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Steenrod operations

Prelude

Goals:

Construct stable operations

P i : Hp,q(X )→ Hp+2i,q+i (X )

for all spaces X ∈ H(k) where Hp,q denotes motivic cohomology with
Z/2Z coefficients.

Study the motivic Steenrod algebra (generated over H?,?(k) by these P i

and the Bockstein) and its dual.

Construct operations Qi : Hp,q → Hp+2i+1−1,q+2i−1 such that Qi ◦ Qi = 0
(⇒ definition of Margolis homology).

Understand the action of the Steenrod algebra on Thom classes.
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We fix a (perfect) base field k. We assume its characteristic is not two.

Definition

For p ≥ q ≥ 0, the motivic sphere Sp,q is Sp−q ∧ G∧q
m ∈ H•(k).

We have a tautological class in H̃p,q(Sp,q) that induces isomorphisms:

H̃a,b(X )
∼→ H̃a+p,b+q(Sp,q ∧ X )

Definition

A stable cohomological operation of bidegree (a, b) is family of natural

transformations H̃ i,j (X )→ H̃ i+a,j+b(X ) for X ∈ H•(k) such that the action on

H̃ i−p,j−q is determined by the action on H̃ i,j through the identifications

H̃ i−p,j−q(X ) = H̃ i,j (Sp,q ∧ X )

Lemma

One can (re)construct a unique stable operation for the datum of the action on

H̃2n,n for n ≥ 0 provided they are compatible with the identification
H̃2n,n(X )

∼→ H̃2(n+1),n+1(S2,1 ∧ X ). (Note that S2,1 ' P1.)
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(Let Λ be Z/2Z.)
For all (p, q) ∈ Z2, we have motivic Eilenberg-Mac Lane spaces
K(Λ(q), p) ∈ H•(k), i.e.,

H̃p(X ,Λ(q)) = H̃p,q(X ) ' HomH•(k)(X ,K(Λ(q), p))

Yoneda’s lemma ⇒ a natural transformation H̃ i,j (X )→ H̃ i+a,j+b(X ) for
X ∈ H•(k) is the same as a morphism K(Λ(j), i)→ K(Λ(j + b), i + a) in
H•(k).

Then, a stable cohomology operation is the same a family of maps
fn : K(Λ(n), 2n)→ K(Λ(n + b), 2n + a) in H•(k) such that the following
diagram commute:

K(Λ(n), 2n)
fn //

∼

��

K(Λ(n + j), 2n + i)

∼

��
ΩP1 K(Λ(n + 1), 2n + 2)

Ω
P1 (fn+1)

// ΩP1 K(Λ(n + j + 1), 2n + 2 + i)

This is essentially the way we shall define the operations P i .
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Main source:

Vladimir Voevodsky. Reduced power operations in motivic cohomology.

Publications Mathématiques de l’IHÉS 98 (2003), pages 1–57.



Steenrod operations

Prelude

1 Construction of Steenrod operations

2 Properties of the Steenrod operations

3 The Steenrod algebra and its dual

4 Applications



Steenrod operations

Construction of Steenrod operations

Eilenberg-Mac Lane spaces

Definition

Let X → S be a smooth morphism in Sm/k. cequi(X/S , 0) is the free Λ-module
generated by integral closed subschemes Z in X such that Z → S is a finite
morphism and a surjection over a connected component of S . (There is a
fonctoriality associated to a base change S ′ → S .)

Definition

Let X ∈ Sm/k. Λtr(X ) is the sheaf of groups over Sm/k (for the Nisnevich
topology) defined by Λtr(X )(U) = cequi(U ×k X/U, 0).
For any i ≥ 0, Ki is the underlying sheaf of sets of the sheaf of abelian groups
Λtr(A

i )/Λtr(A
i − {0}). This is the Eilenberg-Mac Lane space

K(Λ(i), 2i) ∈ H•(k).
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Construction of Steenrod operations

Thom classes

Definition

Let E be a vector bundle of rank r on X ∈ Sm/k. We denote
ThX E = E/E − {0} ' P(E ⊕ OX )/P(E) the Thom space of X .

Proposition

H̃?,?(ThX E) is a free H?,?(X )-module of rank 1 generated by the Thom class
tE = ξr + c1(E)ξr−1 + · · ·+ cr (E) ∈ ker(H?,?(P(E ⊕ OX ))→ H?,?(P(E))) '
H̃?,?(ThX E) where ξ = c1(O(1)) ∈ H2,1(P(E ⊕ OX )).

Definition

The Euler class of E in H2r,r (X ) is the image of tE by the restriction map

H̃?,?(ThX E)→ H?,?(X ) induced by the zero section X → ThX E . This class is
the highest Chern class cr (E).

Lemma

If E → F is an admissible monomorphism of vector bundles on X , the image of
tF by the restriction map H̃?,?(ThX F )→ H̃?,?(ThX E) induced by the obvious
morphism ThX E → ThX F is tE · cr (F/E) where r is the rank of F/E.
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Construction of Steenrod operations

Thom classes

Lemma

If E → F is an admissible monomorphism of vector bundles on X , the image of
tF by the restriction map H̃?,?(ThX F )→ H̃?,?(ThX E) induced by the obvious
morphism ThX E → ThX F is tE · cr (F/E) where r is the rank of F/E.

Proof.

Let e be the rank of E . We denote ξ = c1(O(1)) on various projective bundles.
Because of the relations ci (E ⊕ OX ) = ci (E), we have the following identity in
H?,?(P(E ⊕ OX )):

ξe+1 + c1(E)ξe + · · ·+ ce(E)ξ = 0 i .e., tEξ = 0 .

Multiplicativity of the Chern polynomial for E and F/E gives:

tF = (ξe + c1(E)ξe−1 + · · ·+ ce(E)) · (ξr + c1(F/E)ξ + · · ·+ cr (F/E))

This is in H?,?(P(F ⊕ OX )). Restricted to P(E ⊕ OX ), we obtain :

tE · ((...) · ξ + cr (F/E)) = tE · cr (F/E)
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Thom classes

The last proposition says that ThX E and S2r,r ∧ X+ have the same
cohomology. More precisely, they have the same motive. The following
corollary is even more precise as it states something relative to X :

Corollary

Let X ∈ Sm/k. (We denote a : X → Spec k the projection.) Let E be a vector
bundle over X of rank r . We define the sheaf of sets KM(ThX E) induced by
the sheaf of abelian groups over Sm/X associated to the presheaf

U 7−→ cequi(U ×X E/U, 0)/cequi(U ×X (E − {0}), 0))

Then, the Thom class tE induces an isomorphism in H•(X ):

KM(ThX E)
∼→ KM(ThX Ar ) = a?Kr .

(“KM” should be thought as a composition of two adjoint functors. M is the
“motive” functor from spaces to motives, and K is its right adjoint, that
forgets transfers and abelian groups structures on sheaves.) Roughly, the only
difficulty here is how tE induces a map. Then, it is quite obvious that it is an
isomorphism.
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Construction of the total operation

Data:

G is a finite group;

r : G → Sn is a morphism, i.e., essentially a (left-)action of G on a finite
set X with n elements ;

U ∈ Sm/k is equipped with a free (left-)action of G .

To this, we shall attach a cohomological operation for all i ≥ 0:

P : H̃2i,i (X )→ H̃2in,in(X ∧ (G\U)+) .

Then, we will apply it to the case U is the open subset of a big enough
(faithful) linear representation G → GL(V ) on which G acts freely, so that
G\U is an approximation of the geometric classifying space BgmG . When we
understand the motive of BgmG , we will be able to define the expected
Steenrod operations.
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Construction of the total operation

We linearise the action of G on X = {1, . . . , n} as a k-linear action of G on
V = kn ' ⊕x∈X k · ex with g .ex = eg.x . This defines an action of G on the
affine space An.

Proposition

The quotient scheme G\(U × An) of U × An by the product action of G is a
vector bundle ξ of rank n over G\U.

Assume for simplicity that U = Spec A is affine. We have a right-action of G
on A (denoted g?f for f ∈ A). We equip M = A⊗k V with a semilinear
left-action g .(a⊗ v) = (g−1?a)⊗ (g .v).
The subgroup M0 = MG of elements fixed by G is a module over the algebra
AG of functions over U fixed under the action of G . By definition,
G\U = Spec AG . The theory of faithfully flat descent implies that the
canonical map of A-modules

M0 ⊗AG A→ M

is an isomorphism. As the AG -algebra A is faithfully flat, properties of M0 over
AG reflects those on M over A. This implies that M0 is a projective module of
rank n over AG . Then, G\(U × An) = SpecS?AG M∨0 , so that ξ is a vector
bundle (which is is self-dual).
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Construction of the total operation

Proposition

For all i , j ≥ 0, we have a canonical pairing in the category of pointed sheaves
over Sm/k:

Ki ∧ Kj → Ki+j

We know that Kn(Y ) = cequi(Y × An/Y , 0)/cequi(Y × (An − {0})/Y , 0).
The pairing is induced by the obvious product map:

cequi(Y × Ai/Y , 0)× cequi(Y × Aj/Y , 0)→ cequi(Y × Ai+j/Y , 0)

given by the external product of cycles followed by the base change by the
diagonal Y → Y × Y .

Corollary

For any i ≥ 0, we have a “raising to the power n” map:

Ki → Kin

that is Sn-equivariant for the trivial action on Ki and the action on
Kin ' KM(Thk V⊕i ) where V = kn is the permutation representation as before.
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Composing this morphism Ki → Kin with the “constant function morphism”
Kin → Hom(U,Kin), we get a morphism:

Ki → Hom(U,Kin)

The Sn-equivariance property stated before implies that this factors through
the subsheaf of HomG (U,Kin) of G -equivariant morphisms. More precisely, the
image of an element on Ki (Y ) induced by an element of cequi(Y × Ai/Y , 0)
shall be an element in the group on the right:

cequi(Y × G\(U × Ain)/Y × G\U, 0)
∼→ cequi(Y × U × Ain/Y × U, 0)G

This isomorphism comes from the étale descent of cycles. Then on the left, we
recognise cequi(Y × ξ⊕i/Y × G\U, 0). If a : G\U → Spec k is the projection,
we have defined the first morphism in the following composition in H•(k):

Ki → a?KM(ThG\U ξ
⊕i )→ Ra?KM(ThG\U ξ

⊕i ) ' Ra?a?Kin ' RHom(G\U,Kin)

We have defined the total operation:

Ki → RHom(G\U,Kin)
id est←→ P : Ki ∧ (G\U)+ → Kin
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This morphism P : Ki ∧ (G\U)+ → Kin in H•(k) induces a cohomology
operation:

P : H̃2i,i (X )→ H̃2in,in(X ∧ (G\U)+)

for all X ∈ H•(k).

Lemma

The composition

Ki → Ki ∧ (G\U)+
P−→ Kin

where the first map is induced by a rational point of U is the “raising to the
power n” morphism.

(To prove this lemma, one may for instance replace U by the orbit of the given
rational point, in which case it is obvious.)

It means that if x ∈ H̃2i,i (X ), then u?P(x) = xn ∈ H̃2in,in(X ) where u is the
map X → X ∧ (G\U)+ induced by a rational point of U.
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Construction of the total operation

Proposition

Let X and Y be two objects of H•(k), x ∈ H̃2i,i (X ) and y ∈ H̃2j,j (Y ). Then,

P(x ∪ y) = ∆?(P(x) ∪ P(y))

in H̃2(i+j)n,(i+j)n(X ∧ Y ∧ (G\U)+) where

∆: X ∧ Y ∧ (G\U)+ → X ∧ Y ∧ (G\U)2
+

is induced by the diagonal of G\U.

It follows from a very direct computation.
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The Bockstein β is the cohomology operation that naturally fits into the
following long exact sequences coming from the short exact sequence
0→ Z/2Z→ Z/4Z→ Z/2Z→ 0:

· · · → H̃?,?(X ,Z/2)→ H̃?,?(X ,Z/4)→ H̃?,?(X ,Z/2)
β−→ H̃?+1,?(X ,Z/2)→ . . .

In particular, βx = 0 if and only if x lifts as a cohomology class with
coefficients Z/4Z. (Also, β ◦ β = 0 and β(xy) = xβ(y) + (βx)y .)

Theorem

If G = Z/2Z and n = 2, for any cohomology class x ∈ H̃2i,i (X ), we have:

β(P(x)) = 0

A rough idea of the proof is that there is a way to lift P as:

P̃ : Ki,Z/2 → RHom(G\U,Ki,Z/4) ,

the main remark is that in some sense, somewhere,
(x + 2y)2 ≡ x2 + 2(xy + yx) mod 4 and xy + yx can be interpreted as a
transfer of a certain cycle xy for the an action of Z/2 by transposition.



Steenrod operations

Construction of Steenrod operations

The motive of Bgmµ`

The geometric classifying space of a linear algebraic group G is the colimit
BgmG = colim G\Un where Un is the open subset of V⊕n on which G acts
freely and V is some faithful linear representation of G .
For G = µ`, we take V = A1 on which µ` ⊂ Gm acts by multiplication. Then,
Un = An − {0}.

Proposition

Bgmµ` is the complement of the zero section of the line bundle O(−`) on P∞.

We have a projection µ`\(An − {0})→ Gm\(An − {0}) = Pn−1. Because of
the short exact sequence

0→ µ` → Gm
x 7−→x`−→ Gm → 0 ,

we see that this projection is a Gm/µ`
∼→ Gm-torsor, which is obtained from the

tautological Gm-torsor An − {0} → Pn−1 (punctured universal line O(−1)) by

covariant functoriality associated to the morphism Gm
x 7−→x`−→ Gm. Then, we get

the punctured O(−1)⊗` = O(−`).
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The motive of Bgmµ`

Proposition

Let X ∈ Sm/k. Let L be a line bundle on X . We let L− {0} be the punctured
bundle, i.e., the complement of the zero section s : X → L. Then, we have a
distinguished triangle in DMeff

− (k):

M(L− {0})→ M(X )→ M(X )(1)[2]
+−→

where the map M(X )→ M(X )(1)[2] is the multiplication by c1(L).

Proof.

It comes from the distinguished triangle M(L−{0})→ M(L)→ M̃(ThX L)
+−→

and the isomorphism M̃(ThX L) ' M(X )(1)[2] induced by the Thom class.

Then, the composition M(X )
∼→ M(L)→ M̃(ThX L) is identified with the

multiplication with the Euler class of L, i.e., c1(L).
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The motive of Bgmµ`

Proposition

Assume now that the line bundle L on X is such that c1(L) = 0 ∈ H2,1(X ) (for
a certain coefficient ring Λ), then there exists a class u ∈ H1,1(L− {0},Λ) (well
defined modulo the image of H1,1(X ,Λ)), such that the projection
L− {0} → X and the classes 1 and u induce an isomorphism:

M(L− {0}) ∼→ M(X )⊕M(X )(1)[1]

The distinguished triangle reduces to a split short exact sequence in DMeff
− (k):

0→ M(X )(1)[1]
δ−→ M(L− {0})→ M(X )→ 0

Then, applying the cohomological functor H1,1, we obtain a class
u ∈ H1,1(L− {0}) (unique modulo H1,1(X )) such that δ?(u) = 1 ∈ H0,0(X ).
This u defines a map M(L− {0})→ M(X )(1)[1] which is a retraction of δ
because δ is compatible with certain M(X )-comodule structures (this is related
to saying that δ? is H?,?(X )-linear, at least up to signs).
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The motive of Bgmµ`

Corollary

For Λ = Z/`Z, we have a class u ∈ H1,1(µ`\(An − {0})) such that the
projection to Pn−1 and the classes 1 and u induce an isomorphism in
DMeff

− (k;Z/`Z):

M(µ`\(An − {0}))
∼→ M(Pn−1)⊕M(Pn−1)(1)[1]

(Note that c1(O(−`) = `c1(O(−1)) which is zero modulo `.) The class u from
the previous proposition is made unique here by the condition that for one (or
any) rational point x of Un = An − {0}, the restriction x|[u] is zero. This

follows from the isomorphism k×/k×` ' H1,1(k)
∼→ H1,1(Pn−1(k)).

Proposition

For any n ≥ 0, we have an isomorphism

M(Pn−1)
∼→

n−1⊕
i=0

Λ(i)[2i ]

that is induced by the classes 1, v , . . . , v n−1 with v = c1(O(1)) ∈ H2,1(Pn−1).
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The motive of Bgmµ`

Corollary

The obvious maps M(Pn−1)→ M(Pn) and
M(µ`\(An − {0}))→ M(µ`\(An+1 − {0})) are split monomorphisms.

This is so as to ensure there is no technical difficulties when taking colimits:

Corollary

The classes 1, v , v 2, . . . induce an isomorphism:

M(P∞)
∼→ ⊕i≥0Λ(i)[2i ]

and the classes 1, u and the projection Bgmµ` → P∞ = BgmGm induce an
isomorphism:

M(Bgmµ`)
∼→ M(P∞)⊕M(P∞)(1)[1]

It follows that if we want to understand the cohomology algebra of Bgmµ`, we
have to compute u2 ∈ H2,2(Bgmµ`).
Obviously, if ` 6= 2, we have u2 = 0. From now, we assume ` = 2.
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We define τ ∈ H0,1(k) ' µ2(k) the element corresponding to −1 ∈ k and
ρ ∈ H1,1(k) ' k×/k×2 the class of −1. Note that β(τ) = ρ.

Proposition

In H2,2(BgmZ/2Z), we have u2 = τv + ρu.

Proof.

For degree reasons, it follows from the decomposition of the motive of
BgmZ/2Z, that u2 writes uniquely as u2 = xv + yu + z with x ∈ H0,1(k),
y ∈ H1,1(k) and z ∈ H2,2(k). The elements u, v and u2 vanish when restricted
to a suitable base-point of BgmZ/2Z. This shows that z = 0.

The restriction to the cohomology of {±1}\U1 = {±1}\Gm ' Spec k[t, t−1]
corresponds to removing the term xv . We use the fact that
H2,2(Spec k[t, t−1)) ↪→ H2,2(Spec k(t, t−1)) = K M

2 (k(t, t−1)). The image of u
in K M

1 (k(t, t−1) can be identified with {t}. Then, the result follows from
{t, t} = {t, t} − {−t, t} = {−1, t} = {−1} · {t}. Thus, y = ρ.
(If k ⊂ C), the coefficient x ∈ µ2(k) is either 0 or τ . One can see the
difference by taking complex points and using the structure of the cohomology
algebra modulo 2 of the group Z/2Z, in which u2 6= 0.
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The motive of Bgmµ`

Proposition

In H2,1(BgmZ/2Z), we have βu = v.

Proof.

For degree reasons, we have either βu = 0 or βu = v .

H1,1(L− {0},Z/4Z)

��

δ? // H0,0(X ,Z/4Z)

��

·c1(L) // H2,1(X ,Z/4Z)

H1,1(L− {0},Z/2Z)
δ? // H0,0(X ,Z/2Z) // 0

Assuming βu = 0, there is a lifting ũ of u in H1,1(L− {0},Z/4) (we take
X = Pn−1 for n ≥ 2 and L = O(−2)). Then δ?ũ = ±1, then the image of ũ in
H2,1(Pn−1,Z/4Z) is ±c1(O(−2)) = ±2c1(O(1)) 6= 0 (modulo 4). We get a
contradiction with the exactness of the first line. Then βu = v .
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Definition of Pi

Corollary

For any X ∈ H•(k), we have canonical isomorphisms of bigraded groups:

H̃?,?(X ∧ (BgmZ/2Z)+) ' lim
n

H̃?,?(X ∧ ({±1}\(An − {0}))+)

' H̃?,?(X )[u, v ]/(u2 − τv − ρu)

Let d ≥ 0. The construction P (for i = d and n = 2) for the action of Z/2Z
on An − {0} for all n ≥ 1 defines then a morphism for all X ∈ H•(k):

P : H̃2d,d (X )→ H̃4d,2d (X ∧ (BgmZ/2Z)+) .

Definition

We define cohomological operation P i : H̃2d,d → H̃2d+2i,d+i (for i ≤ d) and

B i : H̃2d,d → H̃2d+2i+1,d+i (for i ≤ d − 1) by the following relation for all

x ∈ H̃2d,d (X ):

P(x) =
∑
i≤d

P i (x)v d−i +
∑

i≤d−1

B i (x)uv d−1−i
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(We set P i = 0 for i > d and B i = 0 for i ≥ d .)

Proposition

B i = βP i ;

βB i = 0.

Proof.

Let x ∈ H̃2d,d (X ). We know that βP(x) = 0; v = β(u), then β(v k ) = 0 and
β(uv k ) = v k+1:

βP(x) = β

(∑
i

P i (x)v d−i +
∑

i

B i (x)uv d−1−i

)
=

∑
i

(βP i (x) + B i (x))v d−i +
∑

i

βB i (x)uv d−1−i
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Vanishing of Sqi for i < 0

We also define Sq2i = P i and Sq2i+1 = B i . The operation Sqj shifts the first
degree by j and the second degree by

⌊
j
2

⌋
.

Theorem

There is no nontrivial cohomology operation

H̃2d,d → H̃p,q

for q < d and for q = d, there are no nontrivial operation for p < 2d.
The operations H̃2d,d → H̃2d,d are given by the multiplication by an element in
Z/2Z.

Corollary

Sqj = 0 for j < 0.

Corollary

For x ∈ H̃2d,d (X ), P(x) =
d∑

i=0

P i (x)v d−i +
d−1∑
i=0

B i (x)uv d−1−i .
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Properties of the Steenrod operations

Stability

Proposition

We let t ∈ H̃2,1(S2,1) (S2,1 ' A1/(A1 − {0})) be the tautological class. Then,

for all i ≥ 0 and x ∈ H̃2d,d (X ), P i (x ∪ t) = P i (x)∪ t and B i (x ∪ t) = B i (x)∪ t.

Lemma

In H̃4,2(A1/(A1 − {0}) ∧ (BgmZ/2Z)+), we have P(t) = t ∪ v.

This lemma implies the proposition using the formulas
P(x ∪ t) = P(x) ∪ P(t) = P(x) ∪ t ∪ v and identifying the different terms. To
prove it, we shall use:

Lemma

We let δ : (BgmZ/2Z)+ ∧ (A1/A1 − {0})→ ThBgmZ/2Z ξ be the map on Thom
spaces induces by the obvious inclusion O → ξ of vector bundles on BgmZ/2Z.
Then, P(t) = δ?tξ.

This is a very simple computation.
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Properties of the Steenrod operations

Stability

Lemma

In H̃4,2(A1/(A1 − {0}) ∧ (BgmZ/2Z)+), we have P(t) = t ∪ v.

We use:

Lemma

If E → F is an admissible monomorphism of vector bundles on X , the image of
tF by the restriction map H̃?,?(ThX F )→ H̃?,?(ThX E) induced by the obvious
morphism ThX E → ThX F is tE · cr (F/E) where r is the rank of F/E.

When we apply it to δ : (BgmZ/2Z)+ ∧ (A1/A1 − {0})→ ThBgmZ/2Z ξ, we get:

P(t) = δ?tξ = t ∪ c1(ξ/O)

Lemma

The bundle ξ/O identifies to the inverse image of O(±1) by the projection
BgmZ/2Z→ P∞.

It follows that c1(ξ/O) = v .
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Properties of the Steenrod operations

Stability

Lemma

The bundle ξ/O identifies to the inverse image of O(±1) by the projection
BgmZ/2Z→ P∞.

For any k-linear representation V of Z/2Z, one may attach a “vector bundle on
BgmZ/2Z”. On {±1}\(An − {0}), it is {±1}\(An − {0} × V ) as we did before
in the case of a permutation representation. We have a short exact sequence of
representations of Z/2Z:

0→ k
+−→ (k2, τ)

−−→ χ→ 0 .

where τ inverts the two factors and χ is the nontrivial (selfdual) character of
Z/2Z. To this exact sequence is attached the exact sequence of vector bundles:

0→ O → ξ → ξ/O → 0 .

Then ξ/O is attached to the character χ. In terms of the Gm-torsors associated
to ξ/O and the inverse image of O(−1), the result follows from the
isomorphism {±1}\((An −{0})×Gm)

∼→ ({±1}\(An −{0}))×Pn−1 (An −{0})
that maps the class of [v , λ] to ([v ], λv).
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Properties of the Steenrod operations

Stability

We proved this:

Proposition

We let t ∈ H̃2,1(S2,1) (S2,1 ' A1/(A1 − {0})) be the tautological class. Then,

for all i ≥ 0 and x ∈ H̃2d,d (X ), P i (x ∪ t) = P i (x)∪ t and B i (x ∪ t) = B i (x)∪ t.

This shows that the definition we gave of the operations P i and B i on H̃2d,d

are compatible for different d . We have thus defined stable cohomology
operations for all i ≥ 0:

P i : H̃p,q(X )→ H̃p+2i,q+i (X )

B i : H̃p,q(X )→ H̃p+2i+1,q+i (X )

for all (p, q) ∈ Z and X ∈ H•(k). It follows that these operations are additive.
(We also know that B i = βP i , i.e., Sq2j+1 = β Sq2j .)

Proposition

P0 = Sq0 is the identity and B0 = Sq1 = β.
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Properties of the Steenrod operations

Stability

Proposition

P0 = Sq0 is the identity and B0 = Sq1 = β.

We know that on H̃2d,d , P0 is the multiplication by some cd ∈ Z/2Z. The fact
that P0 is a stable operation show that cd = c0. For obvious reasons, c0 = 1
(using the formula P(t) = t ∪ v , one may also observe that c1 = 1). It follows
that P0 is the identity. Then, B0 = βP0 = β.

Proposition

If x ∈ H̃?,?(X ) and y ∈ H̃?,?(Y ), we have:

Pk (x ∪ y) =
∑

i+j=k

P i (x) ∪ P j (y) + τ
∑

i+j=k−1

B i (x) ∪ B j (y)

Bk (x ∪ y) =
∑

i+j=k

P i (x) ∪ B j (y) +
∑

i+j=k

B i (x) ∪ P j (y) + ρ
∑

i+j=k−1

B i (x) ∪ B j (y)
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Properties of the Steenrod operations

Various properties

Proposition

If x ∈ H̃?,?(X ) and y ∈ H̃?,?(Y ), we have:

Pk (x ∪ y) =
∑

i+j=k

P i (x) ∪ P j (y) + τ
∑

i+j=k−1

B i (x) ∪ B j (y)

Bk (x ∪ y) =
∑

i+j=k

P i (x) ∪ B j (y) +
∑

i+j=k

B i (x) ∪ P j (y) + ρ
∑

i+j=k−1

B i (x) ∪ B j (y)

One may assume x ∈ H̃2d,d (X ) and y ∈ H̃2d′,d′(Y). Then:

P(x) · P(y) = (∑d
i=0 P i (x)vd−i +

∑d−1
i=0 B i (x)uvd−i−1)·(

∑d′
j=0 P j (y)vd′−j +

∑d−1
j=0 B j (x)uvd−j−1)

Then, one uses the computation u2 = τv + ρu and the identification with:

P(xy) =
d+d′∑
k=0

Pk (xy)v d+d′−k +
d+d′−1∑

k=0

Bk (xy)uv d+d′−1−k
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Properties of the Steenrod operations

Various properties

Proposition

If x ∈ H̃2d,d (X ), then Pd (x) = x2.

We use the following lemma for i = d , n = 2, U = A? − {0} and G = {±1}:

Lemma

The composition

Ki → Ki ∧ (G\U)+
P−→ Kin

where the first map is induced by a rational point of U is the “raising to the
power n” morphism.

The restriction map H̃?,?(X ∧ (BgmZ/2)+)→ H̃?,?(X ) sends P(x) to x2.
Moreover, the images of u and v vanish, to that P(x) is also sent to Pd (x).



Steenrod operations

Properties of the Steenrod operations

Various properties

Corollary

If x ∈ H̃p,q(X ) with d ≥ q and d > p − q, then Pd (x) = 0.

Proof.

Using suspensions with S1 or Gm, one may assume x ∈ H̃2d−1,d (X ). Let

x̃ = s ∧ x ∈ H̃2d,d (S1 ∧ X ) where s ∈ H1,0(S1) is the tautological class.
We have to show that x̃2 = 0. This class is induced by a morphism in H•(k)
that factors through the diagonal:

S1 ∧ X → S2 ∧ X∧2

which is the ∧-product of two morphisms, but the first one S1 → S2 is the zero
map because the Riemann sphere is simply connected.
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Properties of the Steenrod operations

Action on Chern classes

Proposition

Let X ∈ Sm/k. Let L be a line bundle on X . Let c1(L) ∈ H2,1(X ) be its first
Chern class.
Then,

P(c1(L)) = c1(L)2 + c1(L)v

In other words,

P0(c1(L)) = c1(L) P1(c1(L)) = c1(L)2 B0(c1(L)) = 0

This follows from the preceding results for P0, P1 and B0.

Corollary

Let X ∈ Sm/k. The sub-F2-algebra of H2?,?(X ) = CH?(X )/2 generated by
Chern classes of vector bundles on X is stable under the operations Pn and
killed by the operations Bn.
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Properties of the Steenrod operations

Action on Chern classes

Corollary

Let X ∈ Sm/k. The sub-F2-algebra of H2?,?(X ) = CH?(X )/2 generated by
Chern classes of vector bundles on X is stable under the operations Pn and
killed by the operations Bn.

It is true for 1 and first Chern classes of line bundles.
Consider the vector bundle V = L1 ⊕ · · · ⊕ Ld on (Pk )d (for k big enough)
where Li is the inverse image of O(1) by the ith projection on Pk . Define
xi = c1(Li ). ck (V ) identifies to a symmetric polynomial involving the d
variables x1, . . . , xd . Using the previous formulas, Pn(ck (V )) may also be
identified with a symmetric polynomial involving x1, . . . , xd . Then, there exists
a polynomial f ∈ F2[c1, . . . , cd ] such that

Pn(ck (V )) = f (c1(V ), . . . , cd (V ))

Standard arguments shows that if this is true for this specific V on (Pk )d

(which is true by definition), then it is true for all bundles of rank d on schemes
in Sm/k.
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Properties of the Steenrod operations

Action on u and v

We use the identification
H̃?,?(X ∧ (BgmZ/2Z)+) ' H̃?,?(X )⊗H?,?(k) H?,?(BgmZ/2Z):

Corollary

P(v) = v 2 ⊗ 1 + v ⊗ v and P(u) = u ⊗ v + v ⊗ v.

(The second formula does not make sense as it is. If x ∈ H̃p,q(X ) with p ≤ 2q,

one may identify x to a class x̃ ∈ H̃2q,q(S2q−p ∧ X ). Then, P(x̃) makes sense,

and we define P(x) ∈ H̃?,?(X ∧ (BgmZ/2Z)+) from P(x̃) by using the
suspension isomorphism in the opposite direction.)

The computation of P(v) follows from the formula for P(c1(L)) and the
identity v = c1(O(1)).
We may write P(u) as:

P(u) = P0(u)⊗ v + P1(u)⊗ 1 + βu ⊗ u = u ⊗ v + v ⊗ u

because P1(u) = 0.
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Properties of the Steenrod operations

Action on u and v

Proposition

For all i , k ≥ 0, the following relations hold in H?,?(P∞) ⊂ H?,?(BgmZ/2Z):

P i (v k ) =

(
k

i

)
v k+i , B i (v k ) = 0

for all i , k ≥ 0. In H?,?(BgmZ/2Z), we have:

P i (uv k ) =

(
k

i

)
uv k+i , B i (uv k ) =

(
k

i

)
v k+i+1

Proof.

The first series of identities follows from:

P(v k ) = P(v)k = (v 2 ⊗ v + v ⊗ v)k =
k∑

i=0

(
k

i

)
v k+i ⊗ v k−i =

k∑
i=0

P i (v k )v k−i

The other series come from the multiplication formulas.



Steenrod operations

Properties of the Steenrod operations

Adem relations

We defined P : H̃2d,d (X )→ H̃4d,2d (X ∧ BgmZ/2Z+). One may iterate it so as
to obtain a map:

P ◦ P : H̃2d,d → H̃8d,4d (X ∧ (BgmZ/2Z× BgmZ/2Z)+)

One may identify the target group as a bigraded component of

H̃?,?(X )⊗H?,?(k) H?,?(BgmZ/2Z)⊗H?,?(k) H?,?(BgmZ/2Z)

Theorem

Let x ∈ H̃2d,d (X ). Then, (P ◦ P)(x) is invariant under the exchange of the two
copies of H?,?(BgmZ/2Z) in the tensor product.
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Properties of the Steenrod operations

Adem relations

Theorem

Let x ∈ H̃2d,d (X ). Then, (P ◦ P)(x) is invariant under the exchange of the two
copies of H?,?(BgmZ/2Z) in the tensor product.

The sketch of proof is that P ◦ P can be identified with the construction P for
the action of G = Z/2Z× Z/2Z on {1, 2} × {1, 2} (n = 4). This action can be
extended to an action of the semidirect product G o Z/2Z where Z/2Z acts on
G and {1, 2} × {1, 2} by permutation of the two factors. Then, we can apply
the construction P to this action of G o Z/2Z which refines the class
(P ◦ P)(x) and look at the commutative diagram:

H̃?,?(X ∧ Bgm(G o Z/2)+)

interior automorphism∼Id

��

res // H̃?,?(X ∧ BgmG+)

switch of two factors Z/2Z

��
H̃?,?(X ∧ Bgm(G o Z/2)+)

res // H̃?,?(X ∧ BgmG+)
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Properties of the Steenrod operations

Adem relations

Corollary (Adem relations)

Assume a and b are integers satisfying 0 < a < 2b. If a is even and b odd,

Sqa Sqb =

b a
2c∑

j=0

(
b − 1− j

a− 2j

)
Sqa+b−j Sqj +

b a
2c∑

j=1
odd

(
b − 1− j

a− 2j

)
ρ Sqa+b−j−1 Sqj

If a and b are odd, Sqa Sqb =

b a
2c∑

j=0
odd

(
b − 1− j

a− 2j

)
Sqa+b−j Sqj

If a and b are even, Sqa Sqb =

b a
2c∑

j=0

τ j mod 2

(
b − 1− j

a− 2j

)
Sqa+b−j Sqj

If a is odd and b is even,

Sqa Sqb =

b a
2c∑

j=0
even

(
b − 1− j

a− 2j

)
Sqa+b−j Sqj +

b a
2c∑

j=1
odd

(
b − 1− j

a− 1− 2j

)
ρ Sqa+b−j−1 Sqj
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Properties of the Steenrod operations

Adem relations

Some remarks:

All monomials in the right member are of the form Sqi Sqj with i ≥ 2j .

The first equation implies the second by applying β.

Similarly, the third implies the fourth.

If ρ = 0 (i.e., −1 is a square in k, for instance if k = C), then we get
exactly the same formulas as in topology (through the identification

τ = 1) where they reduce to: Sqa Sqb =
∑b a

2c
j=0

(
b−1−j

a−2j

)
Sqa+b−j Sqj .

If ρ 6= 0, the formulas are a little bit more complicated.
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Properties of the Steenrod operations

Adem relations

Here are some details about the proof of the “corollary”. We have
P(P(x)) =

∑2d
j=0 P j (P(x))⊗ v 2d−j +

∑2d−1
j=0 B j (P(x))⊗ uv 2d−1−j and

P(x) =
∑d

i=0 P i (x)v d−i +
∑d−1

i=0 B i (x)uv d−1−i . Using previous formulas, we
get:

P(P(x)) =
2d∑

j=0

d∑
i=0

j∑
k=0

(
d − i

j − k

)
Pk P i (x)⊗ v d+j−k−i ⊗ v 2d−j

+
2d−1∑
j=0

d∑
i=0

j∑
k=0

(
d − i

j − k

)
Bk P i (x)⊗ v d+j−k−i ⊗ uv 2d−1−j

+
2d∑

j=0

d−1∑
i=0

j∑
k=0

(
d − 1− i

j − k

)
Pk B i (x)⊗ uv d+j−k−i−1 ⊗ v 2d−j

+ τ
2d∑

j=0

d−1∑
i=0

j−1∑
k=0

(
d − 1− i

j − 1− k

)
Bk B i (x)⊗ v d+j−k−i−1 ⊗ v 2d−j

+
2d−1∑
j=0

d−1∑
i=0

B j (B i (x)uv d−1−i )⊗ uv 2d−1−j
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Properties of the Steenrod operations

Adem relations

P(P(x)) =
2d∑

j=0

d∑
i=0

j∑
k=0

(
d − i

j − k

)
Pk P i (x)⊗ v d+j−k−i ⊗ v 2d−j

+
2d−1∑
j=0

d∑
i=0

j∑
k=0

(
d − i

j − k

)
Bk P i (x)⊗ v d+j−k−i ⊗ uv 2d−1−j

+
2d∑

j=0

d−1∑
i=0

j∑
k=0

(
d − 1− i

j − k

)
Pk B i (x)⊗ uv d+j−k−i−1 ⊗ v 2d−j

+ τ

2d∑
j=0

d−1∑
i=0

j−1∑
k=0

(
d − 1− i

j − 1− k

)
Bk B i (x)⊗ v d+j−k−i−1 ⊗ v 2d−j

+
2d−1∑
j=0

d−1∑
i=0

j∑
k=0

(
d − 1− i

j − k

)
Pk B i (x)⊗ v d+j−k−i ⊗ uv 2d−1−j

+
2d−1∑
j=0

d−1∑
i=0

j∑
k=0

(
d − 1− i

j − k

)
Bk B i (x)⊗ uv d+j−k−i−1 ⊗ uv 2d−1−j

+ ρ

2d−1∑
j=0

d−1∑
i=0

j−1∑
k=0

(
d − 1− i

j − 1− k

)
Bk B i (x)⊗ v d+j−k−i−1 ⊗ uv 2d−1−j



Steenrod operations

Properties of the Steenrod operations

Adem relations

Let p, q ≥ 0. The coefficient of uv p ⊗ v q in P(P(x)) is:

αp,q =
d−1∑
i=0

(
d − i − 1

p − (d − i − 1)

)
P3d−p−q−i−1B i (x)

It must be the same as the coefficient of v q ⊗ uv p:

βp,q =
d−1∑
i=0

(
d − i

q − (d − i)

)
B3d−p−q−i−1P i (x)

+
d−1∑
i=0

(
d − 1− i

q − (d − i)

)
P3d−p−q−i−1B i (x)

+ ρ

d−1∑
i=0

(
d − 1− i

q − (d − i)

)
B3d−p−q−i−2B i (x)
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Properties of the Steenrod operations

Adem relations

Assume a = 2a′ and b = 2b′ + 1 are such that 0 < a < 2b (i.e., a′ ≤ 2b′). We
would like a formula for

αp,q =
d−1∑
i=0

(
d − i − 1

p − (d − i − 1)

)
P3d−p−q−i−1B i (x)

We fix s ≥ 0 and set p = 2s − 1, d = 2s + b′, q = 2s+1 + 2b′ − a′.

Lemma

Then, αp,q = Pa′Bb′(x) = Sqa Sqb(x).

This expression Pa′Bb′ is the term corresponding to i = b′ (because
p = d − b′ − 1), we have to show the other coefficients are zero. For obvious
reasons, the coefficient

(
d−i−1

p−(d−i−1)

)
= 0 if i < b′. We shall show that for this

specific choice of p, this is even if i > b′ also.
Introducing δ = p − (d − i − 1), we have to show that

(
p−δ
δ

)
≡ 0 mod 2 if

0 < δ ≤ p
2

.
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Properties of the Steenrod operations

Adem relations

Lemma

Assume i , j ≥ 0, then
(

i+j
i

)
≡ 1 mod 2 if and only if there is no carry when

computing the sum i + j in the binary numeral system.

It follows from the computation of the 2-adic valuation of n!:

v2(n!) =
∑
k≥1

⌊ n

2k

⌋
We may also say that if i , j ≥ 0,

(
i
j

)
≡ 1 mod 2 if and only if there is no carry

when computing i − j in Z2 (includes the case j > i ...).

For instance, it follows from the lemma that
(

i
j

)
≡
(

2i
2j

)
mod 2.

Assume p = 2s − 1 and 0 < δ ≤ p
2

. To compute the parity of
(

p−δ
δ

)
, we want

to look at possible carry when doing the difference (p − δ)− δ.
But, all the digits of p are 1. Then, for any nonzero digit of δ, the
corresponding digit of p − δ is zero. This shows that a carry will occur, so that(

p−δ
δ

)
≡ 0 mod 2.
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Properties of the Steenrod operations

Adem relations

We come back to βp,q = αp,q.

βp,q =
d−1∑
i=0

(
d − i

q − (d − i)

)
B3d−p−q−i−1P i (x)

+
d−1∑
i=0

(
d − 1− i

q − (d − i)

)
P3d−p−q−i−1B i (x)

+ ρ

d−1∑
i=0

(
d − 1− i

q − (d − i)

)
B3d−p−q−i−2B i (x)

In the first sum, it suffices to take into account those i such that
q − (d − i) ≤ d − i , i.e, 2i ≤ 2d − q = a′ = a

2
, then:(

d − i

q − (d − i)

)
=

(
d − i

2d − 2i − q

)
≡

(
2d − 2i

4d − 4i − 2q

)
=

(
2s+1 + b − 1− 2i

a− 4i

)

Given a and b, for s big enough, this is ≡

(
b − 1− 2i

a− 4i

)
.
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Properties of the Steenrod operations

Adem relations

Using the correspondence j = 2i , we showed that

d−1∑
i=0

(
d − i

q − (d − i)

)
B3d−p−q−i−1P i (x) =

a
2∑

j=0
even

(
b − 1− j

a− 2j

)
Sqa+b−j Sqj (x)

Similarly, with j = 2i + 1,

d−1∑
i=0

(
d − 1− i

q − (d − i)

)
P3d−p−q−i−1B i (x) =

a
2∑

j=0
odd

(
b − 2− j

a− 2j

)
Sqa+b−j Sqj (x)

Then, one may believe that there is a mistake, but when j is odd, we have:(
b − 1− j

a− 2j

)
=

(
b − 2− j

a− 2j

)
+

(
b − 2− j

a− 2j − 1

)
≡

(
b − 2− j

a− 2j

)
mod 2

because b − 2− j is even and a− 2j − 1 is odd.
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Properties of the Steenrod operations

Adem relations

Finally, we get:

βp,q =

a
2∑

j=0

(
b − 1− j

a− 2j

)
Sqa+b−j Sqj (x) + ρ

a
2∑

j=0
odd

(
b − 1− j

a− 2j

)
Sqa+b−j−1 Sqj (x)

This equals αp,q = Sqa Sqb(x).

This shows the first expected relation for x ∈ H̃2d,d (X ) for d of the form
2s + b′ and s big enough, which is sufficient using suspensions.

This third relation is similar but uses a combination of two different equalities
of coefficients of P(P(x)).



Steenrod operations

The Steenrod algebra and its dual

Generators

Definition

Let I be a sequence of integers (ε0, r1, ε1, r2, . . . ) that is ultimately zero and
such that εi ∈ {0, 1}. We define:

P I = βε0 P s1βε1 P s2 . . .

where si =
∑

k≥i (εk + rk )2k−i (note that si ≥ 2si+1 + εi ). These elements are
called “admissible monomials”.

Definition (Steenrod algebra)

We denote H?,? = H?,?(k). This algebra acts by multiplication on motivic
cohomology: then any element in H?,? defines a stable cohomology operation.
We denote A?,? the algebra of stable cohomology operations generated by
H?,?, β and Pn (n ≥ 1).
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The Steenrod algebra and its dual

Generators

We consider A?,? as a (left-)module over H?,?.

Proposition

A?,? is a free H?,?-module with a basis consisting of the admissible monomials.

Relations obtained until now shows that the module generated by the
admissible monomials P I is an algebra. The proof that they constitute a basis
is similar to the topological situation:

“One may detect a nontrivial linear combination
∑

I aI P
I by looking at its

action on H?,?((BgmZ/2)n) for a big enough n.”
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The Steenrod algebra and its dual

Generators

Definition

We denote A?,? the H?,?-module dual to A?,?. The component Ap,q maps Ai,j

into H i−p,j−q.
This H?,?-module is free with a basis given by elements θ(I )? dual of the basis
of admissible monomials P I .

The fact that we are in bigraded situation (and the distribution of bidegrees)
implies that these modules behaves as if they were free of finite type.

For C ∈ A?,? and α ∈ A?,?, the element α(C) ∈ H?,? is denoted 〈α,C〉.
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The Steenrod algebra and its dual

Action on cohomology

Definition

Let X ∈ Sm/k. We define

λ : H?,?(X )→ A?,? ⊗H?,? H?,?(X )

the unique map (additive but not H?,?-linear) such that for any x ∈ H?,?(X ), if
λ(x) =

∑
i αi ⊗ yi , then, for any C ∈ A?,?, we have:

C(x) =
∑

i

〈αi ,C〉 yi

(Note that λ(x) =
∑

I θ(I )? ⊗ P I (x).)

Then, λ(x) ∈ A?,? ⊗H?,? H?,?(X ) reflects the action of A?,? on this class x .
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The Steenrod algebra and its dual

Action on cohomology

Definition

For k ≥ 0, we define ξk ∈ A2k+1−2,2k−1 (resp. τk ∈ A2k+1−1,2k−1) as those of the

θ(I )? that are dual to the admissible monomials Mk = P2k−1

. . .P2P1 ∈ A?,?

(resp. Mkβ).

Proposition

For “X = BgmZ/2Z”, we have:

λ(v) =
∞∑

k=0

ξk ⊗ v 2k

λ(u) = ξ0 ⊗ u +
∞∑

k=0

τk ⊗ v 2k

Here, X is not in Sm/k, but is a colimit of such. In this particular case, it
makes sense to define λ(u) or λ(v) as series.
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To show that λ(v) =
∑∞

k=0 ξk ⊗ v 2k

, we have to show that the only (admissible
or not!) monomials N involving the Pn and β such that N(v) 6= 0 are the

monomials Mk = P2k−1

. . .P2P1, k ≥ 0 and that Mk (v) = v 2k

.

We have P1(v) = v 2 ∈ H4,2(BgmZ/2), P2P1(v) = P2(v 2) = v 4, etc. A simple

induction shows that Mk (v) = v 2k

.
Assume that a monomial N = βN ′ or N = PnN ′ (n > 0) is such that
N(v) 6= 0. Then, N ′(v) 6= 0. By induction, we must have N ′ = Mk for some

k ≥ 0. We have, Mk (v) = v 2k

. Then, βMk (v) = 0. For degree reasons,
PnMk (v) = 0 if n > 2k . If 0 < n < 2k , we have

N(v) = Pn(v 2k

) =

(
2k

n

)
v 2k +n = 0

Then, we must have n = 2k , and N = Mk+1.
For u, N can be the empty word, which corresponds to the identity P0 = M0.
Otherwise, the last letter must be β, and the previous argumentation shows
that N = Mkβ.



Steenrod operations

The Steenrod algebra and its dual
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Let us have a look at these formulas again:

Proposition

λ(v) =
∞∑

k=0

ξk ⊗ v 2k

λ(u) = ξ0 ⊗ u +
∞∑

k=0

τk ⊗ v 2k
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Definition

We define a comultiplication:

Ψ? : A?,? → A?,? ⊗H?,? A?,?

(both copies of A?,? are equipped with the left-module structure.) in such a
way that for any C ∈ A?,?, Ψ?(C) =

∑
i Di ⊗ Ei is the unique element such

that for all motivic cohomology classes x and y :

C(xy) =
∑

i

Di (x)Ei (y)

Ψ? is co-associative, cocommutative (this reflects associativity and
commutativity of the multiplication of cohomology classes) and H?,?-linear.

Uniqueness of Ψ?(C) is deduced from the fact that “A?,? acts faithfully on
H?,?(BgmZ/2Zhigh)”.
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For the existence, we use the following lemmas:

Lemma

Ψ?β = β ⊗ Id + Id⊗β

Ψ?Pn =
∑

i+j=n

P i ⊗ P j + τ
∑

i+j=n−1

B i ⊗ B j

Lemma

If Ψ?(C) =
∑

i Ai ⊗ Bi and Ψ?(D) =
∑

j Ej ⊗ Fj , then

Ψ?(CD) =
∑

i,j

Ai Ej ⊗ Bi Fj
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Lemma

In A?,? ' A?,? ⊗H?,? H?,?, we have:

λ(1) = ξ0

This also means that 〈ξ0,C〉 = C(1) for all C ∈ H?,?. This follows from the
fact that 1 is killed by all monomials excepted Id.

Lemma

ξ0 : A?,? → H?,? is the coünit of Ψ?, i.e., the composition:

A?,?
Ψ? // A?,? ⊗H?,? A?,?

Id⊗ξ0 // A?,? ⊗H?,? H?,? ' // A?,?

is the identity.
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We shall dualisize the comultiplication Ψ? on A?,?.

We define a H?,?-bilinear pairing 〈α⊗ β,C ⊗ D〉 = 〈α,C〉 · 〈β,D〉 on
(A?,? ⊗H?,? A?,?)× (A?,? ⊗H?,? A?,?).

Definition

We define a product law on A?,?. It is characterized by the relation:

〈αβ,C〉 = 〈α⊗ β,Ψ?C〉

for α, β ∈ A?,? and C ∈ A?,?.

Proposition

A?,? is a commutative H?,?-algebra. Its unit is ξ0.
For any X ∈ Sm/k, the map

λ : H?,?(X )→ A?,? ⊗H?,? H?,?(X )

is a morphism of H?,?-algebras.
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Proposition

Let C ∈ A?,?. Then: C(v 2j

) =
∑

i≥0

〈
ξ2j

i ,C
〉

v 2i+j

It is equivalent to saying that:

λ(v 2j

) =
∑
i≥0

ξ2j

i ⊗ v 2i+j

We already know the case j = 0:

λ(v) =
∑
i≥0

ξi ⊗ v 2i

Then, we use λ(v 2j

) = λ(v)2j

.
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Theorem

The ring A?,? is the commutative H?,?-algebra generated by elements
τk ∈ A2k+1−1,2k−1 (k ≥ 0) and ξk ∈ A2k+1−2,2k−1 (k ≥ 1) subjected to the
following relations for all k ≥ 0:

τ 2
k = (τ + ρτ0)ξk+1 + ρτk+1

The relations follows from the analysis of the coefficient of v 2k+1

in:

λ(u)2 = λ(u2) = λ(τ)λ(v) + λ(ρ)λ(u)

and the identities λ(τ) = τ + ρτ0 and λ(ρ) = ρ. Remember that:

λ(v) =
∞∑

k=0

ξk ⊗ v 2k

λ(u) = ξ0 ⊗ u +
∞∑

k=0

τk ⊗ v 2k
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Algebra structure on A?,?

To prove the theorem, we have to show that the elements

ω(I ) =
∏
k≥0

τ
εk
k

∏
k≥1

ξ
rk
k ∈ A?,?

for sequences I = (ε0, r1, ε1, . . . ) as above constitute a basis of A?,? as a
H?,?-module.

Lemma

We use the lexicographic order (starting from the right) on such sequences I .
Then

〈
ω(I ),P I

〉
= 1 and for I < J,

〈
ω(J),P I

〉
= 0.

Then, matrix
〈
ω(I ),PJ

〉
of the coefficients of the ω(I ) in the basis on the

θ(J)? is upper triangular with 1 in the diagonal.

When proving that the ω(I ) generate A?,?, one uses the fact that for a fixed
bidegree (p, q), there exists only finitely many J such that there exists
x 6= 0 ∈ H i,j (we use the bound i ≤ j) such that the bidegree of xθ(J)? is
(p, q).
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Denote J = (ε̃0, r̃1, . . . ). We do an induction on the total degree of ω(J) to
show that

〈
ω(J),P I

〉
= 0 if I < J.

Assume that the last nonzero coefficient of J is r̃k 6= 0. Introduce J ′ such that
ω(J) = ω(J ′)ξk : 〈

ω(J),P I
〉

=
〈
ω(J ′)⊗ ξk ,Ψ

?(P I )
〉

Expand Ψ?(P I ) as a sum of C ⊗ D where D is a monomial involving β or P i :〈
ω(J ′)⊗ ξk ,C ⊗ D

〉
=
〈
ω(J ′),C

〉
〈ξk ,D〉

If this is nonzero, we must have D = Mk = P2k−1

. . .P2P1.
As I < J, I is of the form I = (ε0, r1, ε1, . . . , εk−1, rk , 0, . . . ).
We know how to expand Ψ?P I , where P I = βε0 P s1βε1 . . .P sk . Basically,

Ψ?P sk−j = P sk−j−2j

⊗ P2j

+ other terms.
We see there shall be a term C ⊗Mk only if rk ≥ 1. Then, C = P I ′ with
I ′ = (ε0, r1, ε1, . . . , εk−1, rk − 1, 0, . . . ), then:〈

ω(J),P I
〉

=
〈
ω(J ′),P I ′

〉
= 0 by induction

Similar arguments for the case when the last coefficient of J is a ε̃? and for〈
ω(I ),P I

〉
.
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A?,? has a right-module structure over H?,?: it is H?,?-bimodule-H?,?.

A?,? is H?,?-bimodule-H?,?.

Lemma

If α ∈ A?,? and x ∈ H?,?, α.x = λ(x)α.

For all C ∈ A?,?, we have to check:

〈α.x ,C〉 = 〈α,Cx〉 = 〈λ(x)α,C〉

Assume Ψ?C =
∑

i Di ⊗ Ei . Then, Cx =
∑

i Di (x) · Ei ∈ A?,?.

〈λ(x)α,C〉 =
∑

i

〈λ(x)⊗ α,Di ⊗ Ei 〉 =
∑

i

Di (x) 〈α,Ei 〉

=

〈
α,
∑

i

Di (x) · Ei

〉
= 〈α,Cx〉

Note that the two structures of modules on A?,? are induced by the ring
morphisms H?,? → A?,?: x 7−→ xξ0 and x 7−→ λ(x).
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We introduce A?,? ⊗r,H?,?,l A?,? as a left-H?,?-module. This comes from the
H?,?-bimodule structure on the first A?,? and the left-module structure on the
second.

Lemma

Tensor products P I ⊗ PJ of admissible monomials give a basis of
A?,? ⊗r,H?,?,l A?,? as a left-H?,?-module.
Similarly, A?,? ⊗r,H?,?,l A?,? is a free H?,?-module.

Lemma

There is a H?,?-bilinear (on the left) perfect pairing between A?,? ⊗r,H?,?,l A?,?
and A?,? ⊗r,H?,?,l A?,?:

〈α⊗ β,C ⊗ D〉 = 〈α,C 〈β,D〉〉 = 〈λ (〈β,D〉) · α,C〉

It is well defined and the basis dual to the P I ⊗ PJ is the basis of the
θ(I )? ⊗ θ(J)?.
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Definition

We define a comultiplication Ψ? : A?,? → A?,? ⊗r,H?,?,l A?,? so that for all
α ∈ A?,? and C ⊗ D ∈ A?,? ⊗r,H?,?,l A?,?, we have :

〈Ψ?α,C ⊗ D〉 = 〈α,CD〉

One can check that Ψ? is a ring morphism and that it is H?,?-linear.

Proposition

Ψ?(ξk ) =
k∑

i=0

ξ2i

k−i ⊗ ξi Ψ?(τk ) =
k∑

i=0

ξ2i

k−i ⊗ τi + τk ⊗ 1
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Proposition

Ψ?(ξk ) =
k∑

i=0

ξ2i

k−i ⊗ ξi Ψ?(τk ) =
k∑

i=0

ξ2i

k−i ⊗ τi + τk ⊗ 1

For the first identity, we have to show 〈ξk ,CD〉 =
∑k

i=0

〈
ξ2i

k−i ⊗ ξi ,C ⊗ D
〉

.

One may assume that 〈ξi ,D〉 ∈ {0, 1}. Then, we have to show:

〈ξk ,CD〉 =
k∑

i=0

〈
ξ2i

k−i ,C
〉
〈ξi ,D〉

Using formulas for F (v) and F (v 2?

), we compute

CD(v) = C(
∑
i≥0

〈ξi ,D〉 v 2i

) =
∑

i

∑
j

〈
ξ2i

j ,C
〉
〈ξi ,D〉 v 2i+j

=
∑

k

〈ξk ,CD〉 v 2k

The other identity follows from the computation of CD(u).
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Operations Qi and Margolis homology

Definition

We let I ⊂ A?,? be the ideal generated by the ξi for i ≥ 1. We showed that
Ψ?(I ) ⊂ A?,? ⊗ I + I ⊗ A?,?. Then, we have an induced comultiplication:

Ψ? : A?,?/I → A?,?/I ⊗d,H?,?,g A?,?/I

We let B?,? ⊂ A?,? the orthogonal I⊥ of I ⊂ A?,?. If follows that B?,? is a
subring of A?,? (that contains H?,?).

If C ,D ∈ B?,? and α ∈ I , 〈α,CD〉 = 〈Ψ?(α),C ⊗ D〉 = 0, and CD ∈ B?,?.

Definition

For i ≥ 0, we let Qi ∈ A2i+1−1,2i−1 be the element dual to τi from the basis of
A?,? consisting of monomials ω(I ). We have Qi ∈ B?,?.

Qi is also the dual of the class of τi ∈ A?,?/I in the basis consisting of
monomials involving the τj (of degree at most 1 in each variable).
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Operations Qi and Margolis homology

Definition

More generally, for any finite subset I of N, we define QI ∈ B?,? as the dual of
τI =

∏
i∈I τi in the basis of such monomials.

Proposition

If I and J are two finite subsets of N, then QI QJ is:

QItJ is I and J are disjoint.

0 otherwise.

We know that Ψ?τi = 1⊗ τi + τi ⊗ 1, then Ψ?τK =
∑

I ′tJ′=K

τI ′ ⊗ τJ′ .

Then, we use:
QI QJ =

∑
K

〈
Ψ?τK ,QI ⊗ QJ

〉
QK
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Corollary

Qi Qi = 0

Qi Qj = Qj Qi .

QI =
∏

i∈I Qi .

Definition (Margolis homology)

For any X ∈ H•(k), we denote M̃H
p,q

i (X ) the homology at H̃p,q(X ) of the
complex:

. . .
Qi−→ H̃p−2i+1+1,q−2i+1+1(X )

Qi−→ H̃p,q(X )
Qi−→ H̃p+2i+1−1,q+2i−1(X )

Qi−→ . . .

Proposition

Q0 = β.

For degree reasons, Q0 = xβ for x ∈ Z/2Z. We know Q0 6= 0. Then, x = 1.
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For n ≥ 0, we introduce its digits in base 2: n =
∑
i≥0

εi 2
i . We set σ(n) =

∑
i εi .

Then, I set (personal notation) Q(n) =
∏

i Qεi
i . For instance, Qi = Q(2i ).

(Similarly, τ(n) =
∏

i τ
εi
i .)

Proposition

For any i ≥ 0, Ψ?(Qi ) ∈ B?,? ⊗H?,? B?,?. More precisely,

Ψ?(Qi ) =
∑

n+n′=2i

ρσ(n)+σ(n′)−1Q(n)⊗ Q(n′)

= 1⊗ Qi + Qi ⊗ 1 +
∑

n+n′=2i

n,n′≥1

ρi−v2(n)Q(n)⊗ Q(n′)

Lemma

For all n, n′ ≥ 0, we have τ(n)τ(n′) = ρsτ(n + n′) in A?,?/I where s is the
number of carries when computing n + n′ in base 2 (this number is
σ(n) + σ(n′)− σ(n + n′)).

Follows from τ 2
i = ρτi+1.
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For the proof of the proposition, we introduce:

Definition (Milnor basis)

We identify sequences I = (ε0, r1, ε1, . . . ) as before and tuples (ε•, r•). To
these are attached elements ω(I ) = τε•• ξ

r•
• which constitute a basis of A?,? as a

H?,?-module. We denote ρ(ε•, r•) ∈ A?,? the elements of the dual basis.
Note that ρ(ε•, 0) = Q{i,εi 6=0} =

∏
i Qεi

i ∈ B?,?. We also define P r• = ρ(0, r•).

One can write Ψ?(Qi ) =
∑

(ε•,r•)

(ε′•,r
′
•)

c(ε•,r•),(ε′•,r
′
•)ρ(ε•, r•)⊗ ρ(ε′•, r

′
•) with

c(ε•,r•),(ε•,r•) =
〈
τε•• ξ

r•
• ⊗ τ

ε′•
• ξ

r′•
• ,Ψ

?(Qi )
〉

=
〈
τε•• τ

ε′•
• ξ

r•+r′•
• ,Qi

〉
Qi is orthogonal to the ideal generated by ξi for i ≥ 0. Then, the nonzero
coefficients may appear only for r• = r ′• = 0. Denote n =

∑
i εi 2

i and
n′ =

∑
i ε
′
i 2

i , we have:〈
τ(n)τ(n′),Qi

〉
= ρσ(n)+σ(n′)−1

〈
τ(n + n′),Q(2i )

〉
= 0 unless n + n′ = 2i
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We showed that:

Ψ?(Qi ) =
∑

n+n′=2i

ρσ(n)+σ(n′)−1Q(n)⊗ Q(n′)

which implies:

Ψ?(Qi ) = 1⊗ Qi + Qi ⊗ 1 +
∑

n+n′=2i

n,n′≥1

ρi−v2(n)Q(n)⊗ Q(n′)

It gives formulas for the computation of Qi (xy) in terms of images of x and y
by compositions of some Qj (for j < i).

Proposition

ρ(ε•, r•) = Q{i,εi 6=0}P
r•

(where P r• = ρ(0, r•))

This means ρ(ε•, r•) = ρ(ε•, 0)ρ(0, r•).
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Proposition

For any n ≥ 1, we denote qn ∈ A?,? the element in the Milnor basis ρ(−,−)
that is dual to ξn ∈ A?,?. Then, Qn = [β, qn] = βqn + qnβ.

We have to show qnβ = Qn + βqn. Qn and βqn belong to the Milnor basis
(they are the duals of τn and τ0ξn). We consider pairings

〈ω(I ), qnβ〉 = 〈Ψ?(ω(I )), qn ⊗ β〉

Let J ⊂ A?,? the ideal generated by τk , k ≥ 1 and ξk , k ≥ 1. (Then
A?,?/J = H?,?[τ0]/(τ 2

0 ).) As 〈J, β〉 = 0, it suffices to examine Ψ?(ω(I )) in the
quotient A?,? ⊗r,H?,?,l A?,?/J. There we have:

Ψ?(ξk ) = ξk ⊗ 1 Ψ?(τk ) = ξk ⊗ τ0 + τk ⊗ 1

Then, the only ω(I ) such that Ψ?(ω(I )) contains a term ξn ⊗ τ0 are τ0ξn and τn

and then the coefficient is 1.
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Proposition

For any n ≥ 0, Pn = P(n,0,0,... ).

This means that in the Milnor basis, Pn is dual to ξn
1 .

We already know that 〈ω(J),Pn〉 = 0 if (n, 0, . . . ) < J. It remains only the
cases J = (k, 0, . . . ) with k < n. But then,〈

ξk
1 ,P

n
〉
∈ H2(n−k),n−k = 0 unless k = n
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We want to understand to some extend the action of the Steenrod algebra on
Thom classes of vector bundles.
Some remarks:

An operation P r• (dual in the Milnor basis of some monomial involving
the ξi ) is in A2n,n for some n.

The operation Qi is in Ap,q for p > 2q.

ρ(ε•, r•) = Q{i,εi 6=0}P
r•

Proposition

The operations Qi and more generally the operations ρ(ε•, r•) for ε• 6= 0

vanish on H2?,?(X ) = CH?(X )/2 and on H̃2?,?(ThX V ) (with V a vector
bundle of rank r on X ∈ Sm/k).

In particular, such operations kill the Thom class tV ∈ H̃2r,r (ThX V ) of any
vector bundle.

Now, we focus on the action of operations P r• on Thom classes tV and we
shall start with the case of line bundles.
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Proposition

Let X ∈ Sm/k. If L is a line bundle on X . Then, λ(c1(L)) =
∑

i≥0 ξi ⊗ c1(L)2i

.

We already did this computation in the universal case of v = c1(O(1)) on P∞.

Corollary

Let X ∈ Sm/k. If L is a line bundle on X . We let tL ∈ H̃2,1(ThX L) be the
Thom class. Then,

λ(tL) =
∑
i≥0

ξi ⊗
(

c1(L)2i−1tL

)
∈ A?,? ⊗H?,? H̃?,?(ThX L)

We can do the computation in P(L⊕ OX ) where tL = ξ + c1(L) with
ξ = c1(O(1)). It suffices to show:

ξ2i

+ c1(L)2i

= c1(L)2i−1(ξ + c1(L))

i.e., ξ2i

= c1(L)2i−1ξ, which follows from the identity ξ2 + c1(L)ξ = 0
(definition of Chern classes of the bundle L⊕ O).
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Proposition

Let r• = (r1, r2, . . . ) a sequence of integers as above. We have a monomial ξr•
• .

Let d ≥ 0. We denote P ∈ F2[x1, . . . , xd ] the symmetric polynomial

P =
∑

(j1,...,jd )∈Nd

ξj1
...ξjd

=ξ
r•
•

d∏
i=1

x2ji−1
i

We denote R ∈ F2[c1, . . . , cd ] the unique polynomial such that if we substitute
to ci the ith elementary symmetric function of the xi we get P. Then, for any
vector bundle V of rank d on X ∈ Sm/k, we have:

P r•(tV ) = R(c1(V ), . . . , cd (V )) · tV

(Note that the formula will stabilise for big enough d , for example
d ≥

∑
i (2i − 1)ri .) As we did before, using the splitting principle, one may

assume that V = L1 ⊕ · · · ⊕ Ld for line bundles Li .
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V = L1 ⊕ · · · ⊕ Ld . We set xi = c1(Li ). We have to show:

P r•(tV ) =

 ∑
(j1,...,jd )∈Nd

ξj1
...ξjd

=ξ
r•
•

d∏
i=1

x2ji−1
i

 · tV

From the computation of λ(tLi ), we get:

λ(tV ) = (
d∏

i=1

∞∑
j=0

ξj ⊗ x2j−1
i ) · tV

The class P r•(tV ) is the coefficient of the monomial ξr•
• in this expansion,

which gives the expected result.
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Here is general formula again: P =
∑

(j1,...,jd )∈Nd

ξj1
...ξjd

=ξ
r•
•

∏d
i=1 x2ji−1

i .

Corollary

Pn(tV ) = Cn(V ) · tV where Cn(V ) = Cn(c1(V ), . . . , cd (V )) is the polynomial in

the symmetric functions corresponding to
∑

I⊂{1,...,d}
#I =n

∏
i∈I

xi .

Corollary

Remember qn is the operation dual to ξn. Then, qn(tV ) = s2n−1(V ) · tV where
sj : K0(X )→ ⊕i H

2i,i (X ) is the additive natural transformation such that
sj (c1(L)) = c1(L)j for line bundles L.

Here, we have P =
∑d

i=1 x2j−1
i .


