Steenrod operations

Joël Riou

Universit´e Paris-Sud 11

June 14 & 16, 2011

Slides available at http://www.math.u-psud.fr/~riou/

Goals:

■ Construct stable operations

$$
P^i\colon H^{p,q}(\mathcal{X})\to H^{p+2i,q+i}(\mathcal{X})
$$

for all spaces $\mathcal{X} \in \mathcal{H}(k)$ where $H^{p,q}$ denotes motivic cohomology with **Z/2Z** coefficients.

- Study the motivic Steenrod algebra (generated over $H^{*,*}(k)$ by these P^k and the Bockstein) and its dual.
- Construct operations $Q_i\colon H^{p,q}\to H^{p+2^{i+1}-1,q+2^i-1}$ such that $Q_i\circ Q_i=0$ $(\Rightarrow$ definition of Margolis homology).

KORK ERKER ADE YOUR

Understand the action of the Steenrod algebra on Thom classes.

We fix a (perfect) base field k . We assume its characteristic is not two.

Definition

For
$$
p \ge q \ge 0
$$
, the motivic sphere $S^{p,q}$ is $S^{p-q} \wedge \mathbf{G}_m^{\wedge q} \in \mathcal{H}_\bullet(k)$.

We have a tautological class in $\hat{H}^{p,q}(S^{p,q})$ that induces isomorphisms:

$$
\widetilde{H}^{a,b}(\mathcal{X})\overset{\sim}{\to}\widetilde{H}^{a+p,b+q}(S^{p,q}\wedge\mathcal{X})
$$

Definition

A stable cohomological operation of bidegree (a, b) is family of natural transformations $H^{i,j}(\mathcal{X}) \to H^{i+s,j+b}(\mathcal{X})$ for $X \in \mathcal{H}_\bullet(k)$ such that the action on $\widetilde{H}^{i-p,j-q}$ is determined by the action on $\widetilde{H}^{i,j}$ through the identifications

$$
\widetilde{H}^{i-p,j-q}(\mathcal{X})=\widetilde{H}^{i,j}(S^{p,q}\wedge\mathcal{X})
$$

Lemma

One can (re)construct a unique stable operation for the datum of the action on $\widetilde{H}^{2n,n}$ for $n \geq 0$ provided they are compatible with the identification $\widetilde{H}^{2n,n}(\mathcal{X}) \overset{\sim}{\rightarrow} \widetilde{H}^{2(n+1),n+1}(S^{2,1} \wedge \mathcal{X})$. (Note that $S^{2,1} \simeq \mathsf{P}^1$.)

Prelude

(Let Λ be $Z/2Z$.) For all $(p,q)\in\mathbf{Z}^2$, we have motivic Eilenberg-Mac Lane spaces $K(\Lambda(q), p) \in \mathcal{H}_{\bullet}(k)$, i.e.,

$$
\widetilde{H}^p(\mathcal{X}, \Lambda(q)) = \widetilde{H}^{p,q}(\mathcal{X}) \simeq \text{Hom}_{\mathcal{H}_{\bullet}(k)}(\mathcal{X}, K(\Lambda(q), p))
$$

Yoneda's lemma \Rightarrow a natural transformation $\widetilde{H}^{i,j}(\mathcal{X}) \rightarrow \widetilde{H}^{i+a,j+b}(\mathcal{X})$ for $X \in \mathcal{H}_{\bullet}(k)$ is the same as a morphism $K(\Lambda(j), i) \to K(\Lambda(j + b), i + a)$ in $\mathcal{H}_{\bullet}(k)$.

Then, a stable cohomology operation is the same a family of maps $f_n: K(\Lambda(n), 2n) \to K(\Lambda(n + b), 2n + a)$ in $\mathcal{H}_\bullet(k)$ such that the following diagram commute:

$$
K(\Lambda(n), 2n) \xrightarrow{f_n} K(\Lambda(n+j), 2n+i)
$$
\n
$$
\downarrow \sim \qquad \qquad \downarrow \sim
$$
\n
$$
\Omega_{\mathbf{P}^1} K(\Lambda(n+1), 2n+2) \xrightarrow{\Omega_{\mathbf{P}^1}(f_{n+1})} \Omega_{\mathbf{P}^1} K(\Lambda(n+j+1), 2n+2+i)
$$

This is essentially the way we shall define the operations P^i .

KORK ERKER ADE YOUR

Main source:

Vladimir Voevodsky. Reduced power operations in motivic cohomology. Publications Mathématiques de l'IHÉS 98 (2003), pages 1–57.

1 [Construction of Steenrod operations](#page-6-0)

2 [Properties of the Steenrod operations](#page-26-0)

3 [The Steenrod algebra and its dual](#page-51-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

4 [Applications](#page-70-0)

Construction of Steenrod operations

Eilenberg-Mac Lane spaces

Definition

Let $X \to S$ be a smooth morphism in Sm/k . $c_{equi}(X/S, 0)$ is the free A-module generated by integral closed subschemes Z in X such that $Z \rightarrow S$ is a finite morphism and a surjection over a connected component of S. (There is a fonctoriality associated to a base change $S'\to S.$)

Definition

Let $X \in \mathsf{Sm}/k$. $\Lambda_{tr}(X)$ is the sheaf of groups over Sm/k (for the Nisnevich topology) defined by $\Lambda_{tr}(X)(U) = c_{equi}(U \times_k X/U, 0)$. For any $i > 0$, K_i is the underlying sheaf of sets of the sheaf of abelian groups $\Lambda_{{\rm tr}}(\mathbf{A}^i)/\Lambda_{{\rm tr}}(\mathbf{A}^i-\{0\})$. This is the Eilenberg-Mac Lane space $K(\Lambda(i), 2i) \in \mathcal{H}_{\bullet}(k).$

KORK ERKER ADE YOUR

 $-$ Thom classes

Definition

Let E be a vector bundle of rank r on $X \in \mathcal{S}m/k$. We denote Th_X $E = E/E - \{0\} \simeq P(E \oplus \mathcal{O}_X)/P(E)$ the Thom space of X.

Proposition

 $\widetilde{H}^{\star,\star}(\text{Th}_X E)$ is a free $H^{\star,\star}(X)$ -module of rank 1 generated by the Thom class $t_{\mathsf{E}} = \xi^r + c_1(E) \xi^{r-1} + \cdots + c_r(E) \in \mathsf{ker}(H^{\star,\star}(\mathsf{P}(E \oplus \mathscr{O}_X)) \to H^{\star,\star}(\mathsf{P}(E))) \simeq$ $\widetilde{H}^{\star,\star}(\textsf{Th}_X\, E)$ where $\xi = c_1(\mathscr{O}(1)) \in H^{2,1}(\mathbf{P}(E \oplus \mathscr{O}_X)).$

Definition

The Euler class of E in $H^{2r,r}(X)$ is the image of t_E by the restriction map $\widetilde{H}^{*,*}(\text{Th}_X E) \to H^{*,*}(X)$ induced by the zero section $X \to \text{Th}_X E$. This class is the highest Chern class $c_r(E)$.

Lemma

If $E \to F$ is an admissible monomorphism of vector bundles on X, the image of t_F by the restriction map $\widetilde{H}^{*,*}(\text{Th}_X F) \to \widetilde{H}^{*,*}(\text{Th}_X F)$ induced by the obvious morphism $\text{Th}_X E \to \text{Th}_X F$ is $t_E \cdot c_r(F/E)$ where r is the rank of F/E .

 \Box Thom classes

Lemma

If $E \rightarrow F$ is an admissible monomorphism of vector bundles on X, the image of t_F by the restriction map $\widetilde{H}^{*,*}(\text{Th}_X F) \to \widetilde{H}^{*,*}(\text{Th}_X F)$ induced by the obvious morphism $\text{Th}_X E \to \text{Th}_X F$ is $t_E \cdot c_r(F/E)$ where r is the rank of F/E .

Proof.

Let e be the rank of E. We denote $\xi = c_1(\mathscr{O}(1))$ on various projective bundles. Because of the relations $c_i(E \oplus \mathscr{O}_X) = c_i(E)$, we have the following identity in $H^{*,*}(\mathbf{P}(E \oplus \mathscr{O}_X))$:

$$
\xi^{e+1} + c_1(E)\xi^e + \cdots + c_e(E)\xi = 0 \quad i.e., \quad t_E\xi = 0.
$$

Multiplicativity of the Chern polynomial for E and F/E gives:

$$
t_F=(\xi^e+c_1(E)\xi^{e-1}+\cdots+c_e(E))\cdot(\xi^r+c_1(F/E)\xi+\cdots+c_r(F/E))
$$

This is in $H^{\star,\star}({\mathsf P}(F\oplus\mathscr O_X)).$ Restricted to ${\mathsf P}(E\oplus\mathscr O_X),$ we obtain :

$$
t_E\cdot ((...)\cdot \xi + c_r(F/E)) = t_E\cdot c_r(F/E)
$$

イロト 不優 トイ選 トイ選 トー 選

 000

Construction of Steenrod operations $-$ Thom classes

> The last proposition says that Th $_X\,E$ and $S^{2r,r}\wedge X_+$ have the same cohomology. More precisely, they have the same motive. The following corollary is even more precise as it states something relative to X :

Corollary

Let $X \in \mathsf{Sm}/k$. (We denote a: $X \to \mathsf{Spec} k$ the projection.) Let E be a vector bundle over X of rank r. We define the sheaf of sets $KM(Th_X E)$ induced by the sheaf of abelian groups over Sm/X associated to the presheaf

 $U \longmapsto c_{equiv}(U \times_X E/U, 0)/c_{equiv}(U \times_X (E - \{0\}), 0))$

Then, the Thom class t_F induces an isomorphism in $\mathcal{H}_\bullet(X)$:

 $KM(\text{Th}_X E) \overset{\sim}{\rightarrow} KM(\text{Th}_X \mathbf{A}^r) = a^k K_r$.

("KM" should be thought as a composition of two adjoint functors. M is the "motive" functor from spaces to motives, and K is its right adjoint, that forgets transfers and abelian groups structures on sheaves.) Roughly, the only difficulty here is how t_F induces a map. Then, it is quite obvious that it is an isomorphism.

Construction of the total operation

Data:

G is a finite group;

- r: $G \rightarrow \mathfrak{S}_n$ is a morphism, i.e., essentially a (left-)action of G on a finite set X with n elements :
- $U \in \mathcal{S}m/k$ is equipped with a free (left-)action of G.

To this, we shall attach a cohomological operation for all $i > 0$:

$$
P\colon \widetilde{H}^{2i,i}(\mathcal{X})\to \widetilde{H}^{2in,in}(\mathcal{X}\wedge (G\backslash U)_+)\ .
$$

Then, we will apply it to the case U is the open subset of a big enough (faithful) linear representation $G \rightarrow GL(V)$ on which G acts freely, so that $G \setminus U$ is an approximation of the geometric classifying space $\mathbf{B}_{gm}G$. When we understand the motive of $B_{gm}G$, we will be able to define the expected Steenrod operations.

KORK ERKER ADE YOUR

Construction of Steenrod operations

Construction of the total operation

We linearise the action of G on $X = \{1, \ldots, n\}$ as a k-linear action of G on $V = k^n \simeq \bigoplus_{x \in X} k \cdot e_x$ with $g.e_x = e_{g.x}$. This defines an action of G on the affine space ${\sf A}^n$.

Proposition

The quotient scheme $G \backslash (U \times \mathbf{A}^n)$ of $U \times \mathbf{A}^n$ by the product action of G is a vector bundle ξ of rank n over $G \backslash U$.

Assume for simplicity that $U =$ Spec A is affine. We have a right-action of G on A (denoted $g^{\star}f$ for $f\in A$). We equip $M=A\otimes_k V$ with a *semilinear* left-action $g.(a \otimes v) = (g^{-1 \star} a) \otimes (g.v).$ The subgroup $M_0 = M^G$ of elements fixed by \emph{G} is a module over the algebra A^G of functions over U fixed under the action of G . By definition, $G \backslash U = \mathsf{Spec}\, A^G$. The theory of faithfully flat descent implies that the canonical map of A-modules

$$
M_0\otimes_{A^G}A\to M
$$

is an isomorphism. As the \mathcal{A}^{G} -algebra $\mathcal A$ is faithfully flat, properties of M_0 over A^G reflects those on M over A . This implies that M_0 is a projective module of rank n over A^G . Then, $G\backslash (U\times \mathbf{A}^n)=\mathsf{Spec}\, \mathbf{S}^\star_{A^G}M_0^\vee$, so that ξ is a vector bundle (which is is self-dual).

Construction of the total operation

Proposition

For all $i, j \geq 0$, we have a canonical pairing in the category of pointed sheaves over Sm/k:

$$
K_i \wedge K_j \to K_{i+j}
$$

We know that $\mathcal{K}_n(Y) = c_{\mathsf{equi}}(Y \times \mathbf{A}^n/Y,0)/c_{\mathsf{equi}}(Y \times (\mathbf{A}^n-\{0\})/Y,0).$ The pairing is induced by the obvious product map:

$$
\mathsf{c}_{\mathsf{equi}}(\mathsf{Y}\times\mathbf{A}^i/\mathsf{Y},0)\times \mathsf{c}_{\mathsf{equi}}(\mathsf{Y}\times\mathbf{A}^j/\mathsf{Y},0)\rightarrow \mathsf{c}_{\mathsf{equi}}(\mathsf{Y}\times\mathbf{A}^{i+j}/\mathsf{Y},0)
$$

given by the external product of cycles followed by the base change by the diagonal $Y \rightarrow Y \times Y$.

Corollary

For any $i > 0$, we have a "raising to the power n" map:

$$
K_i \to K_{in}
$$

that is \mathfrak{S}_n -equivariant for the trivial action on K_i and the action on $K_{in} \simeq \mathcal{K} M(\mathsf{Th}_k \ V^{\oplus i})$ where $V = k^n$ is the permutation representation as before. Composing this morphism $K_i \rightarrow K_{in}$ with the "constant function morphism" $K_{in} \rightarrow$ **Hom** (U, K_{in}) , we get a morphism:

 $K_i \rightarrow$ Hom (U, K_{in})

The \mathfrak{S}_n -equivariance property stated before implies that this factors through the subsheaf of $\text{Hom}_G(U, K_{in})$ of G-equivariant morphisms. More precisely, the image of an element on $\mathcal{K}_i(Y)$ induced by an element of $\mathsf{c}_{\mathsf{equi}}(Y\times \mathsf{A}^i/Y,0)$ shall be an element in the group on the right:

$$
\mathsf{c}_{\mathsf{equi}}(\mathsf{Y} \times \mathsf{G} \backslash (\mathsf{U} \times \mathsf{A}^\mathsf{in})/\mathsf{Y} \times \mathsf{G} \backslash \mathsf{U}, 0) \stackrel{\sim}{\to} \mathsf{c}_{\mathsf{equi}}(\mathsf{Y} \times \mathsf{U} \times \mathsf{A}^\mathsf{in}/\mathsf{Y} \times \mathsf{U}, 0)^{\mathsf{G}}
$$

This isomorphism comes from the étale descent of cycles. Then on the left, we recognise $c_{\text{equi}}(Y \times \xi^{\oplus i}/Y \times G \backslash U,0).$ If a: $G \backslash U \to \operatorname{Spec} k$ is the projection, we have defined the first morphism in the following composition in $\mathcal{H}_{\bullet}(k)$:

$$
K_i \to a_* K M (Th_{G \setminus U} \xi^{\oplus i}) \to Ra_* K M (Th_{G \setminus U} \xi^{\oplus i}) \simeq Ra_* a^* K_{in} \simeq \mathbf{R} Hom(G \setminus U, K_{in})
$$

We have defined the total operation:

$$
\mathsf{K}_i \rightarrow \mathbf{R}\operatorname{\mathsf{Hom}}\nolimits(G\!\setminus\! U,\mathsf{K}_{\mathsf{in}}) \quad \stackrel{\operatorname{id} \textrm{ est}}{\longleftrightarrow} \quad \mathsf{P}\colon \mathsf{K}_i \land (G\!\setminus\! U)_+ \rightarrow \mathsf{K}_{\mathsf{in}}
$$

KORK ERKER ADE YOUR

Construction of the total operation

This morphism $P: K_i \wedge (G \backslash U)_+ \to K_{in}$ in $\mathcal{H}_\bullet(k)$ induces a cohomology operation:

$$
P\colon \widetilde{H}^{2i,i}(\mathcal{X})\to \widetilde{H}^{2in,in}(\mathcal{X}\wedge (G\backslash U)_+)
$$

for all $\mathcal{X} \in \mathcal{H}_{\bullet}(k)$.

Lemma

The composition

$$
K_i \to K_i \wedge (G \backslash U)_+ \stackrel{P}{\longrightarrow} K_{in}
$$

where the first map is induced by a rational point of U is the "raising to the power n" morphism.

(To prove this lemma, one may for instance replace U by the orbit of the given rational point, in which case it is obvious.)

KORK ERKER ADE YOUR

It means that if $x \in \widetilde{H}^{2i,i}(\mathcal{X})$, then $u^*P(x) = x^n \in \widetilde{H}^{2in,in}(\mathcal{X})$ where u is the map $\mathcal{X} \to \mathcal{X} \wedge (G \backslash U)_+$ induced by a rational point of U.

Construction of Steenrod operations

Construction of the total operation

Proposition

Let $\mathscr X$ and $\mathscr Y$ be two objects of $\mathcal H_\bullet(k)$, $x\in \dot H^{2i,i}(\mathscr X)$ and $y\in \dot H^{2j,j}(\mathscr Y)$. Then, $P(x \cup y) = \Delta^{*}(P(x) \cup P(y))$

in $H^{2(i+j)n,(i+j)n}(\mathscr{X}\wedge \mathscr{Y}\wedge (G\backslash U)_+)$ where

 $\Delta\colon{\mathscr X}\wedge{\mathscr Y}\wedge (\mathsf{G}\backslash\mathsf{U})_+\to{\mathscr X}\wedge{\mathscr Y}\wedge (\mathsf{G}\backslash\mathsf{U})^2_+$

KORK ERKER ADAM ADA

is induced by the diagonal of $G \backslash U$.

It follows from a very direct computation.

The Bockstein β is the cohomology operation that naturally fits into the following long exact sequences coming from the short exact sequence $0 \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow \mathbb{Z}/4\mathbb{Z} \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 0$:

$$
\cdots \to \widetilde{H}^{\star,\star}(\mathcal{X},\mathbf{Z}/2) \to \widetilde{H}^{\star,\star}(\mathcal{X},\mathbf{Z}/4) \to \widetilde{H}^{\star,\star}(\mathcal{X},\mathbf{Z}/2) \stackrel{\beta}{\longrightarrow} \widetilde{H}^{\star+1,\star}(\mathcal{X},\mathbf{Z}/2) \to \ldots
$$

In particular, $\beta x = 0$ if and only if x lifts as a cohomology class with coefficients **Z**/4**Z**. (Also, $\beta \circ \beta = 0$ and $\beta(xy) = x\beta(y) + (\beta x)y$.)

Theorem

If $G = \mathbf{Z}/2\mathbf{Z}$ and $n = 2$, for any cohomology class $x \in \widetilde{H}^{2i,j}(\mathcal{X})$, we have:

 $\beta(P(x))=0$

A rough idea of the proof is that there is a way to lift P as:

$$
\widetilde{P} \colon K_{i,\mathbf{Z}/2} \to \mathbf{R}\operatorname{Hom}(G\backslash U, K_{i,\mathbf{Z}/4})
$$

the main remark is that in some sense, somewhere, $(x+2y)^2 \equiv x^2 + 2(xy+yx)$ mod 4 and $xy + yx$ can be interpreted as a transfer of a certain cycle xy for the an action of $Z/2$ by transposition.

 \Box The motive of $B_{\text{gm}}\mu\rho$

The geometric classifying space of a linear algebraic group G is the colimit ${\bf B}_{\rm gm}G=$ colim $G\backslash U_n$ where U_n is the open subset of $V^{\oplus n}$ on which G acts freely and V is some faithful linear representation of G. For $G = \mu_\ell$, we take $V = \mathsf{A}^1$ on which $\mu_\ell \subset \mathsf{G}_\mathsf{m}$ acts by multiplication. Then, $U_n = A^n - \{0\}.$

Proposition

 ${\sf B}_{\mathsf{gm}}\mu_\ell$ is the complement of the zero section of the line bundle $\mathscr{O}(-\ell)$ on P^∞ .

We have a projection $\mu_\ell\backslash({\bf A}^n-\{0\})\to {\bf G}_m\backslash({\bf A}^n-\{0\})={\bf P}^{n-1}.$ Because of the short exact sequence

$$
0\to \mu_\ell\to \mathbf{G}_m\xrightarrow{x\longmapsto x^\ell}\mathbf{G}_m\to 0\ ,
$$

we see that this projection is a ${{\mathsf G}_{\mathsf m}}/{\mu_\ell} \stackrel{\sim}{\to} {{\mathsf G}_{\mathsf m}}$ -torsor, which is obtained from the tautological G_{m} -torsor $\mathsf{A}^n - \{0\} \to \mathsf{P}^{n-1}$ (punctured universal line $\mathscr{O}(-1)$) by covariant functoriality associated to the morphism $\mathsf{G}_\mathsf{m}\stackrel{\mathsf{x}\cdot\longrightarrow \mathsf{x}^\ell}{\longrightarrow} \mathsf{G}_\mathsf{m}.$ Then, we get the punctured $\mathcal{O}(-1)^{\otimes \ell} = \mathcal{O}(-\ell)$.

 $L_{\text{The motive of } B_{\text{gm}} \mu \rho}$

Proposition

Let $X \in \mathsf{Sm}/k$. Let L be a line bundle on X. We let $L - \{0\}$ be the punctured bundle, i.e., the complement of the zero section $s: X \to L$. Then, we have a distinguished triangle in $DM^{eff}_{-}(k)$:

 $M(L - \{0\}) \rightarrow M(X) \rightarrow M(X)(1)[2] \rightarrow$

where the map $M(X) \to M(X)(1)[2]$ is the multiplication by $c_1(L)$.

Proof.

It comes from the distinguished triangle $M(L - \{0\}) \to M(L) \to \widetilde{M}(Th_X L) \longrightarrow$ and the isomorphism $\widetilde{M}(\text{Th}_X L) \simeq M(X)(1)[2]$ induced by the Thom class. Then, the composition $M(X) \stackrel{\sim}{\rightarrow} M(L) \rightarrow \widetilde{M}(T h_X L)$ is identified with the multiplication with the Euler class of L, i.e., $c_1(L)$.

KORKARYKERKE POLO

 \Box The motive of $B_{\text{gm}}\mu\rho$

Proposition

Assume now that the line bundle L on X is such that $c_1(L)=0\in H^{2,1}(X)$ (for a certain coefficient ring Λ), then there exists a class $u\in H^{1,1}(L-\{0\},\Lambda)$ (well defined modulo the image of $H^{1,1}(X,\Lambda)$), such that the projection $L - \{0\} \rightarrow X$ and the classes 1 and u induce an isomorphism:

 $M(L - \{0\}) \stackrel{\sim}{\rightarrow} M(X) \oplus M(X)(1)[1]$

The distinguished triangle reduces to a split short exact sequence in $\mathit{DM}^{\mathit{eff}}_-(k)$:

$$
0\to M(X)(1)[1]\stackrel{\delta}\longrightarrow M(L-\{0\})\to M(X)\to 0
$$

Then, applying the cohomological functor $H^{1,1}$, we obtain a class $u \in H^{1,1}(L-\{0\})$ (unique modulo $H^{1,1}(X)$) such that $\delta^{\star}(u) = 1 \in H^{0,0}(X)$. This u defines a map $M(L - \{0\}) \rightarrow M(X)(1)[1]$ which is a retraction of δ because δ is compatible with certain $M(X)$ -comodule structures (this is related to saying that δ^\star is $H^{\star,\star}(X)$ -linear, at least up to signs).

 \Box The motive of $B_{\text{gm}}\mu\rho$

Corollary

For $\Lambda = \mathsf{Z}/\ell\mathsf{Z}$, we have a class $u \in H^{1,1}(\mu_\ell\backslash (\mathsf{A}^n-\{0\}))$ such that the projection to P^{n-1} and the classes 1 and u induce an isomorphism in $DM^{eff}_{-}(k; \mathbf{Z}/\ell \mathbf{Z})$:

$$
M(\mu_\ell\backslash({\bf A}^n-\{0\})) \stackrel{\sim}{\to} M({\bf P}^{n-1})\oplus M({\bf P}^{n-1})(1)[1]
$$

(Note that $c_1(\mathscr{O}(-\ell) = \ell c_1(\mathscr{O}(-1))$ which is zero modulo ℓ .) The class u from the previous proposition is made unique here by the condition that for one (or any) rational point x of $U_n = \mathbf{A}^n - \{0\}$, the restriction $x_{|[u]}$ is zero. This follows from the isomorphism $k^{\times}/k^{\times \ell} \simeq H^{1,1}(k) \stackrel{\sim}{\to} H^{1,1}(\mathbf{P}^{n-1}(k)).$

Proposition

For any $n > 0$, we have an isomorphism

$$
M(\mathbf{P}^{n-1}) \overset{\sim}{\rightarrow} \bigoplus_{i=0}^{n-1} \Lambda(i)[2i]
$$

that is induced by the classes $1, v, \ldots, v^{n-1}$ with $v = c_1(\mathscr{O}(1)) \in H^{2,1}(\mathsf{P}^{n-1}).$

KORKARYKERKE POLO

 $L_{\text{The motive of } B_{\text{g}m} \mu \rho}$

Corollary

The obvious maps $M(\mathbf{P}^{n-1}) \to M(\mathbf{P}^n)$ and $\mathcal{M}(\mu_\ell\backslash(\mathbf{A}^n-\{0\}))\to \mathcal{M}(\mu_\ell\backslash(\mathbf{A}^{n+1}-\{0\}))$ are split monomorphisms.

This is so as to ensure there is no technical difficulties when taking colimits:

Corollary

The classes $1, v, v^2, \ldots$ induce an isomorphism:

$$
M(\mathbf{P}^{\infty}) \stackrel{\sim}{\rightarrow} \oplus_{i \geq 0} \Lambda(i)[2i]
$$

and the classes $1,$ u and the projection ${\sf B}_{gm}\mu_\ell \to {\sf P}^\infty = {\sf B}_{gm}{\sf G}_{m}$ induce an isomorphism:

$$
M(\mathsf{B}_{gm}\mu_\ell) \stackrel{\sim}{\to} M(\mathsf{P}^\infty) \oplus M(\mathsf{P}^\infty)(1)[1]
$$

It follows that if we want to understand the cohomology algebra of $\mathbf{B}_{gm}\mu_{\ell}$, we have to compute $u^2 \in H^{2,2}(\mathsf{B}_{\mathsf{gm}}\mu_\ell)$. Obviously, if $\ell \neq 2$, we have $u^2 = 0$. From now, we assume $\ell = 2$.

KORKAR KERKER E VOOR

Construction of Steenrod operations

 $L_{\text{The motive of } B_{\text{gm}} \mu \rho}$

We define $\tau \in H^{0,1}(k) \simeq \mu_2(k)$ the element corresponding to $-1 \in k$ and $\rho \in H^{1,1}(k) \simeq k^{\times}/k^{\times 2}$ the class of $-1.$ Note that $\beta(\tau) = \rho.$

Proposition

In
$$
H^{2,2}(\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})
$$
, we have $u^2 = \tau v + \rho u$.

Proof.

For degree reasons, it follows from the decomposition of the motive of $\mathbf{B}_{\text{gm}}\mathbf{Z}/2\mathbf{Z}$, that u^2 writes uniquely as $u^2 = xv + yu + z$ with $x \in H^{0,1}(k)$, $y\in H^{1,1}(k)$ and $z\in H^{2,2}(k).$ The elements $u,$ v and u^2 vanish when restricted to a suitable base-point of $B_{\text{cm}}Z/2Z$. This shows that $z = 0$. The restriction to the cohomology of $\{\pm 1\} \backslash U_1 = \{\pm 1\} \backslash {\mathsf{G}}_{\mathsf{m}} \simeq {\mathsf{Spec}}\, k[t, t^{-1}]$ corresponds to removing the term xv. We use the fact that $H^{2,2}(\operatorname{Spec} k[t,t^{-1})) \hookrightarrow H^{2,2}(\operatorname{Spec} k(t,t^{-1})) = \mathcal{K}_2^M(k(t,t^{-1})).$ The image of u in $\mathcal{K}^{\mathcal{M}}_{1}(\mathcal{k}(t,t^{-1})$ can be identified with $\{t\}$. Then, the result follows from ${t, t} = {t, t} - {-t, t} = {-1, t} = {-1} \cdot {t}.$ Thus, $y = \rho$. (If $k \subset \mathbb{C}$), the coefficient $x \in \mu_2(k)$ is either 0 or τ . One can see the difference by taking complex points and using the structure of the cohomology algebra modulo 2 of the group $\mathsf{Z}/2\mathsf{Z}$, in which $u^2\neq 0.$

 $L_{\text{The motive of } B_{\text{g}m} \mu \rho}$

Proposition

In
$$
H^{2,1}(\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})
$$
, we have $\beta u = v$.

Proof.

For degree reasons, we have either $\beta u = 0$ or $\beta u = v$.

$$
H^{1,1}(L - \{0\}, \mathbf{Z}/4\mathbf{Z}) \xrightarrow{\delta^*} H^{0,0}(X, \mathbf{Z}/4\mathbf{Z}) \xrightarrow{\cdot c_1(L)} H^{2,1}(X, \mathbf{Z}/4\mathbf{Z})
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
H^{1,1}(L - \{0\}, \mathbf{Z}/2\mathbf{Z}) \xrightarrow{\delta^*} H^{0,0}(X, \mathbf{Z}/2\mathbf{Z}) \xrightarrow{\qquad \qquad} 0
$$

Assuming $\beta u=0$, there is a lifting \tilde{u} of u in $H^{1,1}(L-\{0\},\mathbf{Z}/4)$ (we take $X={\sf P}^{n-1}$ for $n\geq 2$ and $L=\mathscr{O}(-2)).$ Then $\delta^\star \tilde u=\pm 1,$ then the image of $\tilde u$ in $H^{2,1}(\mathsf{P}^{n-1},\mathsf{Z}/4\mathsf{Z})$ is $\pm c_1(\mathscr{O}(-2))=\pm 2c_1(\mathscr{O}(1))\neq 0$ (modulo 4). We get a contradiction with the exactness of the first line. Then $\beta u = v$. ┍

Corollary

For any $X \in \mathcal{H}_{\bullet}(k)$, we have canonical isomorphisms of bigraded groups:

$$
\widetilde{H}^{*,*}(\mathcal{X}\wedge(\mathsf{B}_{gm}\mathsf{Z}/2\mathsf{Z})_{+})\quad \simeq\quad \lim_{n}\widetilde{H}^{*,*}(\mathcal{X}\wedge(\{\pm 1\}\setminus(\mathsf{A}^{n}-\{0\})))_{+})\\ \simeq\quad \widetilde{H}^{*,*}(\mathcal{X})[u,v]/(u^{2}-\tau v-\rho u)
$$

Let $d \ge 0$. The construction P (for $i = d$ and $n = 2$) for the action of $\mathbb{Z}/2\mathbb{Z}$ on $\mathbf{A}^n - \{0\}$ for all $n \geq 1$ defines then a morphism for all $\mathcal{X} \in \mathcal{H}_\bullet(k)$:

$$
P\colon \widetilde{H}^{2d,d}(\mathcal{X})\to \widetilde{H}^{4d,2d}(\mathcal{X}\wedge (\mathbf{B}_{\mathrm{gm}}\mathbf{Z}/2\mathbf{Z})_+\big)\ .
$$

Definition

We define cohomological operation P^i : $\widetilde{H}^{2d,d} \to \widetilde{H}^{2d+2i,d+i}$ (for $i \leq d$) and $B^i\colon \widetilde{H}^{2d,d}\to \widetilde{H}^{2d+2i+1,d+i}$ (for $i\leq d-1$) by the following relation for all $x \in \widetilde{H}^{2d, d}(\mathcal{X})$:

$$
P(x) = \sum_{i \le d} P^{i}(x)v^{d-i} + \sum_{i \le d-1} B^{i}(x)uv^{d-1-i}
$$

KORK (FRAGE KERK E) YOUR

(We set
$$
P^i = 0
$$
 for $i > d$ and $B^i = 0$ for $i \ge d$.)

Proposition

\n- $$
B^i = \beta P^i
$$
;
\n- $\beta B^i = 0$.
\n

Proof.

Let $x \in \widetilde{H}^{2d, d}(\mathcal{X})$. We know that $\beta P(x) = 0$; $v = \beta(u)$, then $\beta(v^k) = 0$ and $\beta(uv^k) = v^{k+1}$:

$$
\beta P(x) = \beta \left(\sum_{i} P^{i}(x) v^{d-i} + \sum_{i} B^{i}(x) u v^{d-1-i} \right)
$$

=
$$
\sum_{i} (\beta P^{i}(x) + B^{i}(x)) v^{d-i} + \sum_{i} \beta B^{i}(x) u v^{d-1-i}
$$

 \Box

Properties of the Steenrod operations Vanishing of Sq^{i} for $i < 0$

> We also define Sq $^{2i}=P^i$ and Sq $^{2i+1}=B^i$. The operation Sq j shifts the first degree by j and the second degree by $\lfloor \frac{j}{2} \rfloor$.

Theorem

There is no nontrivial cohomology operation

$$
\widetilde{H}^{2d,d}\to \widetilde{H}^{p,q}
$$

for $q < d$ and for $q = d$, there are no nontrivial operation for $p < 2d$. The operations $\hat{H}^{2d,d} \to \hat{H}^{2d,d}$ are given by the multiplication by an element in $Z/2Z$.

.

KORK ERKER ADAM ADA

Corollary

 $Sq^{j} = 0$ for $j < 0$.

Corollary

$$
For x \in \widetilde{H}^{2d,d}(\mathcal{X}), P(x) = \sum_{i=0}^{d} P^{i}(x) v^{d-i} + \sum_{i=0}^{d-1} B^{i}(x) u v^{d-1-i}
$$

Proposition

We let $t \in H^{2,1}(S^{2,1})$ $(S^{2,1} \simeq \mathbf{A}^1/(\mathbf{A}^1 - \{0\}))$ be the tautological class. Then, for all $i \geq 0$ and $x \in \hat{H}^{2d, d}(\mathcal{X}), P^{i}(x \cup t) = P^{i}(x) \cup t$ and $B^{i}(x \cup t) = B^{i}(x) \cup t$.

Lemma

In
$$
\widetilde{H}^{4,2}(\mathbf{A}^1/(\mathbf{A}^1 - \{0\}) \wedge (\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})_+)
$$
, we have $P(t) = t \cup v$.

This lemma implies the proposition using the formulas $P(x \cup t) = P(x) \cup P(t) = P(x) \cup t \cup v$ and identifying the different terms. To prove it, we shall use:

Lemma

We let δ : $({\bf B}_{gm} {\bf Z}/2{\bf Z})_+ \wedge ({\bf A}^1/{\bf A}^1-\{0\}) \to {\sf Th}_{{\bf B}_{gm} {\bf Z}/2{\bf Z}}\,\xi$ be the map on Thom spaces induces by the obvious inclusion $\mathcal{O} \to \xi$ of vector bundles on $\mathbf{B}_{\epsilon m} \mathbf{Z}/2\mathbf{Z}$. Then, $P(t) = \delta^* t_{\xi}$.

KORKARYKERKE POLO

This is a very simple computation.

Lemma

In
$$
\widetilde{H}^{4,2}(\mathbf{A}^1/(\mathbf{A}^1 - \{0\}) \wedge (\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})_+)
$$
, we have $P(t) = t \cup v$.

We use:

Lemma

If $E \rightarrow F$ is an admissible monomorphism of vector bundles on X, the image of t_F by the restriction map $\widetilde{H}^{*,*}(\text{Th}_X F) \to \widetilde{H}^{*,*}(\text{Th}_X F)$ induced by the obvious morphism $\text{Th}_X E \to \text{Th}_X F$ is $t_E \cdot c_r(F/E)$ where r is the rank of F/E .

When we apply it to $\delta\colon ({\sf B}_{\sf gm}{\sf Z}/2{\sf Z})_+\wedge ({\sf A}^1/{\sf A}^1-\{0\}) \to \mathsf{Th}_{{\sf B}_{\sf gm}{\sf Z}/2{\sf Z}}\,\xi,$ we get:

$$
P(t) = \delta^* t_{\xi} = t \cup c_1(\xi/\mathscr{O})
$$

Lemma

The bundle ξ/\mathcal{O} identifies to the inverse image of $\mathcal{O}(\pm 1)$ by the projection $B_{gm}Z/2Z \rightarrow P^{\infty}$.

KORK ERKER ADAM ADA

It follows that $c_1(\xi/\mathscr{O}) = v$.

Lemma

The bundle ξ/\mathcal{O} identifies to the inverse image of $\mathcal{O}(\pm 1)$ by the projection $B_{gm}Z/2Z \rightarrow P^{\infty}$.

For any k-linear representation V of $Z/2Z$, one may attach a "vector bundle on ${\sf B}_{\sf gm}{\sf Z}/2{\sf Z}$ ". On $\{\pm1\}\backslash({\sf A}^n-\{0\})$, it is $\{\pm1\}\backslash({\sf A}^n-\{0\}\times V)$ as we did before in the case of a permutation representation. We have a short exact sequence of representations of Z/2Z:

$$
0 \to k \stackrel{+}{\longrightarrow} (k^2, \tau) \stackrel{-}{\longrightarrow} \chi \to 0.
$$

where τ inverts the two factors and χ is the nontrivial (selfdual) character of Z/2Z. To this exact sequence is attached the exact sequence of vector bundles:

$$
0\to \mathscr{O}\to \xi\to \xi/\mathscr{O}\to 0\;.
$$

Then ξ/\mathcal{O} is attached to the character χ . In terms of the \mathbf{G}_{m} -torsors associated to ξ/\mathscr{O} and the inverse image of $\mathscr{O}(-1)$, the result follows from the isomorphism $\{\pm 1\} \backslash (({\bf A}^n - \{{\bf 0}\}) \times {\bf G}_m) \stackrel{\sim}{\rightarrow} (\{\pm 1\} \backslash ({\bf A}^n - \{{\bf 0}\}) \times_{{\bf P}^{n-1}} ({\bf A}^n - \{{\bf 0}\})$ that maps the class of $[v, \lambda]$ to $([v], \lambda v)$.

We proved this:

Proposition

We let $t \in H^{2,1}(S^{2,1})$ $(S^{2,1} \simeq \mathbf{A}^1/(\mathbf{A}^1 - \{0\}))$ be the tautological class. Then, for all $i \geq 0$ and $x \in \hat{H}^{2d,d}(\mathcal{X}), P^i(x \cup t) = P^i(x) \cup t$ and $B^i(x \cup t) = B^i(x) \cup t$.

This shows that the definition we gave of the operations P^i and B^i on $H^{2d,d}$ are compatible for different d . We have thus defined stable cohomology operations for all $i > 0$:

$$
P^i \colon \widetilde{H}^{p,q}(\mathcal{X}) \to \widetilde{H}^{p+2i,q+i}(\mathcal{X})
$$

$$
B^i \colon \widetilde{H}^{p,q}(\mathcal{X}) \to \widetilde{H}^{p+2i+1,q+i}(\mathcal{X})
$$

for all $(p, q) \in \mathbb{Z}$ and $\mathcal{X} \in \mathcal{H}_{\bullet}(\mathsf{k})$. It follows that these operations are additive. (We also know that $B^i = \beta P^i$, i.e., $\mathsf{Sq}^{2j+1} = \beta \mathsf{Sq}^{2j}$.)

KORKARA KERKER SAGA

Proposition

$$
P^0 = Sq^0
$$
 is the identity and $B^0 = Sq^1 = \beta$.

Proposition

$$
P^0 = Sq^0
$$
 is the identity and $B^0 = Sq^1 = \beta$.

We know that on $\widetilde{H}^{2d,d}$, P^0 is the multiplication by some $c_d \in \mathbf{Z}/2\mathbf{Z}$. The fact that P^0 is a stable operation show that $\mathit{c_d} = \mathit{c_0}.$ For obvious reasons, $\mathit{c_0} = 1$ (using the formula $P(t) = t \cup v$, one may also observe that $c_1 = 1$). It follows that P^0 is the identity. Then, $B^0=\beta P^0=\beta.$

Proposition

B

If
$$
x \in \widetilde{H}^{*,*}(\mathscr{X})
$$
 and $y \in \widetilde{H}^{*,*}(\mathscr{Y})$, we have:

$$
P^{k}(x \cup y) = \sum_{i+j=k} P^{i}(x) \cup P^{j}(y) + \tau \sum_{i+j=k-1} B^{i}(x) \cup B^{j}(y)
$$

$$
k(x \cup y) = \sum_{i+j=k} P^{i}(x) \cup B^{j}(y) + \sum_{i+j=k} B^{i}(x) \cup P^{j}(y) + \rho \sum_{i+j=k-1} B^{i}(x) \cup B^{j}(y)
$$

KORK ERKER ADAM ADA

Properties of the Steenrod operations

Various properties

Proposition

$$
If x \in \widetilde{H}^{*,*}(\mathcal{X}) \text{ and } y \in \widetilde{H}^{*,*}(\mathcal{Y}), \text{ we have:}
$$
\n
$$
P^{k}(x \cup y) = \sum_{i+j=k} P^{i}(x) \cup P^{j}(y) + \tau \sum_{i+j=k-1} B^{i}(x) \cup B^{j}(y)
$$
\n
$$
B^{k}(x \cup y) = \sum_{i+j=k} P^{i}(x) \cup B^{j}(y) + \sum_{i+j=k} B^{i}(x) \cup P^{j}(y) + \rho \sum_{i+j=k-1} B^{i}(x) \cup B^{j}(y)
$$

One may assume $x \in \widetilde{H}^{2d,d}(\mathcal{X})$ and $y \in \widetilde{H}^{2d',d'}(\mathcal{Y})$. Then:

$$
P(x) \cdot P(y) = \left(\sum_{i=0}^d P^i(x) v^{d-i} + \sum_{i=0}^{d-1} B^i(x) u^{d-i-1} \right) \cdot \left(\sum_{j=0}^{d'} P^j(y) v^{d'-j} + \sum_{j=0}^{d-1} B^j(x) u^{d-j-1} \right)
$$

Then, one uses the computation $u^2 = \tau v + \rho u$ and the identification with:

$$
P(xy) = \sum_{k=0}^{d+d'} P^{k}(xy) v^{d+d'-k} + \sum_{k=0}^{d+d'-1} B^{k}(xy) u v^{d+d'-1-k}
$$

U Various properties

Proposition

If
$$
x \in \widetilde{H}^{2d,d}(\mathcal{X})
$$
, then $P^d(x) = x^2$.

We use the following lemma for $i=d,~n=2,~U=\textbf{A}^?-\{0\}$ and $G=\{\pm 1\}$:

Lemma

The composition

$$
\mathsf{K}_i \rightarrow \mathsf{K}_i \land (\mathsf{G} \backslash \mathsf{U})_+ \stackrel{P}{\longrightarrow} \mathsf{K}_{in}
$$

where the first map is induced by a rational point of U is the "raising to the power n" morphism.

The restriction map $\widetilde{H}^{*,*}(\mathcal{X} \wedge (\mathsf{B}_{\mathsf{gm}}\mathsf{Z}/2)_+) \to \widetilde{H}^{*,*}(\mathcal{X})$ sends $P(x)$ to x^2 . Moreover, the images of u and v vanish, to that $P(x)$ is also sent to $P^{d}(x)$.

KORKAR KERKER E VOOR

U Various properties

Corollary

If
$$
x \in \widetilde{H}^{p,q}(\mathcal{X})
$$
 with $d \ge q$ and $d > p - q$, then $P^d(x) = 0$.

Proof.

Using suspensions with S^1 or \mathbf{G}_m , one may assume $x \in \widetilde{H}^{2d-1,d}(\mathcal{X})$. Let $\tilde{x} = s \wedge x \in \tilde{H}^{2d,d}(S^1 \wedge \mathcal{X})$ where $s \in H^{1,0}(S^1)$ is the tautological class. We have to show that $\tilde{x}^2=0.$ This class is induced by a morphism in $\mathcal{H}_\bullet(k)$ that factors through the diagonal:

$$
S^1\wedge\mathcal{X}\to S^2\wedge\mathcal{X}^{\wedge 2}
$$

which is the ∧-product of two morphisms, but the first one $\mathcal{S}^1\to\mathcal{S}^2$ is the zero map because the Riemann sphere is simply connected.

A O A G A 4 O A C A G A G A 4 O A C A

Properties of the Steenrod operations

Action on Chern classes

Proposition

Let $X \in S$ m/k. Let L be a line bundle on X. Let $c_1(L) \in H^{2,1}(X)$ be its first Chern class. Then,

$$
P(c_1(L))=c_1(L)^2+c_1(L)v
$$

In other words,

$$
\hskip-3cm P^{0}(c_{1}(L))=c_{1}(L)\quad P^{1}(c_{1}(L))=c_{1}(L)^{2}\quad B^{0}(c_{1}(L))=0
$$

This follows from the preceding results for P^0 , P^1 and B^0 .

Corollary

Let $X \in \mathsf{Sm}/k$. The sub-F₂-algebra of $H^{2*,*}(X) = CH^{*}(X)/2$ generated by Chern classes of vector bundles on X is stable under the operations P^n and killed by the operations $Bⁿ$.

KORK ERKER ADAM ADA
Properties of the Steenrod operations

LAction on Chern classes

Corollary

Let $X \in \mathsf{Sm}/k$. The sub- F_2 -algebra of $H^{2\star,\star}(X) = CH^{\star}(X)/2$ generated by Chern classes of vector bundles on X is stable under the operations P^n and killed by the operations $Bⁿ$.

It is true for 1 and first Chern classes of line bundles. Consider the vector bundle $V = L_1 \oplus \cdots \oplus L_d$ on $(\mathsf{P}^k)^d$ (for k big enough) where L_i is the inverse image of $\mathscr{O}(1)$ by the i th projection on $\mathsf{P}^k.$ Define $x_i = c_1(L_i)$. $c_k(V)$ identifies to a symmetric polynomial involving the d variables x_1, \ldots, x_d . Using the previous formulas, $P^n(c_k(V))$ may also be identified with a symmetric polynomial involving x_1, \ldots, x_d . Then, there exists a polynomial $f \in \mathbf{F}_2[c_1, \ldots, c_d]$ such that

$$
P^n(c_k(V))=f(c_1(V),\ldots,c_d(V))
$$

Standard arguments shows that if this is true for this specific $\,$ on $({\bf P}^k)^d$ (which is true by definition), then it is true for all bundles of rank d on schemes in Sm/k .

We use the identification $\widetilde{H}^{\star,\star}(\mathcal{X}\wedge(\mathsf{B}_{\mathsf{gm}}\mathsf{Z}/2\mathsf{Z})_+) \simeq \widetilde{H}^{\star,\star}(\mathcal{X})\otimes_{H^{\star,\star}(k)} H^{\star,\star}(\mathsf{B}_{\mathsf{gm}}\mathsf{Z}/2\mathsf{Z})$:

Corollary

 $P(v) = v^2 \otimes 1 + v \otimes v$ and $P(u) = u \otimes v + v \otimes v$.

(The second formula does not make sense as it is. If $x \in H^{p,q}(\mathcal{X})$ with $p \leq 2q$, one may identify x to a class $\tilde{x} \in \tilde{H}^{2q,q}(S^{2q-p} \wedge \mathcal{X})$. Then, $P(\tilde{x})$ makes sense, and we define $P(x) \in \widetilde{H}^{*,*}(\mathcal{X} \wedge (\mathbf{B}_{\text{sym}}\mathbf{Z}/2\mathbf{Z})_+)$ from $P(\tilde{x})$ by using the suspension isomorphism in the opposite direction.)

The computation of $P(v)$ follows from the formula for $P(c_1(L))$ and the identity $v = c_1(\mathcal{O}(1))$. We may write $P(u)$ as:

$$
P(u) = P^{0}(u) \otimes v + P^{1}(u) \otimes 1 + \beta u \otimes u = u \otimes v + v \otimes u
$$

KORKARYKERKE POLO

because $P^1(u)=0$.

 \Box Action on u and v

Proposition

For all i, $k\geq 0$, the following relations hold in $H^{*,*}({\bf P}^\infty)\subset H^{*,*}({\bf B}_{gm}{\bf Z}/2{\bf Z})$:

$$
P^i(v^k) = {k \choose i} v^{k+i}, \quad B^i(v^k) = 0
$$

for all i, $k > 0$. In $H^{*,*}(\mathbf{B}_{\epsilon m}\mathbf{Z}/2\mathbf{Z})$, we have:

$$
P^{i}(uv^{k}) = {k \choose i}uv^{k+i}, \quad B^{i}(uv^{k}) = {k \choose i}v^{k+i+1}
$$

Proof.

The first series of identities follows from:

$$
P(v^k) = P(v)^k = (v^2 \otimes v + v \otimes v)^k = \sum_{i=0}^k {k \choose i} v^{k+i} \otimes v^{k-i} = \sum_{i=0}^k P^i(v^k) v^{k-i}
$$

The other series come from the multiplication formulas.

KORKARYKERKE POLO

We defined $P\colon \widetilde{H}^{2d, d}(\mathcal X)\to \widetilde{H}^{4d, 2d}(\mathcal X\wedge \mathbf{B}_{\mathrm{gm}}\mathbf{Z}/2\mathbf{Z}_+)$. One may iterate it so as to obtain a map:

$$
P \circ P \colon \widetilde{H}^{2d,d} \to \widetilde{H}^{8d,4d}(\mathcal{X} \wedge (\mathbf{B}_{\text{gm}}\mathbf{Z}/2\mathbf{Z} \times \mathbf{B}_{\text{gm}}\mathbf{Z}/2\mathbf{Z})_{+})
$$

One may identify the target group as a bigraded component of

$$
\widetilde{H}^{*,*}(\mathcal{X})\otimes_{H^{*,*}(k)} H^{*,*}(\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})\otimes_{H^{*,*}(k)} H^{*,*}(\mathbf{B}_{gm}\mathbf{Z}/2\mathbf{Z})
$$

Theorem

Let $x \in \widetilde{H}^{2d,d}(\mathcal{X})$. Then, $(P \circ P)(x)$ is invariant under the exchange of the two copies of $H^{*,*}(\mathbf{B}_{\epsilon m}\mathbf{Z}/2\mathbf{Z})$ in the tensor product.

Adem relations

Theorem

Let $x \in H^{2d,d}(X)$. Then, $(P \circ P)(x)$ is invariant under the exchange of the two copies of $H^{*,*}(\mathbf{B}_{\epsilon m}\mathbf{Z}/2\mathbf{Z})$ in the tensor product.

The sketch of proof is that $P \circ P$ can be identified with the construction P for the action of $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ on $\{1,2\} \times \{1,2\}$ $(n = 4)$. This action can be extended to an action of the semidirect product $G \rtimes \mathbb{Z}/2\mathbb{Z}$ where $\mathbb{Z}/2\mathbb{Z}$ acts on G and $\{1, 2\} \times \{1, 2\}$ by permutation of the two factors. Then, we can apply the construction P to this action of $G \rtimes \mathbb{Z}/2\mathbb{Z}$ which refines the class $(P \circ P)(x)$ and look at the commutative diagram:

$$
\widetilde{H}^{\star,\star}(\mathcal{X}\wedge{\bf B}_{\rm gm}(G\rtimes{\bf Z}/2)_+)\xrightarrow{\rm res}\widetilde{H}^{\star,\star}(\mathcal{X}\wedge{\bf B}_{\rm gm}G_+)\newline\downarrow^{\rm interior\; automorphism\sim Id}\hspace{1cm}\downarrow^{\rm switch\; of\; two\; factors\; {\bf Z}/2{\bf Z}}\newline\widetilde{H}^{\star,\star}(\mathcal{X}\wedge{\bf B}_{\rm gm}(G\rtimes{\bf Z}/2)_+)\xrightarrow{\rm res}\widetilde{H}^{\star,\star}(\mathcal{X}\wedge{\bf B}_{\rm gm}G_+)
$$

Adem relations

Corollary (Adem relations)

Assume a and b are integers satisfying $0 < a < 2b$. If a is even and b odd,

$$
\mathsf{Sq}^{a}\mathsf{Sq}^{b} = \sum_{j=0}^{\left\lfloor\frac{a}{2}\right\rfloor} {b-1-j \choose a-2j}\mathsf{Sq}^{a+b-j}\mathsf{Sq}^{j} + \sum_{\substack{j=1 \text{odd} \\ odd}}^{\left\lfloor\frac{a}{2}\right\rfloor}{b-1-j \choose a-2j}\rho\mathsf{Sq}^{a+b-j-1}\mathsf{Sq}^{j}
$$

If a and b are odd,
$$
\mathsf{Sq}^a \mathsf{Sq}^b = \sum_{\substack{j=0 \text{odd} \\ \text{odd}}}^{\lfloor \frac{a}{2} \rfloor} {b-1-j \choose a-2j} \mathsf{Sq}^{a+b-j} \mathsf{Sq}^j
$$

If a and b are even,
$$
\mathsf{Sq}^a \mathsf{Sq}^b = \sum_{j=0}^{\lfloor \frac{a}{2} \rfloor} \tau^{j \bmod 2} {b-1-j \choose a-2j} \mathsf{Sq}^{a+b-j} \mathsf{Sq}^j
$$

If a is odd and b is even,

$$
\mathsf{Sq}^{\mathsf{a}}\,\mathsf{Sq}^{\mathsf{b}} = \sum_{\substack{j=0 \\ \text{even}}}^{\left\lfloor\frac{\mathsf{a}}{2}\right\rfloor}\binom{b-1-j}{a-2j}\,\mathsf{Sq}^{\mathsf{a}+b-j}\,\mathsf{Sq}^j + \sum_{\substack{j=1 \\ \text{odd}}}^{\left\lfloor\frac{\mathsf{a}}{2}\right\rfloor}\binom{b-1-j}{a-1-2j}\rho\,\mathsf{Sq}^{\mathsf{a}+b-j-1}\,\mathsf{Sq}^j
$$

4 0 X 4 @ X 4 2 X 4 2 X 2 2990 Some remarks:

- All monomials in the right member are of the form $Sq^{i}Sq^{j}$ with $i > 2j$.
- **■** The first equation implies the second by applying β .
- Similarly, the third implies the fourth.
- **■** If $\rho = 0$ (i.e., -1 is a square in k, for instance if $k = C$), then we get exactly the same formulas as in topology (through the identification

$$
\tau=1) \text{ where they reduce to: } \mathsf{Sq}^{\mathsf{a}}\,\mathsf{Sq}^{\mathsf{b}}=\sum_{j=0}^{\left\lfloor\frac{\mathsf{a}}{2}\right\rfloor}\tbinom{\mathsf{b}-1-j}{\mathsf{a}-2j}\,\mathsf{Sq}^{\mathsf{a}+\mathsf{b}-j}\,\mathsf{Sq}^j.
$$

KORK ERKER ADE YOUR

If $\rho \neq 0$, the formulas are a little bit more complicated.

Properties of the Steenrod operations

LAdem relations

Here are some details about the proof of the "corollary". We have $P(P(x)) = \sum_{j=0}^{2d} P^{j}(P(x)) \otimes v^{2d-j} + \sum_{j=0}^{2d-1} B^{j}(P(x)) \otimes uv^{2d-1-j}$ and $P(x) = \sum_{i=0}^{d} P^{i}(x)v^{d-i} + \sum_{i=0}^{d-1} B^{i}(x)uv^{d-1-i}$. Using previous formulas, we get:

$$
P(P(x)) = \sum_{j=0}^{2d} \sum_{i=0}^{d} \sum_{k=0}^{j} {d-i \choose j-k} P^{k} P^{i}(x) \otimes v^{d+j-k-i} \otimes v^{2d-j} + \sum_{j=0}^{2d-1} \sum_{i=0}^{d} \sum_{k=0}^{j} {d-i \choose j-k} B^{k} P^{i}(x) \otimes v^{d+j-k-i} \otimes uv^{2d-1-j} + \sum_{j=0}^{2d} \sum_{i=0}^{d-1} \sum_{k=0}^{j} {d-1-i \choose j-k} P^{k} B^{i}(x) \otimes uv^{d+j-k-i-1} \otimes v^{2d-j} + \tau \sum_{j=0}^{2d} \sum_{i=0}^{d-1} \sum_{k=0}^{j-1} {d-1-i \choose j-1-k} B^{k} B^{i}(x) \otimes v^{d+j-k-i-1} \otimes v^{2d-j} + \sum_{j=0}^{2d-1} \sum_{i=0}^{d-1} B^{j}(B^{i}(x)uv^{d-1-i}) \otimes uv^{2d-1-j}
$$

Properties of the Steenrod operations

Adem relations

$$
P(P(x)) = \sum_{j=0}^{2d} \sum_{i=0}^{d} \sum_{k=0}^{j} {d-j \choose j-k} P^{k} P^{i}(x) \otimes v^{d+j-k-i} \otimes v^{2d-j} + \sum_{j=0}^{2d-1} \sum_{i=0}^{d} \sum_{k=0}^{j} {d-j \choose j-k} B^{k} P^{i}(x) \otimes v^{d+j-k-i} \otimes uv^{2d-1-j} + \sum_{j=0}^{2d} \sum_{i=0}^{d-1} \sum_{k=0}^{j} {d-1-j \choose j-k} P^{k} B^{i}(x) \otimes uv^{d+j-k-i-1} \otimes v^{2d-j} + \tau \sum_{j=0}^{2d} \sum_{i=0}^{d-1} \sum_{k=0}^{j-1} {d-1-j \choose j-1-k} B^{k} B^{i}(x) \otimes v^{d+j-k-i-1} \otimes v^{2d-j} + \sum_{j=0}^{2d-1} \sum_{i=0}^{d-1} \sum_{k=0}^{j} {d-1-i \choose j-k} P^{k} B^{i}(x) \otimes v^{d+j-k-i} \otimes uv^{2d-1-j} + \sum_{j=0}^{2d-1} \sum_{i=0}^{d-1} \sum_{k=0}^{j} {d-1-i \choose j-k} B^{k} B^{i}(x) \otimes uv^{d+j-k-i-1} \otimes uv^{2d-1-j} + \rho \sum_{j=0}^{2d-1} \sum_{i=0}^{d-1} \sum_{k=0}^{j-1} {d-1-j \choose j-1-k} B^{k} B^{i}(x) \otimes v^{d+j-k-i-1} \otimes uv^{2d-1-j} + \rho \sum_{j=0}^{2d-1} \sum_{i=0}^{d-1} \sum_{k=0}^{j-1} {d-1-j \choose j-1-k} B^{k} B^{i}(x) \otimes v^{d+j-k-i-1} \otimes uv^{2d-1-j}
$$

 2990

Let $p, q \ge 0$. The coefficient of $uv^p \otimes v^q$ in $P(P(x))$ is:

$$
\alpha_{p,q} = \sum_{i=0}^{d-1} {d-i-1 \choose p-(d-i-1)} P^{3d-p-q-i-1} B^{i}(x)
$$

It must be the same as the coefficient of $v^q \otimes uv^p$:

$$
\beta_{p,q} = \sum_{i=0}^{d-1} {d-i \choose q-(d-i)} B^{3d-p-q-i-1} P^i(x) \n+ \sum_{i=0}^{d-1} {d-1-i \choose q-(d-i)} P^{3d-p-q-i-1} B^i(x) \n+ \rho \sum_{i=0}^{d-1} {d-1-i \choose q-(d-i)} B^{3d-p-q-i-2} B^i(x)
$$

KID KAR KERKER E 1990

Assume $a=2a'$ and $b=2b'+1$ are such that $0 < a < 2b$ (i.e., $a' \leq 2b'$). We would like a formula for

$$
\alpha_{p,q} = \sum_{i=0}^{d-1} {d-i-1 \choose p-(d-i-1)} P^{3d-p-q-i-1} B^{i}(x)
$$

We fix $s\geq 0$ and set $p=2^s-1,~d=2^s+b',~q=2^{s+1}+2b'-a'.$

Lemma

Then,
$$
\alpha_{p,q} = P^{a'} B^{b'}(x) = Sq^{a} Sq^{b}(x)
$$
.

This expression $P^{a'}B^{b'}$ is the term corresponding to $i=b'$ (because $p = d - b' - 1$), we have to show the other coefficients are zero. For obvious reasons, the coefficient $\binom{d-i-1}{p-(d-i-1)}=0$ if $i < b'$. We shall show that for this specific choice of p, this is even if $i > b'$ also. Introducing $\delta = p - (d - i - 1)$, we have to show that $\binom{p - \delta}{\delta} \equiv 0 \mod 2$ if $0<\delta\leq \frac{p}{2}$.

KORKAR KERKER E VOOR

Lemma

Assume $i, j \ge 0$, then $\binom{i+j}{i} \equiv 1 \mod 2$ if and only if there is no carry when computing the sum $i + j$ in the binary numeral system.

It follows from the computation of the 2-adic valuation of $n!$:

$$
v_2(n!) = \sum_{k \geq 1} \left\lfloor \frac{n}{2^k} \right\rfloor
$$

We may also say that if $i,j\geq 0,~{i\choose j}\equiv 1\mod 2$ if and only if there is no carry when computing $i - j$ in \mathbb{Z}_2 (includes the case $j > i...$).

For instance, it follows from the lemma that ${i \choose j} \equiv {2i \choose 2j} \mod 2$.

Assume $p=2^{\mathsf{s}}-1$ and $0<\delta\leq\frac{p}{2}.$ To compute the parity of $\binom{p-\delta}{\delta},$ we want to look at possible carry when doing the difference $(p - \delta) - \delta$. But, all the digits of p are 1. Then, for any nonzero digit of δ , the corresponding digit of $p - \delta$ is zero. This shows that a carry will occur, so that $\binom{p-\delta}{\delta} \equiv 0 \mod 2.$

Adem relations

We come back to
$$
\beta_{p,q} = \alpha_{p,q}
$$
.

$$
\beta_{p,q} = \sum_{i=0}^{d-1} {d-i \choose q-(d-i)} B^{3d-p-q-i-1} P^i(x) \n+ \sum_{i=0}^{d-1} {d-1-i \choose q-(d-i)} P^{3d-p-q-i-1} B^i(x) \n+ \rho \sum_{i=0}^{d-1} {d-1-i \choose q-(d-i)} B^{3d-p-q-i-2} B^i(x)
$$

In the first sum, it suffices to take into account those i such that $q - (d - i) \leq d - i$, i.e, $2i \leq 2d - q = a' = \frac{a}{2}$, then:

$$
\begin{pmatrix} d-i \\ q-(d-i) \end{pmatrix} = \begin{pmatrix} d-i \\ 2d-2i-q \end{pmatrix} \equiv \begin{pmatrix} 2d-2i \\ 4d-4i-2q \end{pmatrix} = \begin{pmatrix} 2^{s+1}+b-1-2i \\ a-4i \end{pmatrix}
$$

Given a and b, for s big enough, this is \equiv $\int b - 1 - 2i$ a − 4i \setminus

KORKARYKERKE POLO

.

Using the correspondence $j = 2i$, we showed that

$$
\sum_{i=0}^{d-1} {d-i \choose q-(d-i)} B^{3d-p-q-i-1} P^i(x) = \sum_{\substack{j=0 \ \text{even}}}^{\frac{a}{2}} {b-1-j \choose a-2j} Sq^{a+b-j} Sq^j(x)
$$

Similarly, with $j = 2i + 1$,

$$
\sum_{i=0}^{d-1} \binom{d-1-i}{q-(d-i)} P^{3d-p-q-i-1} B^i(x) = \sum_{\substack{j=0 \text{odd}}}^{\frac{a}{2}} \binom{b-2-j}{a-2j} Sq^{a+b-j} Sq^j(x)
$$

Then, one may believe that there is a mistake, but when j is odd, we have:

$$
\begin{pmatrix} b-1-j \ a-2j \end{pmatrix} = \begin{pmatrix} b-2-j \ a-2j \end{pmatrix} + \begin{pmatrix} b-2-j \ a-2j-1 \end{pmatrix} \equiv \begin{pmatrix} b-2-j \ a-2j \end{pmatrix} \mod 2
$$

because $b - 2 - j$ is even and $a - 2j - 1$ is odd.

Properties of the Steenrod operations Adem relations

Finally, we get:

$$
\beta_{p,q} = \sum_{j=0}^{\frac{a}{2}} \binom{b-1-j}{a-2j} Sq^{a+b-j} Sq^j(x) + \rho \sum_{\substack{j=0 \\ \text{odd}}}^{\frac{a}{2}} \binom{b-1-j}{a-2j} Sq^{a+b-j-1} Sq^j(x)
$$

This equals $\alpha_{p,q} = Sq^a Sq^b(x)$.

This shows the first expected relation for $x \in H^{2d,d}(\mathcal{X})$ for d of the form 2^{s} + b' and s big enough, which is sufficient using suspensions.

This third relation is similar but uses a combination of two different equalities of coefficients of $P(P(x))$.

Definition

Let I be a sequence of integers ($\varepsilon_0, r_1, \varepsilon_1, r_2, \ldots$) that is ultimately zero and such that $\varepsilon_i \in \{0,1\}$. We define:

$$
P^{\prime} = \beta^{\varepsilon_0} P^{s_1} \beta^{\varepsilon_1} P^{s_2} \dots
$$

where $s_i = \sum_{k\geq i} (\varepsilon_k+r_k) 2^{k-i}$ (note that $s_i\geq 2s_{i+1}+\varepsilon_i).$ These elements are called "admissible monomials".

Definition (Steenrod algebra)

We denote $H^{\star,\star}=H^{\star,\star}(k)$. This algebra acts by multiplication on motivic cohomology: then any element in $H^{*,*}$ defines a stable cohomology operation. We denote $A^{\star,\star}$ the algebra of stable cohomology operations generated by $H^{*,*}$, β and P^n $(n \ge 1)$.

We consider $A^{\star,\star}$ as a (left-)module over $H^{\star,\star}.$

Proposition

 $A^{\star,\star}$ is a free $H^{\star,\star}$ -module with a basis consisting of the admissible monomials.

Relations obtained until now shows that the module generated by the admissible monomials P^{\prime} is an algebra. The proof that they constitute a basis is similar to the topological situation:

"One may detect a nontrivial linear combination \sum_{I} a_l P^{I} by looking at its action on $H^{*,*}((B_{gm}Z/2)^n)$ for a big enough n."

Definition

We denote $A_{\star,\star}$ the $H^{\star,\star}$ -module dual to $A^{\star,\star}.$ The component $A_{\rho,q}$ maps $A^{i,j}$ into $H^{i-p,j-q}$. This $H^{\star,\star}$ -module is free with a basis given by elements $\theta(I)^{\star}$ dual of the basis of admissible monomials $P^{\prime}.$

The fact that we are in bigraded situation (and the distribution of bidegrees) implies that these modules behaves as if they were free of finite type.

KORK ERKER ADE YOUR

For $C \in A^{\star,\star}$ and $\alpha \in A_{\star,\star}$, the element $\alpha(C) \in H^{\star,\star}$ is denoted $\langle \alpha, C \rangle$.

The Steenrod algebra and its dual

Action on cohomology

Definition

Let $X \in \mathcal{S}m/k$. We define

$$
\lambda\colon H^{\star,\star}(X)\to A_{\star,\star}\otimes_{H^{\star,\star}}H^{\star,\star}(X)
$$

the unique map (additive but not $H^{\star,\star}$ -linear) such that for any $x\in H^{\star,\star}(X)$, if $\lambda(x)=\sum_i \alpha_i\otimes y_i$, then, for any $C\in\mathcal{A}^{\star,\star}$, we have:

$$
C(x) = \sum_i \langle \alpha_i, C \rangle y_i
$$

(Note that $\lambda(x) = \sum_l \theta(l)^* \otimes P^l(x)$.)

Then, $\lambda(x) \in A_{\star,\star} \otimes_{H^{\star,\star}} H^{\star,\star}(X)$ reflects the action of $A^{\star,\star}$ on this class x.

KORKARYKERKE PROGRAM

 L Action on cohomology

Definition

For $k\geq 0$, we define $\xi_k\in A_{2^{k+1}-2,2^k-1}$ (resp. $\tau_k\in A_{2^{k+1}-1,2^k-1})$ as those of the $\theta(I)^{\star}$ that are dual to the admissible monomials $\mathcal{M}_k = \mathcal{P}^{2^{k-1}} \ldots \mathcal{P}^2 \mathcal{P}^1 \in \mathcal{A}^{\star,\star}$ (resp. $M_k \beta$).

Proposition

For "
$$
X = B_{gm}Z/2Z''
$$
, we have:
\n
$$
\lambda(v) = \sum_{k=0}^{\infty} \xi_k \otimes v^{2^k} \qquad \lambda(u) = \xi_0 \otimes u + \sum_{k=0}^{\infty} \tau_k \otimes v^{2^k}
$$

Here, X is not in Sm/k , but is a colimit of such. In this particular case, it makes sense to define $\lambda(u)$ or $\lambda(v)$ as series.

To show that $\lambda(v) = \sum_{k=0}^{\infty} \xi_k \otimes v^{2^k}$, we have to show that the only (admissible or not!) monomials N involving the P^n and β such that $\mathcal{N}(v) \neq 0$ are the monomials $M_k = P^{2^{k-1}} \ldots P^2 P^1, \ k \geq 0$ and that $M_k(v) = v^{2^k}.$

We have $P^1(\nu)=\nu^2\in H^{4,2}({\sf B}_{\sf gm}{\sf Z}/2)$, $P^2P^1(\nu)=P^2(\nu^2)=\nu^4$, etc. A simple induction shows that $M_k(v) = v^{2^k}$. Assume that a monomial $N = \beta N'$ or $N = P^nN'$ $(n > 0)$ is such that $N(v) \neq 0$. Then, $N'(v) \neq 0$. By induction, we must have $N' = M_k$ for some $k \geq 0$. We have, $M_k(v) = v^{2^k}$. Then, $\beta M_k(v) = 0$. For degree reasons, $P^{n}M_{k}(v)=0$ if $n>2^{k}$. If $0 < n < 2^{k}$, we have

$$
N(v) = P^{n}(v^{2^{k}}) = {2^{k} \choose n} v^{2^{k}+n} = 0
$$

Then, we must have $n=2^k$, and $N=M_{k+1}$.

For u, N can be the empty word, which corresponds to the identity $P^0 = M_0$. Otherwise, the last letter must be β , and the previous argumentation shows that $N = M_k \beta$.

KORKAR KERKER E VOOR

The Steenrod algebra and its dual

Action on cohomology

Let us have a look at these formulas again:

Proposition

$$
\lambda(v) = \sum_{k=0}^{\infty} \xi_k \otimes v^{2^k} \qquad \lambda(u) = \xi_0 \otimes u + \sum_{k=0}^{\infty} \tau_k \otimes v^{2^k}
$$

Comultiplication Ψ^* on $A^{\star,*}$

Definition

We define a comultiplication:

$$
\Psi^\star\colon A^{\star,\star}\to A^{\star,\star}\otimes_{H^{\star,\star}}A^{\star,\star}
$$

(both copies of $A^{*,*}$ are equipped with the left-module structure.) in such a way that for any $C\in A^{\star,\star},\ \Psi^\star(C)=\sum_i D_i\otimes E_i$ is the unique element such that for all motivic cohomology classes x and y :

$$
C(xy) = \sum_i D_i(x) E_i(y)
$$

Ψ ? is co-associative, cocommutative (this reflects associativity and commutativity of the multiplication of cohomology classes) and $H^{\star,\star}$ -linear.

Uniqueness of $\Psi^*(C)$ is deduced from the fact that " $A^{*,*}$ acts faithfully on $H^{\star,\star}(\mathsf{B}_{\mathsf{gm}}\mathsf{Z}/2\mathsf{Z}^{\mathsf{high}})$ " .

The Steenrod algebra and its dual Comultiplication Ψ^* on $A^{\star,*}$

For the existence, we use the following lemmas:

Lemma

$$
\Psi^* P^n = \sum_{i+j=n} P^i \otimes P^j + \tau \sum_{i+j=n-1} B^i \otimes B^j
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Lemma

$$
If \Psi^*(C) = \sum_i A_i \otimes B_i \text{ and } \Psi^*(D) = \sum_j E_j \otimes F_j, \text{ then}
$$

$$
\Psi^*(CD) = \sum_{i,j} A_i E_j \otimes B_i F_j
$$

Comultiplication Ψ^* on $A^{\star,*}$

Lemma

In $A_{\star,\star} \simeq A_{\star,\star} \otimes_{H^{\star,\star}} H^{\star,\star}$, we have:

$$
\lambda(1)=\xi_0
$$

This also means that $\langle \xi_0, C \rangle = C(1)$ for all $C \in H^{\star,\star}.$ This follows from the fact that 1 is killed by all monomials excepted Id.

Lemma

 $\xi_0\colon A^{\star,\star}\to H^{\star,\star}$ is the coünit of Ψ^\star , i.e., the composition:

$$
A^{\star,\star} \xrightarrow{\Psi^{\star}} A^{\star,\star} \otimes_{H^{\star,\star}} A^{\star,\star} \xrightarrow{\mathrm{Id} \otimes \xi_0} A^{\star,\star} \otimes_{H^{\star,\star}} H^{\star,\star} \xrightarrow{\simeq} A^{\star,\star}
$$

KORK ERKER ADE YOUR

is the identity.

The Steenrod algebra and its dual \Box Algebra structure on A_{+}

We shall dualisize the comultiplication Ψ^\star on $A^{\star,\star}.$

We define a $H^{\star, \star}$ -bilinear pairing $\langle \alpha \otimes \beta, \mathsf{C} \otimes \mathsf{D} \rangle = \langle \alpha, \mathsf{C} \rangle \cdot \langle \beta, \mathsf{D} \rangle$ on $(A_{\star,\star}\otimes_{H^{\star,\star}} A_{\star,\star})\times (A^{\star,\star}\otimes_{H^{\star,\star}} A^{\star,\star}).$

Definition

We define a product law on $A_{\star,\star}$. It is characterized by the relation:

$$
\langle \alpha \beta, \mathsf{C} \rangle = \langle \alpha \otimes \beta, \Psi^{\star} \mathsf{C} \rangle
$$

for $\alpha, \beta \in A_{\star,\star}$ and $C \in A^{\star,\star}$.

Proposition

 $A_{\star,\star}$ is a commutative $H^{\star,\star}$ -algebra. Its unit is ξ_0 . For any $X \in \mathsf{Sm}/k$, the map

$$
\lambda\colon H^{\star,\star}(X)\to A_{\star,\star}\otimes_{H^{\star,\star}}H^{\star,\star}(X)
$$

KORK ERKER ADE YOUR

is a morphism of $H^{*,*}$ -algebras.

The Steenrod algebra and its dual

 \Box Algebra structure on $A_{\star, \star}$

Proposition

Let
$$
C \in A^{*,*}
$$
. Then: $C(v^{2^i}) = \sum_{i \ge 0} \langle \xi_i^{2^i}, C \rangle v^{2^{i+j}}$

It is equivalent to saying that:

$$
\lambda(v^{2^j})=\sum_{i\geq 0}\xi_i^{2^j}\otimes v^{2^{i+j}}
$$

We already know the case $j = 0$:

$$
\lambda(v)=\sum_{i\geq 0}\xi_i\otimes v^{2^i}
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Then, we use $\lambda(v^{2^j}) = \lambda(v)^{2^j}$.

 \Box Algebra structure on A_{\star} , \star

Theorem

The ring $A_{\star,\star}$ is the commutative $H^{\star,\star}$ -algebra generated by elements $\tau_k\in A_{2^{k+1}-1,2^k-1}$ $(k\geq 0)$ and $\xi_k\in A_{2^{k+1}-2,2^k-1}$ $(k\geq 1)$ subjected to the following relations for all $k \geq 0$:

$$
\tau_k^2 = (\tau + \rho \tau_0) \xi_{k+1} + \rho \tau_{k+1}
$$

The relations follows from the analysis of the coefficient of $v^{2^{k+1}}$ in:

$$
\lambda(u)^2 = \lambda(u^2) = \lambda(\tau)\lambda(v) + \lambda(\rho)\lambda(u)
$$

and the identities $\lambda(\tau) = \tau + \rho \tau_0$ and $\lambda(\rho) = \rho$. Remember that:

$$
\lambda(v) = \sum_{k=0}^{\infty} \xi_k \otimes v^{2^k} \qquad \lambda(u) = \xi_0 \otimes u + \sum_{k=0}^{\infty} \tau_k \otimes v^{2^k}
$$

To prove the theorem, we have to show that the elements

$$
\omega(I) = \prod_{k \geq 0} \tau_k^{\varepsilon_k} \prod_{k \geq 1} \xi_k^{r_k} \in A_{\star,\star}
$$

for sequences $I = (\varepsilon_0, r_1, \varepsilon_1, ...)$ as above constitute a basis of $A_{\star,\star}$ as a $H^{*,*}$ -module.

Lemma

We use the lexicographic order (starting from the right) on such sequences I. Then $\langle \omega(I), P^I \rangle = 1$ and for $I < J$, $\langle \omega(J), P^I \rangle = 0$.

Then, matrix $\langle\omega(I),P^J\rangle$ of the coefficients of the $\omega(I)$ in the basis on the $\theta(J)^*$ is upper triangular with 1 in the diagonal.

When proving that the $\omega(I)$ generate $A_{\star,\star}$, one uses the fact that for a fixed bidegree (p, q) , there exists only finitely many J such that there exists $x\neq 0\in H^{i,j}$ (we use the bound $i\leq j)$ such that the bidegree of $x\theta(J)^{\star}$ is (p, q) .

The Steenrod algebra and its dual \Box Algebra structure on A_{+}

> Denote $J = (\tilde{\varepsilon}_0, \tilde{r}_1, \dots)$. We do an induction on the total degree of $\omega(J)$ to show that $\big\langle \omega (J), P^I \big\rangle = 0$ if $I < J.$

Assume that the last nonzero coefficient of J is $\tilde{r}_k\neq 0$. Introduce J' such that $\omega(J)=\omega(J')\xi_k$:

$$
\left\langle \omega(J),P^{I}\right\rangle =\left\langle \omega(J^{\prime})\otimes\xi_{k},\Psi^{\star}(P^{I})\right\rangle
$$

Expand $\Psi^\star(P^{\prime})$ as a sum of $C\otimes D$ where D is a monomial involving β or P^i :

$$
\big\langle \omega(J')\otimes \xi_k,\,C\otimes D\big\rangle = \big\langle \omega(J'),\,C\big\rangle\, \langle \xi_k,D\rangle
$$

If this is nonzero, we must have $D=M_k=P^{2^{k-1}}\ldots P^2P^1.$ As $I \leq J$, I is of the form $I = (\varepsilon_0, r_1, \varepsilon_1, \ldots, \varepsilon_{k-1}, r_k, 0, \ldots).$ We know how to expand $\Psi^\star P^I$, where $P^I = \beta^{\varepsilon_0} P^{\mathsf{s}_1}\beta^{\varepsilon_1}\dots P^{\mathsf{s}_k}.$ Basically, $\Psi^{\star}P^{s_{k-j}}=P^{s_{k-j}-2^{j}}\otimes P^{2^{j}}+$ other terms. We see there shall be a term $\mathit{C}\otimes\mathit{M}_k$ only if $r_k\geq 1.$ Then, $\mathit{C}=\mathit{P}^{\mathit{l}'}$ with $I' = (\varepsilon_0, r_1, \varepsilon_1, \ldots, \varepsilon_{k-1}, r_k - 1, 0, \ldots)$, then:

$$
\langle \omega(J), P'\rangle = \langle \omega(J'), P''\rangle = 0
$$
 by induction

Similar arguments for the case when the last coefficient of J is a $\tilde{\varepsilon}_2$ and for $\langle \omega(I), P^I \rangle$.

The Steenrod algebra and its dual \Box Comultiplication on $A_{\star, \star}$

> $A^{\star,\star}$ has a right-module structure over $H^{\star,\star}$: it is $H^{\star,\star}$ -bimodule- $H^{\star,\star}$. $A_{\star,\star}$ is $H^{\star,\star}$ -bimodule- $H^{\star,\star}$.

Lemma

If
$$
\alpha \in A_{\star,\star}
$$
 and $x \in H^{\star,\star}$, $\alpha.x = \lambda(x)\alpha$.

For all $C \in A^{\star,\star}$, we have to check:

$$
\langle \alpha.x, C \rangle = \langle \alpha, Cx \rangle = \langle \lambda(x) \alpha, C \rangle
$$

Assume $\Psi^{\star}C = \sum_i D_i \otimes E_i$. Then, $Cx = \sum_i D_i(x) \cdot E_i \in A^{\star,\star}$.

$$
\langle \lambda(x)\alpha, C \rangle = \sum_{i} \langle \lambda(x) \otimes \alpha, D_{i} \otimes E_{i} \rangle = \sum_{i} D_{i}(x) \langle \alpha, E_{i} \rangle
$$

$$
= \langle \alpha, \sum_{i} D_{i}(x) \cdot E_{i} \rangle = \langle \alpha, Cx \rangle
$$

Note that the two structures of modules on $A_{\star,\star}$ are induced by the ring morphisms $H^{*,*} \to A_{*,*}: x \mapsto x\xi_0$ and $x \mapsto \lambda(x)$.

We introduce $\mathcal{A}^{\star,\star} \otimes_{\mathsf{r},\mathsf{H}^{\star,\star},\mathsf{l}} \mathcal{A}^{\star,\star}$ as a left- $\mathsf{H}^{\star,\star}$ -module. This comes from the $H^{*,*}$ -bimodule structure on the first $A^{*,*}$ and the left-module structure on the second.

Lemma

Tensor products $P^I \otimes P^J$ of admissible monomials give a basis of $A^{\star,\star} \otimes_{r,H^{\star,\star},l} A^{\star,\star}$ as a left- $H^{\star,\star}$ -module. Similarly, $A_{\star,\star} \otimes_{r,H^{\star,\star},l} A_{\star,\star}$ is a free $H^{\star,\star}$ -module.

Lemma

There is a H^{*,*}-bilinear (on the left) perfect pairing between $A_{\star,\star} \otimes_{r,H^{\star,\star},l} A_{\star,\star}$ and $A^{\star,\star} \otimes_{r,H^{\star,\star},l} A^{\star,\star}$:

$$
\langle \alpha \otimes \beta, C \otimes D \rangle = \langle \alpha, C \langle \beta, D \rangle \rangle = \langle \lambda (\langle \beta, D \rangle) \cdot \alpha, C \rangle
$$

KORK ERKER ADE YOUR

It is well defined and the basis dual to the $P^I\otimes P^J$ is the basis of the $\theta(I)^{\star} \otimes \theta(J)^{\star}.$

The Steenrod algebra and its dual

 \Box Comultiplication on $A_{\star,\star}$

Definition

We define a comultiplication $\Psi_{\star}: A_{\star,\star} \to A_{\star,\star} \otimes_{r,H^{\star,\star},I} A_{\star,\star}$ so that for all $\alpha\in A_{\star,\star}$ and $\mathsf{C}\otimes D\in A^{\star,\star}\otimes_{\mathsf{r},H^{\star,\star},\mathsf{l}}A^{\star,\star}$, we have :

$$
\langle \Psi_{\star}\alpha,\mathit{C}\otimes\mathit{D}\rangle=\langle\alpha,\mathit{CD}\rangle
$$

One can check that Ψ_{\star} is a ring morphism and that it is $H^{\star,\star}$ -linear.

Proposition

$$
\Psi_{\star}(\xi_k)=\sum_{i=0}^k \xi_{k-i}^{2^i}\otimes \xi_i \qquad \Psi_{\star}(\tau_k)=\sum_{i=0}^k \xi_{k-i}^{2^i}\otimes \tau_i + \tau_k \otimes 1
$$

KORKARYKERKE PROGRAM

 \Box Comultiplication on A_{+} +

Proposition

$$
\Psi_{\star}(\xi_k)=\sum_{i=0}^k \xi_{k-i}^{2^i} \otimes \xi_i \qquad \Psi_{\star}(\tau_k)=\sum_{i=0}^k \xi_{k-i}^{2^i} \otimes \tau_i + \tau_k \otimes 1
$$

For the first identity, we have to show $\langle \xi_k, CD \rangle = \sum_{i=0}^k \left\langle \xi_{k-i}^{2^i} \otimes \xi_i, C \otimes D \right\rangle$. One may assume that $\langle \xi_i, D \rangle \in \{0, 1\}$. Then, we have to show:

$$
\langle \xi_k, CD \rangle = \sum_{i=0}^k \left\langle \xi_{k-i}^{2^i}, C \right\rangle \langle \xi_i, D \rangle
$$

Using formulas for $F(v)$ and $F(v^{2^7})$, we compute

$$
CD(v) = C(\sum_{i\geq 0} \langle \xi_i, D \rangle v^{2^i}) = \sum_i \sum_j \langle \xi_j^{2^i}, C \rangle \langle \xi_i, D \rangle v^{2^{i+j}} = \sum_k \langle \xi_k, CD \rangle v^{2^k}
$$

KORK ERKER ADE YOUR

The other identity follows from the computation of $CD(u)$.

Definition

We let $I \subset A_{\star,\star}$ be the ideal generated by the ξ_i for $i > 1$. We showed that $\Psi_{\star}(I) \subset A_{\star,\star} \otimes I + I \otimes A_{\star,\star}$. Then, we have an induced comultiplication:

$$
\overline{\Psi}_\star\colon A_{\star,\star}/I\to A_{\star,\star}/I\otimes_{\mathsf{d},H^{\star,\star},\mathsf{g}}A_{\star,\star}/I
$$

We let $B^{\star,\star}\subset A^{\star,\star}$ the orthogonal I^\perp of $I\subset A_{\star,\star}.$ If follows that $B^{\star,\star}$ is a subring of $A^{\star,\star}$ (that contains $H^{\star,\star}$).

If $C, D \in B^{\star,\star}$ and $\alpha \in I$, $\langle \alpha, CD \rangle = \langle \Psi_{\star}(\alpha), C \otimes D \rangle = 0$, and $CD \in B^{\star,\star}$.

Definition

For $i\geq 0$, we let $Q_i\in A^{2^{i+1}-1,2^i-1}$ be the element dual to τ_i from the basis of $A_{\star,\star}$ consisting of monomials $\omega(I)$. We have $Q_i \in B^{\star,\star}$.

 Q_i is also the dual of the class of $\tau_i \in A_{\star,\star}/I$ in the basis consisting of monomials involving the τ_i (of degree at most 1 in each variable).

Operations Q_j and Margolis homology

Definition

More generally, for any finite subset *I* of **N**, we define $Q_l \in B^{\star,\star}$ as the dual of $\tau_I = \prod_{i \in I} \tau_i$ in the basis of such monomials.

Proposition

If I and J are two finite subsets of N, then Q_1Q_1 is:

- Q_{111} is I and J are disjoint.
- \Box 0 otherwise.

We know that $\overline\Psi_\star\tau_i=1\otimes\tau_i+\tau_i\otimes 1$, then $\overline\Psi_\star\tau_K=~\sum~\tau_{I'}\otimes\tau_{J'}.$ $I' \sqcup J' = K$

Then, we use:

$$
Q_I Q_J = \sum_K \left\langle \overline{\Psi}_\star \tau_K, Q_I \otimes Q_J \right\rangle Q_K
$$
Corollary

\n- $$
Q_i Q_i = 0
$$
\n- $Q_i Q_j = Q_j Q_i$
\n

$$
\blacksquare \ Q_l = \prod_{i \in I} Q_i.
$$

Definition (Margolis homology)

For any $X \in \mathcal{H}_\bullet(k)$, we denote $\widetilde{MH}_i^{p,q}(\mathscr{X})$ the homology at $\widetilde{H}^{p,q}(\mathscr{X})$ of the complex:

$$
\cdots \xrightarrow{Q_i} \widetilde{H}^{p-2^{i+1}+1,q-2^{i+1}+1}(\mathcal{X}) \xrightarrow{Q_i} \widetilde{H}^{p,q}(\mathcal{X}) \xrightarrow{Q_i} \widetilde{H}^{p+2^{i+1}-1,q+2^{i}-1}(\mathcal{X}) \xrightarrow{Q_i} \cdots
$$

Proposition

 $Q_0 = \beta$.

For degree reasons, $Q_0 = x\beta$ for $x \in \mathbb{Z}/2\mathbb{Z}$. We know $Q_0 \neq 0$. Then, $x = 1$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

[Steenrod operations](#page-0-0)

LApplications

Operations Q_j and Margolis homology

For $n\geq 0$, we introduce its digits in base 2: $n=\sum n$ i≥0 $\varepsilon_i 2^i$. We set $\sigma(n) = \sum_i \varepsilon_i$. Then, I set (personal notation) $Q(n) = \prod_i Q_i^{\varepsilon_i}$. For instance, $Q_i = Q(2^i)$. (Similarly, $\tau(n) = \prod_i \tau_i^{\varepsilon_i}$.)

Proposition

For any $i \geq 0$, $\Psi^*(Q_i) \in B^{\star,\star} \otimes_{H^{\star,\star}} B^{\star,\star}$. More precisely,

$$
\Psi^*(Q_i) = \sum_{n+n'=2^i} \rho^{\sigma(n)+\sigma(n')-1} Q(n) \otimes Q(n')
$$

= $1 \otimes Q_i + Q_i \otimes 1 + \sum_{\substack{n+n'=2^i \\ n,n'' \geq 1}} \rho^{i-\nu_2(n)} Q(n) \otimes Q(n')$

Lemma

For all $n, n' \geq 0$, we have $\tau(n)\tau(n') = \rho^s \tau(n+n')$ in $A_{*,*}/I$ where s is the number of carries when computing $n + n'$ in base 2 (this number is $\sigma(n) + \sigma(n') - \sigma(n + n')).$

KORK ERKER ADE YOUR

Follows from $\tau_i^2 = \rho \tau_{i+1}$.

LApplications \Box Milnor basis

For the proof of the proposition, we introduce:

Definition (Milnor basis)

We identify sequences $I = (\varepsilon_0, r_1, \varepsilon_1, \dots)$ as before and tuples (ε_0, r_0) . To these are attached elements $\omega(I)=\tau_\bullet^{\varepsilon_\bullet}\xi_\bullet'^\bullet$ which constitute a basis of $A_{\star,\star}$ as a $H^{*,*}$ -module. We denote $\rho(\varepsilon_\bullet,r_\bullet) \in A^{*,*}$ the elements of the dual basis. Note that $\rho(\varepsilon_\bullet,0)=Q_{\{i,\varepsilon_i\neq0\}}=\prod_i Q_i^{\varepsilon_i}\in B^{\star,\star}.$ We also define $\mathscr{P}'^\bullet=\rho(0,r_\bullet).$

One can write
$$
\Psi^{\star}(Q_i) = \sum_{\substack{(\varepsilon_{\bullet}, r_{\bullet}) \\ (\varepsilon'_{\bullet}, r'_{\bullet})}} c_{(\varepsilon_{\bullet}, r_{\bullet}), (\varepsilon'_{\bullet}, r'_{\bullet})} \rho(\varepsilon_{\bullet}, r_{\bullet}) \otimes \rho(\varepsilon'_{\bullet}, r'_{\bullet})
$$
 with

$$
c_{(\varepsilon_{\bullet},\mathsf{r}_{\bullet}),(\varepsilon_{\bullet},\mathsf{r}_{\bullet})}=\left\langle \tau_{\bullet}^{\varepsilon_{\bullet}}\xi_{\bullet}^{\mathsf{r}_{\bullet}}\otimes\tau_{\bullet}^{\varepsilon_{\bullet}^{\prime}}\xi_{\bullet}^{\mathsf{r}_{\bullet}^{\prime}},\Psi^{\star}(Q_{i})\right\rangle =\left\langle \tau_{\bullet}^{\varepsilon_{\bullet}}\tau_{\bullet}^{\varepsilon_{\bullet}^{\prime}}\xi_{\bullet}^{\mathsf{r}_{\bullet}+\mathsf{r}_{\bullet}^{\prime}},Q_{i}\right\rangle
$$

 Q_i is orthogonal to the ideal generated by ξ_i for $i > 0$. Then, the nonzero coefficients may appear only for $r_\bullet=r'_\bullet=0.$ Denote $n=\sum_i \varepsilon_i 2^i$ and $n' = \sum_i \varepsilon'_i 2^i$, we have:

$$
\langle \tau(n)\tau(n'), Q_i \rangle = \rho^{\sigma(n)+\sigma(n')-1} \langle \tau(n+n'), Q(2') \rangle = 0
$$
 unless $n+n' = 2^{i}$

KORK ERKER ADE YOUR

[Steenrod operations](#page-0-0)

L
Applications Milnor basis

We showed that:

$$
\Psi^{\star}(Q_i)=\sum_{n+n'=2^i}\rho^{\sigma(n)+\sigma(n')-1}Q(n)\otimes Q(n')
$$

which implies:

$$
\Psi^{\star}(Q_i) = 1 \otimes Q_i + Q_i \otimes 1 + \sum_{\substack{n+n'=2^i \\ n,n' \geq 1}} \rho^{i-\nu_2(n)} Q(n) \otimes Q(n')
$$

It gives formulas for the computation of $Q_i(xy)$ in terms of images of x and y by compositions of some Q_i (for $j < i$).

Proposition

$$
\rho(\varepsilon_{\bullet},r_{\bullet})=Q_{\{i,\varepsilon_i\neq 0\}}\mathscr{P}'^{\bullet}
$$

KORK STRATER STRAKES

(where $\mathscr{P}'^{\bullet} = \rho(0, r_{\bullet})$)

This means $\rho(\varepsilon_{\bullet}, r_{\bullet}) = \rho(\varepsilon_{\bullet}, 0)\rho(0, r_{\bullet}).$

LMilnor basis

Proposition

For any $n\geq 1$, we denote $q_n\in A^{\star,\star}$ the element in the Milnor basis $\rho(-,-)$ that is dual to $\xi_n \in A_{\star,\star}$. Then, $Q_n = [\beta, q_n] = \beta q_n + q_n \beta$.

We have to show $q_n\beta = Q_n + \beta q_n$. Q_n and βq_n belong to the Milnor basis (they are the duals of τ_n and $\tau_0 \xi_n$). We consider pairings

$$
\langle \omega(I), q_n \beta \rangle = \langle \Psi_{\star}(\omega(I)), q_n \otimes \beta \rangle
$$

Let $J \subset A_{\star,\star}$ the ideal generated by τ_k , $k \geq 1$ and ξ_k , $k \geq 1$. (Then ${\cal A}_{\star,\star}/J=H^{\star,\star}[\tau_0]/(\tau_0^2)$.) As $\langle J,\beta\rangle=0$, it suffices to examine $\Psi_\star(\omega(I))$ in the quotient $A_{\star,\star} \otimes_{r,H^{\star,\star},l} A_{\star,\star}/J$. There we have:

$$
\overline{\Psi}_\star(\xi_k)=\xi_k\otimes 1\qquad \overline{\Psi}_\star(\tau_k)=\xi_k\otimes \tau_0+\tau_k\otimes 1
$$

Then, the only $\omega(I)$ such that $\overline{\Psi}_*(\omega(I))$ contains a term $\xi_n \otimes \tau_0$ are $\tau_0 \xi_n$ and τ_n and then the coefficient is 1.

KORK ERKER ADE YOUR

L
Applications

Milnor basis

Proposition

For any $n \ge 0$, $P^n = \mathscr{P}^{(n,0,0,...)}$.

This means that in the Milnor basis, P^n is dual to ξ_1^n . We already know that $\langle \omega(J), P^n \rangle = 0$ if $(n, 0, \dots) < J$. It remains only the cases $J = (k, 0, ...)$ with $k < n$. But then,

$$
\langle \xi_1^k, P^n \rangle \in H^{2(n-k), n-k} = 0
$$
 unless $k = n$

KORK ERKER ADE YOUR

We want to understand to some extend the action of the Steenrod algebra on Thom classes of vector bundles.

Some remarks:

- An operation \mathscr{P}'^{\bullet} (dual in the Milnor basis of some monomial involving the ξ_i) is in $A^{2n,n}$ for some *n*.
- The operation Q_i is in $A^{p,q}$ for $p > 2q$.

$$
\blacksquare \ \rho(\varepsilon_\bullet,r_\bullet) = Q_{\{i,\varepsilon_i\neq 0\}} \mathscr{P}'^\bullet
$$

Proposition

The operations Q_i and more generally the operations $\rho(\varepsilon_\bullet, r_\bullet)$ for $\varepsilon_\bullet \neq 0$ vanish on $H^{2*,*}(X) = CH^{*}(X)/2$ and on $\widetilde{H}^{2*,*}(\text{Th}_X V)$ (with V a vector bundle of rank r on $X \in \mathsf{Sm}/k$).

In particular, such operations kill the Thom class $t_V \in \widetilde{H}^{2r,r}(\text{Th}_X V)$ of any vector bundle.

Now, we focus on the action of operations \mathscr{P}^r on Thom classes t_V and we shall start with the case of line bundles.

Proposition

Let $X\in S$ m/k. If L is a line bundle on $X.$ Then, $\lambda(c_1(L))=\sum_{i\geq 0}\xi_i\otimes c_1(L)^{2^i}.$

We already did this computation in the universal case of $\mathsf{v}=\mathsf{c}_1(\mathscr{O}(1))$ on $\mathsf{P}^\infty.$

Corollary

Let $X \in Sm/k$. If L is a line bundle on X. We let $t_L \in H^{2,1}(\text{Th}_X L)$ be the Thom class. Then,

$$
\lambda(t_L) = \sum_{i \geq 0} \xi_i \otimes \left(c_1(L)^{2^i-1} t_L \right) \in A_{\star,\star} \otimes_{H^{\star,\star}} \widetilde{H}^{\star,\star}(\text{Th}_X L)
$$

We can do the computation in $P(L \oplus \mathcal{O}_X)$ where $t_L = \xi + c_1(L)$ with $\xi = c_1(\mathcal{O}(1))$. It suffices to show:

$$
\xi^{2^i}+c_1(L)^{2^i}=c_1(L)^{2^i-1}(\xi+c_1(L))
$$

i.e., $\xi^{2^i} = c_1(L)^{2^i-1}\xi$, which follows from the identity $\xi^2 + c_1(L)\xi = 0$ (definition of Chern classes of the bundle $L \oplus \mathcal{O}$).

KORKARA KERKER SAGA

Proposition

Let $r_{\bullet} = (r_1, r_2, \dots)$ a sequence of integers as above. We have a monomial $\xi_{\bullet}^{\prime\bullet}$. Let $d \geq 0$. We denote $P \in \mathbf{F}_2[x_1, \ldots, x_d]$ the symmetric polynomial

$$
\mathit{P} = \sum_{\substack{(j_1, \ldots, j_d) \in \mathsf{N}^d \\ \varepsilon_{j_1} \ldots \varepsilon_{j_d} = \varepsilon_{\bullet}^{\prime \bullet}}} \prod_{i=1}^d x_i^{2^{j_i} - 1}
$$

We denote $R \in \mathbf{F}_2[c_1, \ldots, c_d]$ the unique polynomial such that if we substitute to c_i the ith elementary symmetric function of the x_i we get P. Then, for any vector bundle V of rank d on $X \in \mathsf{Sm}/k$, we have:

$$
\mathscr{P}'^{\bullet}(t_V) = R(c_1(V), \ldots, c_d(V)) \cdot t_V
$$

KORK ERKER ADE YOUR

(Note that the formula will stabilise for big enough d , for example $d \geq \sum_i (2^i-1)r_i$.) As we did before, using the splitting principle, one may assume that $V = L_1 \oplus \cdots \oplus L_d$ for line bundles L_i .

LApplications

Characteristic classes

 $V = L_1 \oplus \cdots \oplus L_d$. We set $x_i = c_1(L_i)$. We have to show:

$$
\mathscr{P}^{\mathbf{r}_{\bullet}}(t_V)=\left(\sum_{\substack{(j_1,\ldots,j_d)\in\mathbb{N}^d\\ \xi_{j_1}\ldots\xi_{j_d}=\xi_{\bullet}^{\prime\bullet}}}\prod_{i=1}^d x_i^{2^{j_i}-1}\right)\cdot t_V
$$

From the computation of $\lambda(t_{L_i})$, we get:

$$
\lambda(t_V)=(\prod_{i=1}^d\sum_{j=0}^\infty \xi_j\otimes x_i^{2^j-1})\cdot t_V
$$

The class $\mathscr{P}^{\mathsf{r}_\bullet}(t_V)$ is the coefficient of the monomial $\xi_\bullet^\mathsf{r}_\bullet$ in this expansion, which gives the expected result.

Here is general formula again:
$$
P = \sum_{\substack{(j_1,\ldots,j_d) \in \mathbb{N}^d \\ \xi_{j_1}\cdots\xi_{j_d} = \xi_{\bullet}^{\prime\bullet}}} \prod_{j=1}^d x_j^{2^{j_j}-1}.
$$

Corollary

 $P^{n}(t_V) = C_n(V) \cdot t_V$ where $C_n(V) = C_n(c_1(V), \ldots, c_d(V))$ is the polynomial in the symmetric functions corresponding to $\quad \sum_{i=1}^N \prod_{i=1}^{N_i} x_i$. I⊂{1,...,d} i∈I #I=n

Corollary

Remember q_n is the operation dual to ξ_n . Then, $q_n(t_V) = s_{2^n-1}(V) \cdot t_V$ where $\mathsf{s}_j\colon \mathcal{K}_0(X)\to\oplus_i H^{2i,i}(X)$ is the additive natural transformation such that $s_j(c_1(L)) = c_1(L)^j$ for line bundles L.

KORK ERKER ADE YOUR

Here, we have $P = \sum_{i=1}^{d} x_i^{2^j-1}$.