂
•
X/k = R lim←−

n⩾0

(FiliHdgLΩ
•
X/k/Fil

i+n
HdgLΩ

•
X/k),

with associated graded

griHdgLΩ̂
•
X/k

∼→ LΩi
X/k[−i].

Again, we will omit the subscript Hdg when no confusion can arise. We will
view F∗LΩ̂

•
X/k, with its filtration F∗Fil

i, as a filtered object of D(X ′). It also
inherits the conjugate filtration

(5.5.3) Filconji F∗LΩ̂
•
X/k := R lim←−

n>0

Filconji (LΩ•
X/k/Fil

i+1+n
Hdg ),
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deduced from

Filconji F∗(LΩ
•
R/k/Fil

i+1+n
Hdge ) := Tot(τ⩽iF∗(Ω

•
P•/k/Ω

⩾i+1+n
P•/k

)),

in the notation of 1.7, (2.2.1), but as the transition maps in the projective
system on the right hand side of (5.5.3) are (trivially) isomorphisms, we have

Filconji F∗LΩ̂
•
X/k

∼→ Filconji F∗LΩ
•
X/k.

Corollary 5.6. Under the assumptions and with the notation of 5.3,
consider the canonical maps (in D(X ′))

α : F∗LΩ̂
•
X/k → F∗(LΩ̂

•
X/k/Fil

d+1)

and
β : Filconjd F∗LΩ

•
X/k → F∗(LΩ̂

•
X/k/Fil

d+1)

(cf. ([12], proofs of 0.1 and 3.1)). Then Cone(α) and Cone(β) belong to
D⩾d−s−1(X ′).

Proof. We have
Cone(α)

∼→ F∗Fil
d+1[1].

By 5.3 (b), F∗LΩ
i
X/k[−i + 1] ∈ Dd−s−1(X ′) for all i ⩾ d + 1. By (5.5.2) this

implies F∗Fil
d+1[1] ∈ Dd−s−1(X ′), hence the assertion for α. By (5.2.5) we

have
Cone(β)

∼→ LBΩd+1
X/k[−d].

By 5.3 (b), we have LBΩd+1
X/k[−d] ∈ Dd−s−1(X ′), which implies the assertion

for β.

6. Partial degeneration theorems

Theorem 6.1. Under the hypotheses and with the notation of 5.3, as-
sume moreover that X/k is proper.

(a) For all n and all i, Hn(X,LΩi
X/k[−i]) is of finite dimension over k.

(b) Assume in addition that d < p and X is liftable to W2. Then for all
n < d− s− 1,

(6.1.1) dimkH
n(X,LΩ̂•

X/k) =
∑
0⩽i⩽d

dimkH
n(X,LΩi

X/k[−i]),

and

(6.1.2) Hn(X,LΩi
X/k[−i]) = 0
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for i > d.

Proof. As X/k is proper, (a) follows from 5.3 (a). Let us prove (b). By
5.6, RΓ(X ′,Cone(α)) and RΓ(X ′,Cone(β)) belong to D⩾d−s−1(k). There-
fore Hn(X ′, α) and Hn(X ′, β) are isomorphisms, hence we have a composite
isomorphism

α−1β : Hn(X ′,Filconjd F∗LΩ
•
X/k)

∼→ Hn(X ′, F∗LΩ̂
•
X/k).

As d < p and X is liftable to W2, we have the decomposition isomorphism
(4.8.1) (depending on the choice of a lifting)

c : ⊕0⩽i⩽dLΩ
i
X′/k[−i]

∼→ Filconjd F∗LΩ
•
X/k.

Composing Hn(c) with α−1β we get an isomorphism

⊕0⩽i⩽dH
n(X ′, LΩi

X′/k[−i])
∼→ Hn(X ′, F∗LΩ̂

•
X/k),

which gives (6.1.1), as Hn(X ′, F∗LΩ̂
•
X/k) = Hn(X,LΩ̂•

X/k) and

dimkH
n(X ′, LΩi

X′/k[−i]) = dimkH
n(X,LΩi

X/k[−i]).

As F∗LΩ
i
X/k[−i] is in D⩾d−s(X ′) for i > d, and n < d − s − 1 (n < d − s

would actually suffice), we have

Hn(X ′, F∗LΩ
i
X/k[−i]) = Hn(X,LΩi

X/k[−i]) = 0,

which proves (6.1.2).

6.2. In 6.1 (b) assume that X/k is smooth. Then s = −∞, hence
d − s − 1 = +∞, and (6.1.1) holds for all n. On the other hand, LΩ̂•

X/k

∼→
LΩ•

X/k

∼→ Ω•
X/k, and Hn−i(X,Ωi

X/k) = 0 for i > n. Thus (6.1.1) reads

dimkH
n(X,Ω•

X/k) =
∑
0⩽i⩽n

dimkH
n−i(X,Ωi

X/k),

i.e., the Hodge to de Rham spectral sequence of X/k degenerates at E1. This
is ([18], 2.4) for d < p.

6.3. Let K be a field of characteristic zero, and let X be a K-scheme of
finite type. One defines the Hodge completed derived de Rham complex

(6.3.1) LΩ̂•
X/K := R lim←−

n⩾0

(LΩ•
X/K/Fil

n
Hdg).
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with its Hodge filtration FiliHdgLΩ
•
X/K as in (5.5.1), (5.5.2). It is an object of

D(X,K). Bhatt proved that, if K = C, its hypercohomology calculates the
Betti cohomology of X, i.e., there exists a canonical isomorphism

(6.3.2) RΓ(X,LΩ̂•
X/C)

∼→ RΓ(Xan,C),

where Xan is the analytic space associated to X(C). For an arbitrary field
K of characteristic zero, he constructed, more generally, isomorphisms in
D(X,K) ([7], Prop. 5.2):

(6.3.3) LΩ̂•
X/K

∼→ Ru∗ÔX/K
∼→ Rε∗Ω

•
Y•/K ,

where: u : (X/K)crys → XZar is the canonical morphism from the crys-
talline topos of X to the Zariski topos, and OX/K is the structural sheaf,
Ru∗ÔX/K := R lim←−n

OX/K/J
n
X/K (with JX/K := Ker(OX/K → OX)), and

ε : Y• → X is a proper hypercovering, with Yn/K smooth for all n. For
K = C, the comparison map

Rε∗Ω
•
Y•/C → Rεan∗ Ω•

Y an
• /C

is an isomorphism by Grothendieck’s theorem [22], hence (6.3.2) follows from
(6.3.3) by the Poincaré lemma and cohomological descent. The last term
in (6.3.3) underlies the filtered du Bois complex [19], however (6.3.3) is an
isomorphism only on the underlying unfiltered objects.

Bhatt deduced from 6.1 the following theorem:

Theorem 6.4. ([12], Th. 0.1) Let K be a field of characteristic zero, and
let X be a proper, lci K-scheme of pure dimension d. Let s be the dimension
of its singular locus. Then, for n < d− s− 1, we have

(6.4.1) Hn(X,LΩi
X/K [−i]) = 0

for all i > d, and

(6.4.2) dimKH
n(X,LΩ̂•

X/K) =
∑
0⩽i⩽d

dimKH
n(X,LΩi

X/K [−i]).

We need a variant of 5.3:

Lemma 6.5. Let X be an lci K-scheme of finite type, of pure dimension
d, with singular locus of dimension s. Then:

(a) The complex LΩi
X/K [−i] is of perfect amplitude in [0, i].

(b) For i > d, LΩi
X/K [−i] belongs to D⩾d−s(X,OX), and is zero if X/K

is smooth.
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Proof. The proof of (a) is the same as that of (5.3 (a)). For (b), as in
the proof of (5.3 (b)), we may assume X affine and choose a finite surjective
morphism π : X → Y := Ad

K . Like in loc. cit. π is automatically finite,
locally free, so that, by (a), π∗LΩ

i
X/K [−i] is of perfect amplitude in [0,+∞).

As in loc. cit. one finishes the proof using 5.4.

Proof of 6.4. (6.4.1) follows from (6.5 (b)) (and in fact n < d − s would
suffice). As in 5.6, consider the canonical map

α : LΩ̂•
X/K → LΩ̂•

X/K/Fil
d+1(

∼→ LΩ•
X/K/Fil

d+1)

As in loc. cit., it follows from (6.5 (b)) that Cone(α) belongs toD⩾d−s−1(X,K).
Thus, for n < d− s− 1,

Hn(X,α) : Hn(X,LΩ̂•
X/K)→ Hn(X,LΩ•

X/K/Fil
d+1)

is an isomorphism. Therefore (6.4.2) is equivalent to

(6.4.3) dimKH
n(X,LΩ•

X/K/Fil
d+1) =

∑
0⩽i⩽d

dimKH
n(X,LΩi

X/K [−i]).

One proves (6.4.3) by reducing to (6.1 (b)) by standard spreading out tech-
niques. Imitating ([18], proof of 2.7), choose a domain A of finite type over
Z, a proper, syntomic (i.e., lci and flat) morphism f : X → Spec(A), of
pure relative dimension d, whose geometric fibers have a singular locus of
dimension s, and a homomorphism A → K such that X = X ⊗A K. Then
we have

(∗) LΩ•
X/A/Fil

d+1 ⊗L
A K

∼→ LΩ•
X/K/Fil

d+1,

(∗∗) LΩi
X/A[−i]⊗L

A K
∼→ LΩi

X/K [−i].

As f is lci, the same argument as for 5.3 (a) shows that LΩi
X/A[−i] is of perfect

amplitude in [0, i]. Therefore LΩ•
X/A/Fil

d+1 is a finite successive extension of
perfect complexes on X , so up to replacing A by A[a−1] for a suitable a ∈
A, we may assume that Rnf∗LΩ

•
X/A/Fil

d+1 and Rnf∗LΩ
i
X/A[−i] are locally

free of finite type over A, of formation compatible with any base change.
Proceeding as in ([18], loc. cit.), one takes a closed point s of the schematic
closure T , in Spec(A), of Spec(A⊗Q), such that T is étale over Z at s, and
p = char(k(s)) > d. Let Os be the local ring of T at s. Then X ⊗A Os/m

2
s

is a lifting of Xs to Os/m
2 = W2(k), where k = k(s). By (*), (**), and the

assumptions made above on f , we have

dimkH
n(Xs, LΩ

•
Xs/k/Fil

d+1) = dimKH
n(X,LΩ•

X/K/Fil
d+1),
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dimkH
n(Xs, LΩ

i
Xs/k[−i]) = dimKH

n(X,LΩi
X/K [−i]),

so it remains to show

(∗ ∗ ∗) dimkH
n(Xs, LΩ

•
Xs/k/Fil

d+1) =
∑
0⩽i⩽d

dimkH
n(Xs, LΩ

i
Xs/k[−i]).

By 5.6,

Hn(β) : Hn(X ′
s,Fil

conj
d F∗LΩ

•
Xs/k)→ Hn(X ′

s, F∗(LΩ
•
Xs/k/Fil

d+1))

is an isomorphism. By the decomposition isomorphism (4.8.1), we have

⊕0⩽i⩽dH
n(X ′

s, LΩ
i
X ′

s/k
[−i]) ∼→ Hn(X ′

s,Fil
conj
d F∗LΩ

•
Xs/k).

The combination of these two isomorphisms yields (***), and finishes the
proof.

7. Kodaira type vanishing theorems

Theorem 7.1. Let X/k satisfy the assumptions of 6.1 (b). Let L be an
ample invertible sheaf on X. Then, for n < min(d, d− s− 1) and all i,

(7.1.1) Hn(X,LΩi
X/k[−i]⊗ L−1) = 0.

We will need the following lemmas.

Lemma 7.2. Let X/k be a proper, lci k-scheme of pure dimension d,
with singular locus of dimension s. There exists N ⩾ 0 such that for all
n < min(d, d− s− 1) and all i,

(7.2.1) Hn(X,LΩi
X/k[−i]⊗ L⊗−pN ) = 0.

Proof. By 5.3 (b), for i > d, LΩi
X/k[−i] ∈ D⩾d−s(X,OX), hence the same

is true of LΩi
X/k[−i] ⊗ L⊗−pN , so the left hand side of (7.2.1) vanishes for

i > d and any N . We may therefore limit ourselves to ensuring (7.2.1) for
0 ⩽ i ⩽ d.

Let (LΩi
X/k)

∨ := RHom(LΩi
X/k,OX). As LΩi

X/k is of perfect amplitude
in [−i, 0] (5.3 (a)), by ([5], I 7.1) LΩi

X/k)
∨ is of perfect amplitude in [0, i]. Let

ωX be the dualizing sheaf on X (an invertible sheaf, such that ωX [d]
∼→ a!k,

where a : X → Spec(k) is the projection). Let 0 ⩽ i ⩽ d, 0 ⩽ n <
min(d, d− s− 1), and let j := n− i. Let N ⩾ 0. By Grothendieck’s duality,
Hj(X,LΩi

X/k ⊗ L⊗−pN ) is dual over k to Hd−j(X, (LΩi
X/k)

∨ ⊗ L⊗pN ⊗ ωX).
As n < d, hence d − j > i, and LΩi

X/k)
∨ has coherent cohomology sheaves
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contained in the interval [0, i], by Serre’s vanishing theorem, there exists an
N = N(n, i) ⩾ 0 such that Hd−j(X, (LΩi

X/k)
∨ ⊗ L⊗pN ⊗ ωX) = 0 for all

N ⩾ N(n, i). Taking for N the maximum of the N(n, i) for 0 ⩽ i ⩽ d and
0 ⩽ n < min(d, d− s− 1), we have Hd−j(X, (LΩi

X/k)
∨ ⊗ L⊗pN ⊗ ωX) = 0 for

0 ⩽ i ⩽ d and 0 ⩽ n < min(d, d−s−1), hence by duality, Hn(X,LΩi
X/k[−i]⊗

L⊗−pN ) = 0.

The next lemma is a variant of Raynaud’s lemma ([18], 2.9):

Lemma 7.3. Under the assumptions of 7.1, let M be an invertible sheaf
on X. Assume that

Hn(X,LΩi
X/k[−i]⊗M⊗p) = 0

for n < min(d, d− s− 1) and i ⩽ d, then

Hn(X,LΩi
X/k[−i]⊗M) = 0

for n < min(d, d− s− 1) and i ⩽ d.

Proof. By the projection formula, we have

(7.3.1) Hn(X,LΩi
X/k[−i]⊗M⊗p)

∼→ Hn(X ′, F∗LΩ
i
X/k[−i]⊗M ′),

where M ′ is the pull-back of M on X ′, so that M⊗p = F ∗M ′. Consider the
spectral sequence of RΓ(X ′,−) applied to F∗(LΩ

•
X/k/Fil

d+1) ⊗M ′, filtered
by F∗(Fil

iLΩ•
X/k/Fil

d+1)⊗M ′, whose E1 term is

Eij
1 = H i+j(X ′, LΩi

X′/k[−i]⊗M ′)

for i ⩽ d, and Eij
1 = 0 for i > d. By (7.3.1), the assumption implies

(7.3.2) Hn(X ′, F∗(LΩ
•
X/k/Fil

d+1)⊗M ′) = 0

for n < min(d, d− s− 1). Consider the map β of 5.6, and

β ⊗M ′ : Filconjd F∗LΩ
•
X/k ⊗M ′ → F∗(LΩ

•
X/k/Fil

d+1)⊗M ′.

Assume first that s ⩾ 0, so min(d, d − s − 1) = d − s − 1. As Cone(β),
hence Cone(β ⊗M ′), is in D⩾d−s−1(X ′), Hn(X ′, β ⊗M ′) is an isomorphism
for n < d − s − 1. As in the proof of 6.1, we now use the decomposition
isomorphism c, which gives

c⊗M ′ : ⊗0⩽i⩽dLΩ
i
X′/k[−i]⊗M ′ ∼→ Filconjd F∗LΩ

•
X/k ⊗M ′.
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Thus, for n < d− s− 1, composing Hn(X ′, β ⊗M ′) and Hn(X ′, c⊗M ′) we
get an isomorphism

⊕0⩽i⩽dH
n(X ′, LΩi

X′/k[−i]⊗M ′)
∼→ Hn(X ′, F∗(LΩ

•
X/k/Fil

d+1)⊗M ′),

hence, by (7.3.2), we have

Hn(X ′, LΩi
X′/k[−i]⊗M ′) = 0

for 0 ⩽ i ⩽ d, but this is equivalent to Hn(X,LΩi
X/k[−i] ⊗ M) = 0. If

s = −∞, i.e., X/k is smooth, and min(d, d− s−1) = d, then LΩ•
X/k = Ω•

X/k,
Fild+1 = 0, β⊗M ′ is an isomorphism, and the preceding argument gives the
desired vanishing for n < d (in this case, the proof is exactly that of ([18],
2.9)).

Proof of 7.1. By 7.2 choose N ⩾ 0 such that (7.1.1) holds (for all n <
min(d, d− s− 1) and all i ⩽ d). If N = 0, we are done. If not, by 7.3 we can
replace N by N − 1. Iterating, we arrive at N = 0, which finishes the proof.

7.4. Assume that, in 7.1, X/k is smooth. Then min(d, d−s−1) = d, and
(7.1.1) gives ([18], (2.8.2)) for d < p. As observed in ([14], 3.4), the Serre
dual formulation ([18], (2.8.1)) fails when X is singular (even if s = 0).

By spreading out arguments similar to those used in the proof of 6.4 we
deduce:

Theorem 7.5. Let K be a field of characteristic zero. Let X be a proper,
lci K-scheme of pure dimension d, with singular locus of dimension s. Let L
be an ample invertible sheaf on X. Then, for n < min(d, d− s− 1) and all i,

(7.5.1) Hn(X,LΩi
X/K [−i]⊗ L−1) = 0.

7.6. This is essentially ([14], Th. 3.2), except that we need d − s − 1
instead of d − s. I don’t know how to recover loc. cit. by characteristic p
methods.
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