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6 Riemann-Roh theorems 276.1 Adams-Riemann-Roh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276.1.1 Pushforwards on BGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286.1.2 Statement of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 296.1.3 Morphisms Rf⋆BGLQ,X → BGLQ,S . . . . . . . . . . . . . . . . . . . 296.2 Motivi Eilenberg-Ma Lane spetra . . . . . . . . . . . . . . . . . . . . . . . . 316.2.1 Morphisms Z × Gr → K(Z(n), 2n) . . . . . . . . . . . . . . . . . . . . . 316.2.2 Additive morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326.2.3 Stable morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336.3 Grothendiek-Riemann-Roh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35The starting point of this artile is the theorem whih represents the algebrai K-theoryof regular shemes in the A1-homotopy theory:Theorem 0.1 (Morel-Voevodsky [32, Theorem 3.13, page 140℄) Let S be a regularsheme. Then, for any n ∈ N and X ∈ Sm/S, there is a anonial isomorphism
HomH•(S)(S

n ∧X+,Z × Gr) ≃ Kn(X) .Here, Gr is the olimit of the system (Grd,r)(d,r)∈N2 in the ategory of presheaves over
Sm/SNis where Grd,r is the Grassmann sheme whih parametrises subbundles of rank d in thetrivial bundle of rank d+ r. To make the de�nition of the transition morphisms unambiguousenough, we may say that they are of the form Grd,r → Gr1+d,r and Grd,r → Grd,r+1 andthat the plae where �1� appears tells us on whih side a trivial bundle of rank 1 is added.It should be pointed out that theorem 0.1 only applies to regular shemes beause it anbe true only over shemes where the algebrai K-theory is known to be A1-invariant. Thisis the reason why the assumption that the base sheme is regular will appear throughout thepaper.From theorem 0.1, it follows that the endomorphisms of Z × Gr in H•(S) at on all thealgebrai K-groups of shemes in Sm/S. The basi result we obtain in setion 1 is that theseendomorphisms are ompletely haraterised by their ation on K0:Theorem 0.2 Let S be a regular sheme. We let K0(−) be the presheaf of sets on Sm/Swhih maps X to K0(X). Then, the map indued by theorem 0.1 is a bijetion:

EndH(S)(Z × Gr)
∼
→ EndSm/SoppSets(K0(−)) ,where Sm/SoppSets is the ategory of presheaves of sets on Sm/S.It follows that the operations de�ned in [1℄ at the level of K0 (e.g., λn, Ψk) uniquely liftin H(S). From there, using theorem 0.1, we an make them at on higher algebrai K-theory.This priniple also works for operations involving several operands (e.g., produts) and in asense whih will be made preise in setion 2, we obtain a mahinery whih takes as an inputthe algebrai strutures on K0 and outputs suh a struture on Z × Gr inside H(S). Thus,

Z × Gr is equipped with a struture of speial λ-ring with duality.Strutures of (speial) λ-ring had already been obtained on higher K-theory, with di�erentsales of generality. We may mention onstrutions of produts, λ-operations or Adams op-erations by Loday [30℄, Waldhausen [47℄, Kratzer [26℄, Soulé [42℄, Grayson [18℄, Leomte [27℄2



and Levine [28℄. We ompare the strutures on K⋆(X) for X regular obtained by our methodto these previous onstrutions in setion 3. The omparison with Waldhausen's produt (seeproposition 3.2.1) may seen surprisingly straightforward, but it is a typial use of theorem 0.2and its variants involving several operands (see theorem 1.1.4).Setion 4 relates our results to virtual ategories, an insight of Deligne [10℄. We show that,after inverting 2, onstrutions done at the level of K0 re�ne to these virtual ategories, whihembodies both K0 and K1. This theory was used by Dennis Eriksson in his thesis [12℄ in orderto re�ne Riemann-Roh theorems at the level of these virtual ategories.In setion 5, we fous on operations τ : K0(−) → K0(−) suh that τ(x+ y) = τ(x)+ τ(y),i.e., H-group endomorphisms of Z × Gr in H•(S). We ompute them using the splittingpriniple. We show that the datum of τ is equivalent to the datum of an element in K0(S)[[U ]].Then, we onstrut, up to a unique isomorphism in the stable homotopy ategory SH(S), the
P1-spetrum BGL whih represents algebrai K-theory and study its endomorphisms (it issomewhat related but quite di�erent from the methods of [4, Chapter 6℄, [3℄ and [5℄). Aftertensoring with Q, we show that this spetrum deomposes in SH(S) as the diret sums of�eigenspaes� for the Adams operations. Alternate interesting desriptions of stable operationson algebrai K-theory (and more general oriented theory) have been obtained by very di�erentmethods by Naumann, Østvær and Spitzwek in [33℄.We prove in setion 6 that these ideas an be used to obtain an homotopial variant ofsome Riemann-Roh theorems in the ase of a smooth and projetive morphism f : X → S.Basially, we prove that ertain Riemann-Roh formulas are satis�ed on zeroth K-groups ifand only if they are satis�ed on the whole higher algebrai K-theory. In that setion, wegive formulas for the group of morphisms BGL → HA[n] in SH(k) where k is a perfet �eldand HA the motivi Eilenberg-Ma Lane spetrum with oe�ients in A. This omputationgives a simple example of nonzero stably phantoms morphisms in the P1-stable homotopyategory SH(k): all morphisms BGL → HZ[1] are stably phantoms. There is an homologousomputation in the standard topologial stable homotopy ategory: this gives a more onreteexample than the one onstruted in [8, Proposition 6.10℄.If setion 6 stands as a signi�ant exeption, most of these results appeared in my thesis[36℄ and were announed in [38℄ (however, when di�erent proofs were available, my hoieshave tended to be di�erent). Hene, I would like to thank Yves André, Joseph Ayoub, Denis-Charles Cisinski, Frédéri Déglise, Dennis Eriksson, Hinda Hamraoui, Bruno Kahn, FloreneLeomte, Georges Maltsiniotis, Fabien Morel, Christophe Soulé, Burt Totaro, Jörg Wildeshausfor their useful omments or disussions.1 First unstable results1.1 StatementsIn this paper, we shall say that a sheme is regular if it is noetherian separated and that all itsloal rings are regular loal rings (see [40, IV �D℄). For any sheme S, the ategory of smoothand separated shemes of �nite type over S is denoted Sm/S.For regular shemes, all the standard de�nitions of algebrai K-theory agree. Then, wemay de�ne some objets in the ategory Sm/Sopp

Sets of presheaves of sets over Sm/S: forany natural number n, the presheaf that mapsX ∈ Sm/S to its nth algebrai K-group Kn(X)is denoted Kn(−). 3



Theorem 1.1.1 Let S be a regular sheme. For any natural transformation τ : K0(−) →
K0(−) of presheaves of sets on Sm/S suh that τ(0) = 0, there is a unique reasonable way tode�ne an extension of τ : Kn(−) → Kn(−) for all n.This theorem is a onsequene of the following A1-homotopy theoreti statement:Theorem 1.1.2 Let S be a regular sheme. Then, the anonial map indued by the isomor-phism of theorem 0.1 is a bijetion:

EndH(S)(Z × Gr)
∼
→ EndSm/SoppSets(K0(−)) .Indeed, if τ : K0(−) → K0(−) is a natural transformation, the theorem says that thereexists a unique morphism τ̃ : Z × Gr → Z × Gr in H(S) induing τ on K0(−). As Z × Grhas a struture of H-group (see [32, page 139℄), if we assume τ(0) = 0, then we see that τ̃ anbe identi�ed to an endomorphism of Z×Gr in H•(S). Suh endomorphisms not only induenatural transformations on K0(−) but also on Kn(−) for all n as one may evaluate them onhigher homotopy groups.This theorem applies to operations like the λ-operations λn for all n ∈ N [1, V 2.2 b℄,

γ-operations γn for all n ∈ N − {0} [1, V 3.2℄ and Adams operations Ψk [1, V 7.1℄ for all
k ∈ Z. Then, to onstrut these operations on higher K-groups, the only spei� informationwe need to know is how to de�ne them on K0, whih is usually easy using the presentation ofthese groups by generators and relations.Remark 1.1.3 One an prove similar results for Gr instead of Z × Gr: endomorphisms of
Gr in H(S) identify to endomorphisms of K̃0(−) in Sm/SoppSets where K̃0(X) is the kernelof the rank map K0(X) → Zπ0(X). Moreover, in the situation of theorem 1.1.1, if we use thefat that the loop spae RΩ(Z) of Z is •, we see that τ : Kn(−) → Kn(−) for n ≥ 1 onlydepends on the natural transformation K̃0(−) → K̃0(−) indued by τ : K0(−) → K0(−).The operations onsidered above are unary operations on algebrai K-theory. One mayalso onsider operations involving several operands (e.g., the produt law K0(X)×K0(X) →
K0(X)):Theorem 1.1.4 Let S be a regular sheme. Let n be a natural number. Then, the anonialmap is a bijetion:

HomH(S)((Z × Gr)n,Z × Gr) → HomSm/Sopp
Sets(K0(−)n,K0(−)) .As we shall see, the method of the proof allows to onsider not only operations on algebrai

K-theory but also maps from algebrai K-theory to other ohomology theories. However, weneed to know that the ohomology theory is represented by an objet in H•(S), whih meansthat it an be expressed as homotopy presheaves of an objet in H•(S):De�nition 1.1.5 Let S be a noetherian sheme. Let E be an objet in H(S). We let π0E bethe presheaf of sets on Sm/S de�ned by π0E(X) = HomH(S)(X,E). If E belongs to H•(S)and n is any natural number, we de�ne a presheaf πnE by the formula πnE(X) = π0RΩnE,where RΩ: H•(S) → H•(S) is the loop spae funtor.Theorem 0.1 states that for any natural number n and S a regular sheme, we have aanonial isomorphism πn(Z × Gr) ≃ Kn(−) in Sm/Sopp
Sets.4



Theorem 1.1.6 Let S be a regular sheme. Let E be an objet in H•(S). If we assume that
E satis�es property (K) (a mild tehnial assumption, see de�nition 1.2.2), then the anonialmap is a bijetion:

HomH(S)(Z × Gr, E)
∼
→ HomSm/SoppSets(K0(−), π0E) .This set of morphisms an also be identi�ed to an in�nite produt indexed by Z of opies ofthe projetive limit lim(d,r)∈N2 HomH(S)(Grd,r, E).As above, there is a similar homotopial desription of natural transformations K0(−)n →

π0E involving n operands.We may fous on the 1-operand ase. If a natural transformation τ : K0(−) → π0E veri�es
τ(0) = 0, it orresponds to a unique morphism Z×Gr → E in H•(S). Then, in the same waywe mentioned it for operations on algebrai K-theory, τ will indue natural transformations
τ : Kn(−) → πnE for all n.The proof of theorems 1.1.2, 1.1.4 and 1.1.6 will also supply a onrete omputation of theset of all operations on algebrai K-theory. In the 1-operand ase, it gives:Theorem 1.1.7 Let S be a regular sheme. The sets of endomorphisms EndH(S)(Z×Gr) ≃

EndSm/SoppSets(K0(−)) an be identi�ed to the produt RZ of an in�nite number of opiesof a ring R = K0(S)[[γ̃1, γ̃2, . . . ]] of formal power series with an in�nite number of variablesand oe�ient ring K0(S). The elements γ̃n are related to the usual γ-operations on algebrai
K-theory.The omputation of the set of morphisms Z × Gr → RΩi(Z × Gr) in H(S) is given by asimilar formula, where K0(S) is replaed by Ki(S).1.2 ProofsLemma 1.2.1 Let S be a noetherian sheme. Let E be a group objet in H•(S) ( i.e., E isan H-group). Let (Xi)i∈I be a diret system indexed by a direted ordered set I. The olimitof this system in the ategory of presheaves over Sm/S is denoted X . We assume that I hasa o�nal sequene ( i.e., there exists a funtor x : N → I suh that for any i ∈ I, there exists
n ∈ N suh that i ≤ xn). Then, there is an exat sequene of groups.

1 → R1lim
i∈I

π1E(Xi) → HomH(S)(X , E) → lim
i∈I

π0E(Xi) → 1 .Using a o�nal sequene N → I, one may assume that I = N. In that ase, it followsfrom the usual Milnor exat sequene [17, Proposition VI.2.15℄.De�nition 1.2.2 With the notations of lemma 1.2.1, we say that the diret system (Xi)i∈Idoes not unveil phantoms in E if the group R1lim
i∈I

π1E(Xi) vanishes. We say that E satis�esproperty (K) if the diret system (Grd,r)(d,r)∈N2 does not unveil phantoms in E. More gen-erally, for any natural number n, we say that E satis�es property (K) with n operands if thediret system (
∏n

i=1 Grdi,ri
)(d1,r1,...,dn,rn)∈N2n does not unveil phantoms in E.Thus, whenever an indutive system (Xi)i∈I does not unveil phantoms in E, the datumof a morphism colim

i∈I
Xi → E in H(S) is equivalent to the datum of a ompatible family ofmorphisms Xi → E in H(S). 5



De�nition 1.2.3 We let T be the family of morphisms in Sm/S of the form T → X where
T is a torsor under a vetor bundle over X.Loally on the base, morphisms in T are of the form An×X → X. This implies that theyindue A1-weak equivalenes. The important fat we need about this family of maps is:Theorem 1.2.4 (Jouanolou [23, Lemme 1.5℄, Thomason [49, Proposition 4.4℄)Let S be a regular sheme. For any X ∈ Sm/S, there exists a morphism T → X in Tsuh that T is an a�ne sheme.We require that the sheme T is a�ne; as S is separated, it implies that T → S in ana�ne morphism, but the onverse impliation is not true. In the sequel, the word �a�ne� willbe used in that absolute sense only.De�nition 1.2.5 Let S be a regular sheme. Let X be a presheaf of sets on Sm/S. Then
X de�ned an objet in H(S) and a presheaf of sets π0X is attahed to it. We say that π0Xis generated by X up to T if for any a�ne sheme U ∈ Sm/S, the map X (U) → π0X (U) isonto.We will give an explanation for this terminologial hoie in remark 1.2.7. First, we seehow one may apply this de�nition to algebrai K-theory:Lemma 1.2.6 Let S be a regular sheme. If X = Z×Gr, then π0X is generated by X up to
T . The same onlusion applies to (Z × Gr)n for any natural number n and also to (P∞)n.Obviously, the ondition we have to hek is stable under �nite produts. Then, we shall�rst fous on the ase X = Z×Gr. It is impliit in the proof of theorem 0.1 that for any n ∈ Zand (d, r) ∈ N2, if we onsider the anonial inlusion ιd,r,n : Grd,r = {n} × Grd,r → Z × Gras an element in X (Grd,r), its image in π0X (Grd,r) orresponds to the lass [M′

d,r]− d+n in
K0(Grd,r) under the isomorphism of theorem 0.1, where M′

d,r is the universal vetor bundleof rank d on Grd,r. Then, the lemma follows from the obvious fat that if U is a onneteda�ne sheme in Sm/S, any lass x ∈ K0(U) is of the form x = [M]− d+n for some integers
d, n, and M a vetor bundle of rank d on U . Indeed, as U is a�ne, M is isomorphi to adiret fator of Od+r

U for a big enough r. Then, by de�nition of Grassmann varieties, thereexists an S-morphism f : U → Grd,r suh that f⋆M′
d,r ≃ M. It follows that the element in

X (U) orresponding to the omposition ιd,r,n ◦ f : U → X maps to x = f⋆([M′
d,r − d+ n]) in

π0X (U) ≃ K0(U).The ase X = P∞ is similar: it uses the identi�ation π0P
∞ = Pic(−), see [32, Proposi-tion 3.8, page 138℄.Remark 1.2.7 The ategory of presheaves on Sm/S ontains the full subategory of the at-egory of presheaves X suh that for any f : T → X in T , the map f⋆ : X (X) → X (T ) isa bijetion. This subategory an be identi�ed to the ategory of presheaves on the loalisedategory Sm/S[T −1] (see [15, Lemma I.1.2℄). For any presheaf X on Sm/S, there exists auniversal presheaf X [T −1] on Sm/S[T −1] equipped with a morphism X → X [T −1] (see [2,I 5.1℄). As π0X fators through Sm/S[T −1], the anonial morphism X → π0X indues amorphism X [T −1] → π0X . Using theorem 1.2.4, it is easy to hek that the ondition statedin de�nition 1.2.5 implies that X [T −1] → π0X is an epimorphism. The onverse impliation6



is also true, but we will not need it in the sequel. This is the reason why we hose to refer to�generation up to T � in the terminology.Moreover, the proof of lemma 1.2.6 atually shows that as a presheaf F on Sm/S[T −1]satisfying F (X ⊔ Y )
∼
→ F (X) × F (Y ) for all X and Y in Sm/S, K0(−) ≃ π0(Z × Gr) isgenerated by the elements ud,r + n for all (d, r) ∈ N2 and n ∈ Z.Remark 1.2.8 If is easy to dedue from theorem 1.2.4 that the loalised ategory Sm/S[T −1]is equivalent to SmAffS [H−1

A1 ] where SmAffS is the fullsubategory of Sm/S onsisting ofa�ne shemes and HA1 is the family of projetions X ×A1 → X for X ∈ SmAffS (see [25,�7.4℄). Hene, the ategory of T -invariant presheaves on Sm/S is equivalent to the ategoryof A1-invariant presheaves on SmAffS.Proposition 1.2.9 Let S be a regular sheme. Let E ∈ H•(S) be an H-group. Let (Xi)i∈Ibe a diret system in Sm/S that does not unveil phantoms in E. We let X be the olimit ofthis system in the ategory of presheaves over Sm/S. We assume that π0X is generated by Xup to T . Then, the following obvious maps are bijetions:
HomH(S)(X , E) ∼

α
//

∼
γ

**TTTTTTTTTTTTTTTT

HomSm/SoppSets(π0X , π0E)

∼β
��

lim
i∈I

π0E(Xi)Using lemma 1.2.1, we see that the assumption that (Xi)i∈I does not unveil phantoms on
E preisely says that γ is a bijetion. To �nish the proof, we only have to prove that β is an in-jetion. To do this, we may observe that lim

i∈I
π0E(Xi) identi�es to HomSm/SoppSets(X , π0E) ≃

HomSm/SoppSets(X [T −1], π0E). Then, β identi�es to the map obtained by applying the fun-tor HomSm/SoppSets(−, π0E) to the anonial map X [T −1] → π0X , whih is an epimorphismas X → π0X is an epimorphism up to T (see remark 1.2.7). Thus, β is injetive.At this stage, theorem 1.1.6 is proved as lemma 1.2.6 implies that it is a speial ase ofproposition 1.2.9. To �nish the proof of theorems 1.1.1, 1.1.2 and 1.1.4, the remaining step isthe following lemma:Lemma 1.2.10 Let S be regular sheme. Let n be a natural number. The objet Z × Grsatis�es property (K) with n operands. This onlusion also applies to the loop spaes RΩj(Z×
Gr) for any j ∈ N.On the one hand we have to notie the tehnial fat that Z×Gr has a struture ofH-group(see [32, page 139℄). On the other hand, we have to prove the vanishing of the R1 lim of someprojetive systems. To do this, one may use the Mittag-Le�er ondition, whih is obviouslysatis�ed when all transition maps are onto. Then, we need to know that the anonial map
Kj+1(

∏n
i=1 Grd′i,r

′
i
) → Kj+1(

∏n
i=1 Grdi,ri

)) is onto whenever di ≤ d′i and ri ≤ r′i.An S-sheme X is ellular if there exists a sequene of losed subshemes ∅ = Z0 ⊂ Z1 ⊂
· · · ⊂ Zk = X of S suh that Zi−Zi−1 is isomorphi to an a�ne spae Ad over S for 1 ≤ i ≤ k.It is well known that Grassmann varieties are ellular (see [11℄) and it is easy to prove thefollowing formulas:

• if X is a smooth ellular S-sheme, then for any j ∈ N, Kj(S)⊗K0(S)K0(X)
∼
→ Kj(X);7



• if X is a smooth ellular S-sheme, T a regular sheme and T → S a morphism, then
K0(T ) ⊗K0(S) K0(X)

∼
→ K0(T ×S X);

• if X and Y are smooth ellular S-shemes, then K0(X) ⊗K0(S) K0(Y )
∼
→ K0(X ×S Y ).We see that we only have to prove that K0(Grd′,r′) → K0(Grd,r) is onto whenever d ≤ d′and r ≤ r′. One may also assume that S = Spec(Z). Then, for any tuple (d, r) ∈ N2,

K0(Grd,r) is generated as a λ-ring by the lass ud,r = [M′
d,r] − d (see [1, VI 4.6℄). With thenotations above, the lemma follows from the obvious fat that the inverse image of ud′,r′ bythe inlusion Grd,r → Grd′,r′ is ud,r.Remark 1.2.11 The partiular ase d = d′ = 1 in the proof shows that the diret system

(Pn)n∈N does not unveil phantoms in the objets RΩj(Z × Gr). This gives an interpreta-tion of morphisms P∞ → Z × Gr in H(S) as natural transformation Pic(−) → K0(−) in
Sm/SoppSets.To �nish the proof of theorem 1.1.7, we have to determine the struture of the ring
R = lim

(d,r)∈N2
K0(Grd,r). If we �x d, we know from [1, VI 4.10℄ that lim

r∈N
K0(Grd,r) ≃

K0(S)[[γ̃1, . . . , γ̃d]] where γ̃i is given by the ompatible family γi(ud,r). Then, R identi�es to
lim
d∈N

K0(S)[[γ̃1, . . . , γ̃d]]. One an easily see that the indued transition maps
K0(S)[[γ̃1, . . . , γ̃d, γ̃d+1]] → K0(S)[[γ̃1, . . . , γ̃d]]are obtained by making γ̃d+1 vanish. It proves that R identi�es to the ring of formal powerseries with an in�nite number of variables γ̃1, γ̃2, . . . and oe�ient ring K0(S).2 Algebrai struturesWe shall see that the previous results show that the algebrai strutures on the sets K0(X),

X ∈ Sm/S uniquely re�ne to strutures of the same type on Z × Gr in the ategory H(S).Thus, Z × Gr shall be endowed with the struture of a speial λ-ring with duality in H(S).In this setion, we shall use similar notions to those appearing in [9℄.2.1 Abstrat operators, formulas, algebrai struturesDe�nition 2.1.1 We de�ne a language L as the datum of a family of elements (li)i∈I alledabstrat operators, where eah of these operators is equipped with its arity ni ∈ N.De�nition 2.1.2 A formula of the language L = (li, ni)i∈I involving variables (xv)v∈V (V isassumed to be �nite) is the set of expressions indutively built from the following rules:
• for any v ∈ V , xv is a formula;
• for any i ∈ I, if F1, . . . , fni

are formulas, then li(F1, . . . , Fni
) is a formula.De�nition 2.1.3 An abstrat algebrai struture is the datum of a language L and of a familyof pairs (Ar, Br)r∈R of formulas of L involving variables in some �nite set Vr. These pairsare alled �relations� and shall be denoted Ar = Br.8



Example 2.1.4 The abstrat algebrai struture of group is de�ned as follows. The language
L is made of a 0-ary operator e (we may say that e is a onstant), a binary operator µ andan unary operator i. The relations are:

• µ(x, µ(y, z)) = µ(µ(x, y), z)) ;
• µ(e, x) = x ;
• µ(x, e) = x ;
• µ(x, i(x)) = e ;
• µ(i(x), x)) = e.Eah of these relations involves a subset of {x, y, z} as set of variables.2.2 Algebrai strutures on objetsDe�nition 2.2.1 Let L = (li, ni)i∈I be a language. An L-objet onsists of an objet X ofa ategory C suh that all �nite produts Xn exist and of a family of morphisms Xni → Xdenoted li, for all i ∈ I.A morphism of L-objets X → Y in a ategory C is a morphism F : X → Y in C suh thatfor any i ∈ I, the obvious diagram ommutes:

Xni

(F,...,F )
��

li
// X

F
��

Y ni
li

// YIf X is an L-objet, then one an indutively de�ne a morphism F : XV → X for anyformula F of L involving a �nite set of variables V .De�nition 2.2.2 Let S = (L, (Ar = Br)r∈R) be an abstrat algebrai struture. An objetequipped with an S-struture is an L-objet X in some ategory C suh that for any r ∈ R, themorphisms XVr → X de�ned by Ar and Br are equal. We may also say that X is an S-objetor that X is a model of S in the ategory C.We may de�ne the ategory of S-objets as a full subategory of the ategory of L-objets.Proposition 2.2.3 Let S be an abstrat algebrai struture. Let F : C → D be a funtor. Weassume that �nite produts exist in C and that F ommutes with these produts. If X is an
S-objet in C, then FX has a natural struture of an S-objet in D.Conversely, if the anonial map HomC(X

n,X) → HomD(F (Xn), FX) is a bijetion forany n ∈ N and some objet X of C, then an S-struture on FX uniquely arises from an
S-struture on X.Furthermore, let X and Y be two S-objets. We assume that for any n ∈ N, the map
HomC(X

n, Y ) → HomD(F (Xn), FY ) is a bijetion. Let f : X → Y be a morphism in C.Then, f is a morphism of S-objets in C if and only if Ff : FX → FY is a morphism of
S-objets in D.This is a pliantly true. 9



2.3 Strutures on Z× GrThe example 2.1.4 shows that there is an obvious abstrat algebrai struture whose mod-els in the ategory of sets are groups. The same applies to ommutative rings (with unit):the underlying language of the orresponding abstrat algebrai struture involves the 0-aryoperators 0 and 1, the unary operator − and the binary operators + and ×. Following [1,RRR I 1℄, if we add a family of unary operators (λn)n∈N, we an de�ne the abstrat algebraistrutures of λ-rings and of speial λ-rings. One may also introdue the abstrat algebraistruture of speial λ-rings with duality: we add an unary duality operator that should be aninvolution ommuting with the other operators.Theorem 2.3.1 Let S be a regular sheme. In the ategory H(S), there exists a uniquestruture of a speial λ-ring with duality on the objet Z × Gr suh that the orrespondingindued strutures of λ-rings with duality on K0(X) for all X ∈ Sm/S are the usual ones.For any X ∈ Sm/S, the set K0(X) is endowed with the struture of a speial λ-ring withduality [1, VI 3.2℄. All these strutures are ompatible with inverse image maps f⋆ : K0(X) →
K0(Y ) for morphisms f : Y → X. This shows that, as a presheaf of sets on Sm/S, K0(−) =
π0(Z × Gr) is endowed with the struture of a speial λ-ring with duality. Proposition 2.2.3and theorem 1.1.4 shows that it lifts to a unique struture of a speial λ-ring with duality on
Z × Gr in H(S).Proposition 2.3.2 Let f : Y → X be a morphism of regular shemes. Let Z×GrX ∈ H(X)(resp. Z × GrY ∈ H(Y )) be the speial λ-rings with duality de�ned in theorem 2.3.1. Thestrutures on Z × GrX indue a struture of speial λ-rings with duality on f⋆(Z × GrX).Then, the obvious isomorphism f⋆(Z×GrX) ≃ Z×GrY in H(Y ) is an isomorphism of speial
λ-rings with duality.We an use the onstrution of proposition 2.2.3 beause the funtor f⋆ : H(X) → H(Y )(see [32, page 108℄) ommutes with �nite produts. Using theorem 1.1.4, it su�es to omparethe two indued speial λ-rings with duality strutures on the presheaf K0(−) on Sm/Y . If fis smooth, one may argue by saying that the strutures on π0f

⋆(Z×GrX) are obtained fromthose on π0(Z ×GrX) by applying the �restrition� funtor Sm/Xopp
Sets → Sm/Y opp

Setsobtained by omposition with the �forgetful� funtor Sm/Y → Sm/X. In the general ase,we may observe that it su�es to hek that the two speial λ-rings strutures onsideredon K0(−) in Sm/Y opp
Sets agree on the �universal� elements ud,r + n ∈ K0(Grd,r,Y ) (seeremark 1.2.7) and this follows from the fat that the presheaves K0(−) on Sm/X or Sm/Yome from a presheaf of speial λ-rings with duality on the ategory of all regular shemes.Remark 2.3.3 Similar arguments an be used to prove that, through the interpretation ofoperations as formal power series (see theorem 1.1.7), the map f⋆ : EndH(X)(Z × GrX) →

EndH(Y )(Z × GrY ) orresponds to the extension of salars of formal power series along themorphism f⋆ : K0(X) → K0(Y ).2.4 Strutures on higher K-groupsLet S be a regular sheme. We have onstruted strutures on Z × Gr in H(S). For any
X ∈ H(S), they indue strutures on the set HomH(S)(X ,Z × Gr), whih we denote K0(X ).10



As a result, these sets K0(X ) are speial λ-rings with duality. To extend some strutures tothe higher K-groups Kn(X ) = HomH•(S)(S
n∧X+,Z×Gr), one has to re�ne some morphismsin H(S) to morphisms in H•(S).Theorem 1.1.2 and the subsequent omments shows that the families of operations (Ψk)k∈Z,

(λn)n∈N and (γn)n∈N−{0} and more generally all operations τ : K0(−) → K0(−) suh that
τ(0) = 0 naturally at on these sets Kn(X ). Moreover, relations known at the level of K0implies similar relations on all the K-groups: for instane, the formula Ψk ◦ Ψk′

= Ψkk′ issatis�ed by the orresponding operations on K⋆(X ).This also applies to operations involving several operands like + and ×. The ommutativegroup struture on Z×Gr in H(S) omes from a ommutative group struture on Z×Gr in
H•(S). Using this H-group struture, we obtain abelian group strutures on the sets Kn(X )for all n ∈ N. Using the argument of [31, page 74℄, the produt law × : (Z×Gr)2 → Z×Grin H(S) an easily be re�ned to a pairing µ : (Z × Gr) ∧ (Z × Gr) → Z × Gr, whih induepairings Ki(X ) × Kj(Y) → Ki+j(X × Y) for X and Y in H(S). Using this onstrutionin the ase Y = X and the diagonal morphism X → X × X , we get a produt law on thegraded abelian group K⋆(X ). It formally follows from the ommutative ring struture on
Z × Gr in H(S) that with these de�nitions, K⋆(X ) is a graded ommutative ring. One aneasily hek ompatibilities between the λ-operations and the produt. For instane, if k ∈ Z,the fat that Ψk is an endomorphism of the ring Z × Gr in H(S) shows that the operation
Ψk : K⋆(X ) → K⋆(X ) is an endomorphism of graded rings.Example 2.4.1 The following onfusing example should warn the reader against misinterpre-tations of the previous results. Let τ : K0(−) → K0(−) be the operation de�ned by τ(x) = x2for any x ∈ K0(X) and X ∈ Sm/S. This operation satis�es τ(0) = 0; then it indues maps
τ : Kn(X) → Kn(X) for all n ∈ N and X ∈ Sm/S. However, this operation on higher K-groups is unrelated to the squaring map Kn(X) → K2n(X) unless n = 0. Indeed, a simpleomputation using the splitting priniple shows that τ = Ψ2 +2λ2. To the latter, we assoiatedmaps Kn(X) → Kn(X) rather than maps Kn(X) → K2n(X).3 Comparison with previous onstrutions3.1 Models of algebrai K-theoryDe�nition 3.1.1 Let S be a regular sheme. A andidate model of algebrai K-theory (over
S) is an objet K ∈ H•(S) equipped with a morphism αK : K0(−) → π0K of presheaves ofpointed sets on Sm/S. We say that (K, αK) is strit if αK is an isomorphism.For suh an objet K, X ∈ H(S) and n ∈ N, we de�ne KK

n (X ) to be the set of morphisms
HomH•(S)(S

n ∧ X+,K).A morphism of andidate models (K, αK) → (K′, αK′) is the datum of a morphism f : K →
K′ in H•(S) suh that αK′ = π0(f) ◦ αK.Proposition 3.1.2 Candidate models of algebrai K-theory an be assoiated to the followingde�nitions of algebrai K-theory :

• Quillen's Q-onstrution [34, 7.1℄;
• Waldhausen's [47, �1.9℄; 11



• Thomason-Trobaugh's [43, 3.5.3℄.For eah of these onstrutions, there is a well-de�ned presheaf K of pointed simpliial setsof Sm/S suh that the orresponding K-groups are the homotopy groups of the spaes K(X)for all X ∈ Sm/S. This presheaf K de�nes an objet in H•(S) and there are anonial mapsfor all X ∈ Sm/S (see de�nition 1.1.5) :
π0(K(X)) → HomH•(S)(X,K) = (π0K)(X) .For any of these de�nitions of algebrai K-theory, in degree zero, π0(K(X)) is identi�ed tothe Grothendiek group K0(X) of the exat ategory of vetor bundles on X. Then, we getthe expeted map αK : K0(−) → π0K in Sm/SoppSets•.Thanks to theorem 0.1, the objet Z×Gr is endowed with a struture of a (strit) andidatemodel of algebrai K-theory. The map αZ×Gr : K0(−) → π0(Z×Gr) has the (harateristi)property that the lass ud,r +n ∈ K0(Grd,r) is mapped to the homotopy lass of the inlusion

Grd,r ⊂ {n} × Gr ⊂ Z × Gr.The following proposition shows that this model (Z×Gr, αZ×Gr) plays an almost universalrole:Proposition 3.1.3 Let S be a regular sheme. Let (K, αK) be a andidate model of algebrai
K-theory over S. Then, there exists a morphism (Z × Gr, αZ×Gr) → (K, αK) of andidatemodels of algebrai K-theory. If this morphism is an isomorphism, then it is unique and weshall say that (K, αK) is a genuine model of algebrai K-theory.May K not be an H-group, the surjetivity part of the Milnor exat sequene stated inlemma 1.2.1 is still true. Then, there exists a morphism f : Z × Gr → H in H•(S) suh thatthe morphism of presheaves αK and π0(f) ◦ αZ×Gr in HomSm/SoppSets(K0(−), π0K) oinideon the universal lasses ud,r + n ∈ K0(Grd,r). Then remark 1.2.7 implies that that they areequal whih proves that f is a morphism of andidate models of algebrai K-theory.If f is an isomorphism, then we may replae (K, αK) by (Z×Gr, αZ×Gr) and the uniquenessof f means that there exists a unique endomorphism of Z×Gr whih indues the identity on
π0(Z × Gr) = K0(−), whih is known thanks to theorem 1.1.2.Corollary 3.1.4 Let S be a regular sheme. If (K, αK) and (K′, αK′) are two genuine modelsof algebrai K-theory, they are anonially isomorphi and the assoiated K-groups are alsoanonially isomorphi for all X ∈ H(S) and n ∈ N :

KK
n (X ) ≃ KK′

n (X ) .It follows from the fat that both genuine models are anonially isomorphi to (Z ×
Gr, αZ×Gr).Proposition 3.1.5 Let S be a regular sheme. The andidate models de�ned in proposi-tion 3.1.2 are genuine models of algebrai K-theory.

12



The proofs of the omparison theorems between Quillen's, Waldhausen's and Thomason-Trobaugh's onstrutions ([47, 1.9℄ and [43, proposition 3.10℄) are funtorial enough to implythat the three orresponding presheaves of pointed simpliial sets indue isomorphi objetsin the pointed homotopy ategory of the site Sm/SNis. Moreover, these objets satisfy theNisnevih desent property [43, theorem 10.8℄ and the homotopy invariane of algebrai K-theory for regular shemes [34, �6℄ shows that they are A1-loal. As a result, if K is one of thesepresheaves of pointed simpliial sets, the obvious maps πn(K(X)) → HomH•(S)(S
n ∧X+,K)are bijetions for all X ∈ Sm/S. In partiular, the map αK : K0(−) → π0K, whih is partof the datum of a andidate model, is an isomorphism. These andidate models are stritones. Then, the proposition follows from the fat that the objet K assoiated to Quillen's

Q-onstrution is isomorphi to Z × Gr, whih is impliit in the proof of theorem 0.1.3.2 ProdutsProposition 3.2.1 Let S be a regular sheme. For all X ∈ Sm/S, (i, j) ∈ N2, the pairing
Ki(X) × Kj(X) → Ki+j(X) de�ned in subsetion 2.4 is the same as the one de�ned byWaldhausen [47℄.First, thanks to the results of subsetion 3.1, it truly makes sense to say that these pairingsoinide as the di�erent �avours of models of algebrai K-theory give anonially isomorphigroups. Then, as Waldhausen's produt on K⋆(X) obviously extends the standard one on
K0(X), theorem 1.1.4 shows that we only need to observe that Waldhausen's pairing is fun-torial enough to be de�ned at the level of presheaves of pointed simpliial sets on Sm/S andthus indues a morphism K × K → K in H•(S) where K is the model of algebrai K-theoryassoiated to Waldhausen's de�nition.Remark 3.2.2 Using similar arguments, one may prove that the pairing Ki(X) ×Kj(X) →
Ki+j(X) oinides with the one de�ned by Quillen (only for i = 0 or j = 0). For i 6= 0,
j 6= 0 and X a�ne, one may also ompare them with the produt de�ned by Loday using the
+-onstrution [30℄; the arguments would be similar to the arguments in subsetion 3.3 below.In partiular, Waldhausen's pairing oinide with those de�ned by Quillen and Loday. Thisomparison was already known (see [48℄).3.3 Operations involving one operandIn his artile [42℄, Soulé de�ned an ation of RZGL = lim

d∈N
RZGLd on the higher algebrai

K-theory of shemes, where RZGLd is the Grothendiek group de�ned by Serre [39℄. If we �xa regular base sheme S, theorem 1.1.1 introdues suh an ation on K-theory of smooth S-shemes for elements τ ∈ EndSm/Sopp
Sets•(K0(−)). As we would like to state a ompatibilitybetween these two onstrutions, we shall introdue a ommon input for both of them.De�nition 3.3.1 Let d ∈ N. We let Univd be the universal speial λ-ring equipped with anelement idd satisfying the following onditions:(i) λd(idd) is invertible;(ii) λk(idd) vanishes for k ≥ d+ 1. 13



The speial λ-ring Univ∞ is the projetive limit of the system (Univd)d∈N where the transitionmap Univd+1 → Univd maps idd+1 to idd + 1.Obviously, for any d, there is a anonial morphism of speial λ-rings Univd → RZGLdthat maps idd to the lass of the tautologial representation id : GLd → GLd of rank d ofthe group sheme GLd. Serre's omputation [39, �3.8℄ shows that this sequene of morphismsonsists of isomorphisms. Then, the anonial morphism Univ∞ → RZGL is an isomorphism.We may also use the universal properties of the speial λ-rings Univd to de�ne a morphismof speial λ-rings Univ∞ → K0(Gr) = HomH(S)(Gr,Z×Gr). It is indued by the morphisms
Univd → HomH(S)(Grd,∞,Z × Gr) ≃ lim

r∈N
K0(Grd,r)sending idd to the ompatible family of lasses ([M′

d,r])r∈N (see the proof of lemma 1.2.6 forthis notation).We let (Univ∞)0 and (RZGL)0 be the kernel of the rank morphism from these groups to Z.Similarly, we denote K̃0(Gr) the kernel of the restrition to the base-point K0(Gr) → K0(S).The omparison theorem announed above is the following:Theorem 3.3.2 Let S be a regular sheme. For any n ≥ 1, the following diagram ommutes:
(Univ∞)0

∼

uukkkkkkkkkkkkkkk

))RRRRRRRRRRRRRR

(RZGL)0

))SSSSSSSSSSSSSS
K̃0(Gr)

uullllllllllllll

EndSm/SoppAb(Kn(−)) ,where the two upper maps are the ones mentioned above, the lower-left one is the one de-�ned by Soulé and the lower-right one arises from theorem 0.1. (Thanks to previous results,this lower-right map an be interpreted as the anonial map EndSm/Sopp
Sets•(K̃0(−)) →

EndSm/SoppAb(Kn(−)).)The strategy of the proof onsists in the onstrution of an horizontal map (RZGL)0 →
K̃0(Gr) whih makes both upper and lower triangles ommute. This map is indued by amorphism RZGL → K0(Gr) and is a partiular ase of a more general onstrution:Proposition 3.3.3 Let G be a smooth group sheme over Spec(Z). We let RZG be theGrothendiek group of �nitely generated free Z-modules endowed with a linear ation of G (see[39, �2.3℄). We let BG ∈ H•(S) be the lassifying spae of G (where G is onsidered as a sheafof groups on Sm/SNis). Let ρ : G → GL(M) be a free �nitely generated Z-module endowedwith a linear ation of G (we shall say thatM is a representation of G). The hoie of a Z-basisof M identi�es ρ with a morphism of group shemes G→ GLd over Spec(Z) where d = rkM .We let [ρ] ∈ HomH(S)(BG,Z × Gr) be the morphism obtained from Bρ : BG → BGLd byomposing with the anonial morphism BGLd ≃ Grd,∞ ≃ {d} × Grd,∞ ⊂ Z × Gr. Then,this assignment ρ 7−→ [ρ] does not depend on the the hoie of Z-bases and indues a morphismof speial λ-rings with duality RZG→ HomH(S)(BG,Z × Gr) = K0(BG).14



The hoie of two di�erent Z-bases of a representation M of G would lead to morphisms
G → GLd whih would di�er by an inner automorphism of GLd (indued by an element of
GLd(Z)): the assoiated morphisms BG→ BGLd are equal in H(S) (and also in H•(S) afteromposition with BGLd → BGL∞ beause BGL∞ is an H-group).To prove that ρ 7−→ [ρ] indues a morphism at the level of the Grothendiek group ofrepresentations of G, we use the following two lemmas:Lemma 3.3.4 Let +: BGL∞×BGL∞ → BGL∞ be the H-group struture oming from theusual group struture on K̃0(−) (see remark 1.1.3). For any d, d′ ≥ 0, the following diagramommutes in H•(S):

BGLd × BGLd′

��

B⊕
// BGLd+d′

��

BGL∞ × BGL∞
+

// BGL∞ ,where the vertial morphisms are the obvious ones and the upper one is the morphism B⊕dedued from the �diret sum� morphism ⊕ : GLd × GLd′ → GLd+d′ .The orrespondene between GLd-torsors on shemes and rank-d vetor bundles providesa funtorial map H1(X,GLd) → K̃0(X) (we substrat the rank in K0(X) so as to get elementsin K̃0(X)). An obvious veri�ation leads to the following ommutative square whih statesa ompatibility between this orrespondene, the sum in K̃0(X) and the map indued onohomology by the morphism ⊕ : GLd × GLd′ → GLd+d′ :
H1(X,GLd) ×H1(X,GLd′)

��

⊕⋆
// H1(X,GLd+d′)

��

K̃0(X) × K̃0(X)
+

// K̃0(X)The two morphisms we want to ompare are in HomH(S)(BGLd × BGLd′ ,BGL∞) ≃

lim(r,r′) K̃0(Grd,r × Grd′,r′). Then, the lemma follows from the ommutativity mentionedabove in the ase where X is a produt of Grassmann varieties and where the torsors orre-sponds to the universal vetor bundles on these varieties.Lemma 3.3.5 Let 0 → ρ′ → ρ→ ρ′′ → 0 be an exat sequene of representations of G. Then,
[ρ] = [ρ′ ⊕ ρ′′] in HomH(S)(BG,Z × Gr).Let d′ = rkρ′, d = rkρ and d′′ = rk ρ′′. Using the obvious funtoriality of the onstrutionswith respet to the group G, we may assume that we are in the universal situation where
ρ : G → GLd is the inlusion of the subgroup of matries of the form g =

(
g′ h
0 g′′

) where
g′ ∈ GLd′ , g′′ ∈ GLd′′ and h is an d′-by-d′′ matrix and where the representations ρ′ and ρ′′orrespond to the obvious morphisms G→ GLd′ and G→ GLd′′ .Let D = GLd′ × GLd′′ be the subgroup of G onsisting of matries of the previousform suh that h = 0. Obviously, the restrition of the representations ρ and ρ′ ⊕ ρ′′ from
G to D are isomorphi. Then, to �nish the proof, it su�es to know that the restritionmap K0(BG) → K0(BD) is an injetion. Indeed, this map is a bijetion beause D → G15



is an A1-weak equivalene and thus BD → BG is also an A1-weak equivalene (see [32,Proposition 2.14, page 74℄).We have onstruted a morphism of abelian groups RZG → K0(BG). To �nish the proofof the proposition, it remains to show that this is a morphism of speial λ-rings with duality.The ompatibility of the onstrution with external powers and duality an be heked in thesame way as we did it for diret sums (see lemma 3.3.4).To prove theorem 3.3.2, we apply proposition 3.3.3 to the ases G = GLd for all d. Itprovides a morphism of speial λ-rings RZGLd → K0(Grd,∞). Taking the projetive limit overall d and onsidering the rank-0 part leads to the expeted morphism (RZGL)0 → K̃0(Gr).The universal property of Univd and the fat that the morphisms RZGLd → K0(Grd,∞) aremorphisms of speial λ-rings shows that the upper triangle ommutes. The fat that the lowertriangle ommutes follows easily from the very de�nition in Soulé's paper [42℄.4 Virtual ategoriesVirtual ategories were introdued by Deligne in [10℄. They are re�nements of K0-groups.More preisely, if X ∈ Sm/S (S regular), the ategory V(X) is identi�ed to the fundamentalgroupoid of K(X) where K is some A1-�brant genuine model of algebrai K-theory. Anyvetor bundle E on X de�nes an objet E of the ategory V(X) whose isomorphism lassorresponds to [E ] in K0(X). When we have a short exat sequene 0 → E ′ → E → E ′′ → 0,we not only have an equality of lasses [E ] = [E ′⊕E ′′], whih means that E and E ′⊕E ′′ beomeisomorphi in V(X) but we have a spei� isomorphism E ≃ E ′ ⊕ E ′′ in this ategory V(X).4.1 The Thom spetrum of a virtual bundleThe onstrution of this paragraph will be used only in �6.1.3. It appears here beause itfavours the understanding of virtual ategories.Proposition 4.1.1 Let X be a sheme. The onstrution of the Thom spetrum ThX E of avetor bundle E on X (see [32, De�nition 2.16, page 111℄) extends to a funtor ThX : V(X) →
SH(X).(See also [6, Théorème 1.5.18℄.) One may �rst hek that the Thom spetrum of a vetorbundle is invertible for the ∧-produt in SH(X); one is redued to the ase of a trivial bundlebeause the invertibility an be heked loally for the Zariski topology on X. Then, using theuniversal property of V(X) as a Piard ategory, one has to de�ne an isomorphism ThX E ′ ∧
ThX E ′′ ≃ ThX E for any short exat sequene 0 → E ′ → E → E ′′ → 0 of vetor bundles. Ifthe sequene splits, a splitting of it gives suh an isomorphism (see [32, Proposition 2.17, page112℄) and expliit A1-homotopies show that it is independant of the splitting. The general aseredues to this beause we an use a torsor T → X under a vetor bundle suh that the inverseimage of the sequene splits over T . If Jouanolou's trik is available (see theorem 1.2.4), wemay use it; otherwise, as I learned from Dennis Eriksson, we an always use the sheme whihparametrises the setions of E → E ′′: it is a torsor under the vetor bundle Hom(E ′′, E ′). Tohek the needed oherene properties, we may split a �nite number of short exat sequenesof vetor bundles as above; then, it beomes straightforward.16



De�nition 4.1.2 Let f : X → S be a smooth morphism between noetherian shemes. Propo-sition 4.1.1 de�nes a funtor ThX : V(X) → SH(X). We also denote ThX : V(X) → SH(S)the funtor obtained by omposition with f♯ : SH(X) → SH(S) (see [37, Proposition 4.4℄).4.2 Inverting primes on Z ×GrDe�nition 4.2.1 Let S be a regular sheme. Let a ∈ N − {0}. For any (d, r) ∈ N2,we de�ne a morphism Grd,r → Grad,ar whih sends an admissible subbundle M′ ⊂ On(n = d + r) of rank d to δa,n(M′⊕a) where δa,n : (On)⊕a → Oan is the isomorphism thatsends (s11, . . . , s
1
n), . . . , (sa

1, . . . , s
a
n) to (s11, . . . , s

a
1, . . . , s

1
n, . . . , s

a
n). This ompatible family ofmorphisms indues a morphism ma : Gr → Gr of presheaves of pointed sets. We also denote

ma : Z × Gr → Z × Gr the morphism whih is the multipliation by a on Z and ma on Gr.Lemma 4.2.2 Let a and b be two positive natural numbers. Then, the endomorphisms maband ma ◦mb of Z × Gr are equal in the ategory of presheaves of pointed sets.De�nition 4.2.3 For any x ∈ N − {0}, we set 1
x(Z × Gr) = Z × Gr. If y ∈ N − {0} is amultiple of x, the endomorphism my/x of Z×Gr de�nes a anonial morphism 1

x(Z×Gr) →
1
y (Z × Gr).Lemma 4.2.2 says that this de�nes a diret system ( 1

x(Z × Gr))x∈N−{0} of sheaves ofpointed sets of Sm/S. It is indexed by N − {0}, whih is ordered by divisibility.De�nition 4.2.4 Let n be a supernatural number (see [41, �I.1.3℄). We denote (Z × Gr)[ 1
n ]the olimit of the system 1

x(Z × Gr) where x varies in the set of positive natural numbersdividing n∞.Proposition 4.2.5 Let S be a regular sheme. Let i ∈ N. Let n be a supernatural number.Then, the anonial maps are bijetions:
HomH(S)(Z ×Gr,RΩi(Z × Gr)[ 1

n ])
∼
→ HomSm/SoppSets(K0(−),Ki(−)[ 1

n ]) ,
HomH(S)((Z × Gr)[ 1

n ],RΩi(Z × Gr)[ 1
n ])

∼
→ HomSm/SoppSets(K0(−)[ 1

n ],Ki(−)[ 1
n ]) .A variant of lemma 1.2.10 shows that RΩi(Z × Gr)[ 1

n ] satis�es property (K). Hene,theorem 1.1.6 gives the �rst bijetion. The seond bijetion needs additional arguments.From lemma 1.2.6, it is easy to show that (Z × Gr)[ 1
n ] generates π0((Z × Gr)[ 1

n ]) up to T .The de�nition also gives an expression of (Z × Gr)[ 1
n ] as the olimit of some diret system

(Xi)i∈I of representable sheaves, where I is an ordered set whih has a o�nal sequene.Then, using proposition 1.2.9, we have to show that (Xi)i∈I does not unveil phantoms in
RΩi(Z × Gr)[ 1

n ]. Reasoning like in the proof of lemma 1.2.10, it su�es to hek that fora natural number a dividing a power of n, the morphisms ma,d,r : Grd,r → Grad,ar induesurjetions m⋆
a,d,r : K0(Grad,ar)[

1
n ] → K0(Grd,r)[

1
n ]. This is true beause K0(Grd,r)[

1
n ] isgenerated by ud,r as a K0(S)[ 1

n ]-λ-algebra and m⋆
a,d,r(uad,ar) = aud,r.We leave the variants involving several operands to the reader.

17



4.3 Operations on virtual ategoriesDe�nition 4.3.1 Let S be a regular sheme. Let n be a supernatural number. We let V(−)[ 1
n ]be the presheaf of groupoids that sends X ∈ Sm/S to the fundamental groupoid of K[ 1

n ](X)where K[ 1
n ] is an A1-�brant replaement of (Z × Gr)[ 1

n ].Theorem 4.3.2 Let n be an even supernatural number. Let τ : K0(−)[ 1
n ] → K0(−)[ 1

n ] bea morphism in Sm/Spec(Z)oppSets. Then, up to a unique isomorphism, we an de�ne afamily of funtors τ̃X : V(X)[ 1
n ] → V(X)[ 1

n ] for X ∈ Sm/Spec(Z) whih indues τ on sets ofisomorphisms lasses in V(−)[ 1
n ] and suh that for any morphism f : Y → X in Sm/Spec(Z),it satis�es the equality f⋆ ◦ τ̃X = τ̃Y ◦ f⋆. (Variants involving several operands are also true.)From proposition 4.2.5, we know that τ orresponds to an endomorphism of K[ 1

n ] in
H(Spec(Z)). As K[ 1

n ] is A1-�brant, τ lifts to a morphism τ̃ : K[ 1
n ] → K[ 1

n ]. Passing to funda-mental groupoids, we get a family of funtors τ̃X : V(X)[ 1
n ] → V(X)[ 1

n ] for X ∈ Sm/Spec(Z).We let E = hom(K[ 1
n ],K[ 1

n ]) be the simpliial set of endomorphisms of K[ 1
n ] (it is given bythe simpliial struture). The morphism τ̃ orresponds to a 0-simplex in E. If τ̃ ′ : K[ 1

n ] → K[ 1
n ]is in the same homotopy lass as τ̃ , the hoie of an homotopy (i.e., a path between τ̃ and

τ̃ ′ in E gives an isomorphism between the assoiated families of funtors (τ̃X) and (τ̃ ′X). Thequestion is whether this isomorphism is uniquely determined or not. It will be so if thereexists a unique homotopy lass of paths τ̃ → τ̃ ′. As E is an H-group, it means that theonneted omponents of E are simply onneted, i.e., π1E = 0. This group identi�es to
HomH(Spec(Z))(K[ 1

n ],ΩK[ 1
n ]), whih identi�es to HomSm/ Spec(Z)oppSets(K0(−)[ 1

n ],K1(−)[ 1
n ]).To prove that this group vanishes, we an use proposition 1.2.9 whih expresses it as aprojetive limit of some groups K1(Grd,r)[

1
n ]. The result then follows from the fat that

K1(Z) ≃ Z/2Z.Remark 4.3.3 In theorem 4.3.2, we may replae Sm/Spec(Z) by any small full subategory
Reg of the ategory of regular shemes. Indeed, we may assume that Spec(Z) ∈ Reg andthat for any S ∈ Reg, objets in Sm/S belong to Reg. Then, we may work in the A1-homotopy ategory H(Reg) of the site RegNis equipped with the interval A1. Argumentsleading to theorem 4.3.2 an be made with the ategory H(Reg) instead of H(Spec(Z)). Wemay also dedue results for Reg from the ase of Sm/Spec(Z) by using the fully faithfulfuntor p⋆ : H(Spec(Z)) → H(Reg) assoiated to the obvious reasonable ontinuous map ofsites p : RegNis → Sm/Spec(Z)Nis.5 Additive and stable results5.1 The splitting prinipleNow, we shall fous on natural transformations K0(−) → K0(−) whih are ompatible withthe abelian group strutures on K-groups, i.e., morphisms in Sm/SoppAb rather than in
Sm/Sopp

Sets. From theorem 1.1.4 and proposition 2.2.3, we know that these additive oper-ations preisely orrespond to endomorphisms of Z× Gr as an H-group (i.e., a group objetin H•(S)).To ompute these additive transformations, we shall use the �splitting priniple�. We let
Pic(−) be the presheaf of sets on Sm/S (for a regular sheme S) that maps U ∈ Sm/S tothe Piard group Pic(U), onsidered as a set. We denote c : Pic(−) → K0(−) the morphism18



in Sm/Sopp
Sets that maps the isomorphism lass of a line bundle L to the lass [L] in theGrothendiek group of vetor bundles.Proposition 5.1.1 Let S be a regular sheme. For any integer i, the map indued by c
c⋆ : HomSm/SoppAb(K0(−),Ki(−)) → HomSm/SoppSets(Pic(−),Ki(−))is a bijetion. Moreover, the latter group identi�es to

HomH(S)(P
∞,RΩi(Z × Gr)) ≃ lim

n
Ki(P

n) ≃ Ki(S)[[U ]] ,where U = [O(1)] − 1 is the obvious ompatible family in limnK0(P
n).The injetivity of c⋆ follows easily from the �splitting priniple�: if M is a vetor bundleof rank r on a sheme X ∈ Sm/S, the omplete �ag sheme D(M)

π
→ X is suh that

[π⋆M] deomposes in K0(D(M)) as a sum of the lasses of r line bundles and π⋆ : Ki(X) →
Ki(D(M)) is injetive.Proposition 1.2.9, lemma 1.2.6, lemma 1.2.10 and remark 1.2.11 show that we have bije-tions:

HomSm/SoppSets(Pic(−),Ki(−)) ≃ HomH(S)(P
∞,RΩi(Z × Gr)) ≃ lim

n
Ki(P

n) .The identi�ation of this group with Ki(S)[[U ]] follows from the omputation of the al-gebrai K-theory of projetive spaes: Ki(P
n) ≃ K0(P

n) ⊗K0(S) Ki(S) and K0(P
n) ≃

K0(S)[U ]/(Un+1).It remains to show that c⋆ is surjetive. Using the previous identi�ations, we rewrite it asa map c⋆ : HomSm/SoppAb(K0(−),Ki(−)) → Ki(S)[[U ]]. First, we observe that for any k ∈ Nand x ∈ Ki(S), we may denote xΨk the natural transformation K0(−) → Ki(−) that maps yto x · Ψk(y) and see that it satis�es c⋆(xΨk) = x(1 + U)k. This proves that the image of c⋆ontains Ki(S)[U ]. To �nish the proof, we use the following lemma:Lemma 5.1.2 Let (τn)n∈N be a sequene of additive natural transformations K0(−) → Ki(−)suh that c⋆(τn) onverges to zero in Ki(S)[[U ]] for the in�nite produt topology, where Ki(S)is endowed with the disrete topology; in other words, we assume that for eah k ∈ N, theoe�ient of Uk in c⋆(τn) eventually vanishes. Then, for any X ∈ Sm/S and x ∈ K0(X),there exists N ∈ N suh that for all n ≥ N , τn(x) = 0 and it makes sense to de�ne anatural transformation τ : K0(−) → Ki(−) by the formula τ(x) =
∑∞

n=0 τn(x) and we havethe equality c⋆(τ) =
∑

n∈N c⋆(τn) in Ki(S)[[U ]].We have to prove that given X ∈ Sm/S and x ∈ K0(X), τn(x) eventually vanishes. Theassumption says that it is true for the lass x = [O(1)] on Pn for all n. Taking inverse imagesof these lasses by morphisms f : X → Pn enables to obtain the more general ase of lassesof line bundles generated by their global setions, e.g., line bundles on a�ne shemes. Using
T (see theorem 1.2.4), we get the ase of line bundles on any X ∈ Sm/S. Then, the generalase follows from the splitting priniple.Remark 5.1.3 We may de�ne a topology on HomSm/SoppAb(K0(−),Ki(−)) by onsideringthe weakest topology for whih the evaluation maps at all elements x ∈ K0(X) for all X ∈
Sm/S are ontinuous, where all groups Ki(X) are endowed with the disrete topology. The ar-gument of the lemma shows that the bijetion c⋆ : HomSm/SoppAb(K0(−),Ki(−)) → Ki(S)[[U ]]is an homeomorphism. 19



Remark 5.1.4 The omposition of endomorphisms endows
EndSm/SoppAb(K0(−)) ≃ K0(S)[[U ]]with a struture of a (possibly non-ommutative) ring. If this law on K0(S)[[U ]] is denoted

⋆, one may haraterise it by the fat that it is ontinuous and that for all (x, y) ∈ K0(S)2,
(k, k′) ∈ N2, (x(1 + U)k)⋆(y(1 + U)k

′

) = (xΨk(y)(1 + U)kk′. More generally, we have agraded ring struture on ⊕i∈NKi(S)[[U ]] whih omes from the fat that Ki(S)[[U ]] identi�esto the group of homomorphisms Z × Gr → RΩi(Z × Gr) of abelian groups inside H(S); themultipliation an be desribed similarly as it has been desribed in degree 0.Remark 5.1.5 The surjetivity of the map
c⋆ : HomSm/SoppAb(K0(−),Ki(−)) → Ki(S)[[U ]]may be proved using a di�erent argument. First, we may assume that the formal power series

f =
∑

k≥0 akU
k is suh that a0 = 0, so that we atually have to onstrut a natural transforma-tion τ : K̃0(−) → Ki(−). After the appliation of Jouanolou's trik and the splitting priniple,an element x ∈ K̃0(X) an be expressed as x =

∑n
i=1 ui where ui = [Li] − 1 for a family ofvetor bundles L1, . . . , Ln for a big enough n. Then, τ(x) should be f(u1) + · · · + f(un) =∑

k≥1 ak(u
k
1 + · · ·+ uk

n). Using the theory of symmetri polynomials and one we have notiedthat the elementary symmetri funtions of the u1, . . . , un are the elements γ1(x), . . . , γn(x),we get the existene of an element in Ki(S)[[γ̃1, γ̃2, . . . ]] whose assoiated natural transforma-tion τ : K̃0(−) → Ki(−) (see theorem 1.1.7) is additive and suh that τ(u) = f(u) whenever
u = [L] − 1 and L is a line bundle.Remark 5.1.6 The method of remark 5.1.5 an be used for the study of natural transforma-tion τ : K0(−) → K0(−) whih indues group morphisms (K0(X),+) → (K0(X)×, ·) for all
X ∈ Sm/S, i.e., lasses whih are multipliative on short exat sequenes ( e.g., the Todd lass,whih is de�ned after tensoring with Q). The result is that for any series f =

∑
k≥0 akU

k suhthat a0 is invertible in K0(S), there exists a unique τ : K0(−) → K0(−) as above suh that forany line bundle L, τ([L]) = f(u) where u = [L]−1. The proof follows the same pattern: redueto the ase a0 = 1 and then onsider f(u1)f(u2) . . . f(un) instead of f(u1)+f(u2)+· · ·+f(un).Exerise 5.1.7 (Optional) Assume that S is a regular sheme suh that K0(S) ≃ Z. Provethat any ring endomorphism ϕ of Z×Gr in H(S) is of the form Ψk for some k ∈ Z. (Hint: ϕorresponds to a series f ∈ Z[[U ]] whih satis�es f(0) = 1 and f(U) ·f(V ) = f(U +V +UV ).Then, ratioinate in Q[[U ]] to prove that f is of the form (1 + U)α for α ∈ Q.)5.2 The P
1-spetrum BGLLet S be a regular sheme. We de�ne a morphism σ : P1 ∧ (Z × Gr) → Z × Gr in H•(S)(where ∞ is the base-point of P1) as the omposition

P1 ∧ (Z × Gr)
u∧id

// (Z × Gr) ∧ (Z × Gr)
µ

// Z × Grwhere u : P1 → Z×Gr orresponds to the lass u = [O(1)]− 1 ∈ ker(∞⋆ : K0(P
1) → K0(S))and µ is the pairing de�ned in subsetion 2.4. We denote σ̃ : Z×Gr → RHom•(P

1,Z×Gr)20



the morphism in H•(S) orresponding to σ by adjuntion. It follows from the projetivebundle theorem that σ̃ is an isomorphism.We an use this to de�ne an objet of the naive variant SHnaïve(S) (see [37, �6℄) of thestable homotopy ategory SH(S), i.e., an (Ω)-P1-spetrum up to homotopy. More preisely,an objet of SHnaïve(S) onsists in the datum of a sequene (En)n∈N of objets of H•(S)and of bonding morphisms σ : P1 ∧ En → En+1 in H•(S) whih are supposed to be suhthat the adjoint morphisms En → RHom•(P
1,En+1) are isomorphisms for all n ∈ N. Theobjet BGLnaive ∈ SHnaïve(S) is de�ned by the fat that (BGLnaive)n = Z × Gr and thatall bonding morphisms identi�es to the morphism σ de�ned above.We shall see that we may de�ne an objet BGL ∈ SH(S) up to a unique isomorphismand that it lifts BGLnaive. The obstrution we may enounter to do this lies in the notionof stably phantom morphisms. More preisely, if E and F are objets of SH(S), representedby Ω-spetra, for any i ∈ N, the sequene of groups (HomH•(S)(En,RΩiFn))n∈N is equippedwith the struture of a projetive system, and it follows from the Milnor exat sequene thatwe have a short exat sequene (see [37, Lemme 6.5℄):

0 → R1 lim
n

HomH•(S)(En,RΩFn) → HomSH(S)(E,F)

→ HomSHnaïve(S)(oubE, oubF) → 0 ,where oub: SH(S) → SHnaïve(S) is the forgetful funtor. The group on the right identi�es to
limn HomH•(S)(En,Fn) and the group on the left is the subgroup of stably phantom morphisms
E → F.An objet of SHnaïve(S) always lifts to an objet of SH(S), unique up to isomorphism;however, this lifting is unique up to a unique isomorphism if and only if a given lifting has nononzero stably phantom endomorphisms [37, Proposition 6.3℄. We will see that it is the asefor BGLnaive if K1(S) is �nite (e.g., S = Spec(Z)), whih is su�ient to onstrut a anonial
BGL ∈ SH(S) for all regular shemes S as we may take the inverse image by S → Spec(Z)(see [37, Proposition 4.4℄) of the unique one in SH(Spec(Z)). This appeared in my thesis [36℄and in [21℄ similar arguments reappeared. This being said, until the end of this subsetion,we hoose a lifting BGL of BGLnaive in SH(S).Remark 5.2.1 In the study of projetive systems (HomH•(S)(En,R

1ΩiFn))n∈N, for some
i ∈ N, we may fous on the subsystem made of H-group morphisms, whih may be denoted
(Hom+

H•(S)(En,R
1ΩiFn))n∈N. Indeed, the okernel of this inlusion is a projetive systemwith zero transition maps, whih implies that the inlusion indue isomorphisms on lim and

R1 lim.De�nition 5.2.2 Let A be an abelian group. We set AΩ to be the following projetive systemindexed by N:
· · · → A[[U ]]

Ω
P1
→ A[[U ]]

Ω
P1
→ A[[U ]]

Ω
P1
→ A[[U ]] ,where the map ΩP1 : A[[U ]] → A[[U ]] is de�ned by ΩP1(f) = (1 + U) df

dU .Proposition 5.2.3 Let S be a regular sheme. The projetive system
(Hom+

H•(S)((BGL)n,R
iΩ(BGL)n))n∈Nanonially identi�es to Ki(S)Ω. 21



From proposition 5.1.1, we already know that Hom+
H•(S)((BGL)n,RΩi(BGL)n) identi�esdegreewise to the group Ki(S)[[U ]]. We let ω : Ki(S)[[U ]] → Ki(S)[[U ]] be the morphismorresponding to the transition maps on the projetive system

(Hom+
H•(S)((BGL)n,RΩi(BGL)n))n∈Nunder this identi�ation. We have to prove that ω = ΩP1 .Let τ =

∑
n≥0 anU

n ∈ Ki(S)[[U ]]. It orresponds to an additive natural transformation
(τX : K0(X) → Ki(X))X∈Sm/S whih is suh that τX([L]) =

∑
n≥0 an([L] − 1)n for all linebundles L. The natural transformation K0(X) → Ki(X) assoiated to ω(τ) is haraterisedby the formula:

ω(τ)X(x) ⊠ v = τX×P1(x⊠ v) ,where v = [O(1)]−1 ∈ K0(P
1) and ⊠ is the external produt K⋆(X)×K0(P

1) → K⋆(X×P1).Assume that x = [L] is the lass of a line bundle L on a sheme X ∈ Sm/S. Then, x⊠ v =
[L ⊠ O(1)] − [L ⊠ OP1 ]. We may apply τX×P1 to this di�erene; if we set u = x− 1 and usethat K⋆(X ×P1) ≃ K⋆(X)[v]/(v2), we get:

τX×P1(x⊠ v) =
∑

n≥0

an [(1 + u)(1 + v) − 1]n −
∑

n≥0

anu
n

=
∑

n≥0

an [(u+ v(1 + u))n − un]

=
∑

n≥1

nan(1 + u)un−1v .Then, ω(τ)X(x) =
∑

n≥1 nan(1 + u)un−1 whih proves that ω(τ) =
∑

n≥1 nan(1 +U)Un−1 =

(1 + U) dτ
dU = ΩP1(τ).Corollary 5.2.4 Let S be a regular sheme. For all i ∈ Z, we have a anonial short exatsequene:

0 → R1 limKi+1(S)Ω → HomSH(S)(BGL,BGL[−i]) → limKi(S)Ω → 0 .Proposition 5.2.5 Let A be an abelian group. If A is either �nite or divisible, then
R1 limAΩ = 0 .If A is divisible, the map ΩP1 : A[[U ]] → A[[U ]] is surjetive. Hene, the result is obviousin this ase.As a sequene of abelian groups 0 → A′ → A→ A′′ → 0 leads to a short exat sequene ofprojetive systems 0 → A′Ω → AΩ → A′′Ω → 0, a simple dévissage redues the ase of a �niteabelian group A to the speial ase of A = Fp for a prime number p. Then, we are reduedto the following lemma, whih was suggested by Yves André :Lemma 5.2.6 Let p be a prime number. We de�ne LFp ⊂ Fp[[U ]] as the subgroup of series

f =
∑

n≥0 anU
n suh that for all k ∈ N, ∑p−1

i=0 akp+i = 0. Then,(i) The image of ΩP1 : Fp[[U ]] → Fp[[U ]] is LFp ;22



(ii) If f ∈ LFp , there exists a unique g ∈ LFp suh that ΩP1(g) = f ;(iii) The anonial map limFΩ
p → (FΩ

p )0 indues a bijetion limFΩ
p ≃ LFp;(iv) The projetive system LFp satis�es Mittag-Le�er ondition. In partiular, R1 limFΩ

p =
0.Let f =

∑
n≥0 anU

n and g =
∑

b≥0 bnU
n be two elements of Fp[[U ]]. The relation

ΩP1(g) = f is equivalent to the equalities nbn + (n + 1)bn+1 = an for all n ≥ 0. Theyan be restated as nbn = (−1)n−1
∑n−1

k=0 ak for all n ∈ N. It follows that f is in the imageof ΩP1 if and only if ∑n−1
k=0 ak = 0 whenever p divides k, i.e., f ∈ LFp . Then, the relation

ΩP1(g) = f determines the oe�ients bn for p not dividing n but says nothing about theoe�ients bkp for all k ∈ N. There is a unique possible hoie for those so as to obtain
g ∈ LFp . We have proved (i) and (ii). (iii) and (iv) immediately follow.Corollary 5.2.7 Let S be a regular sheme. Let i ∈ Z. If Ki+1(S) is �nite or divisible, then

HomSH(S)(BGL,BGL[−i]) ≃ lim
i
Ki(S)Ω .In partiular, if K1(S) is �nite ( e.g., S = Spec(Z)), EndSH(S)(BGL) ≃ limK0(S)Ω, BGLhas no nonzero stably phantom endomorphism in SH(S) and thus BGLnaive ∈ SHnaïve(S)lifts to an objet BGL ∈ SH(S) whih is de�ned up to a unique isomorphism.Proposition 5.2.8 Let A be a torsionfree abelian group suh that Hom(Q, A) = 0 ( e.g.,

A = Z). Then, the map limAΩ → (AΩ)0 = A[[U ]] is injetive.To prove this, it su�es to hek that if f ∈ A[[U ]] is suh than ΩP1(ΩP1(f)) = 0, then
ΩP1(f) = 0. Indeed, let g = ΩP1(f). The equality ΩP1(g) = 0 implies that g is onstant, i.e.,
g ∈ A. Then, we have df

dU = g
1+U so that there exists h ∈ A suh that f = g log(1 + U) + h.This series, whih makes sense in (A⊗Z Q)[[U ]] does not lie in A[[U ]] unless g is in the imageof a morphism Q → A. It follows that ΩP1(f) = g = 0.Remark 5.2.9 Thanks to orollary 5.2.7, endomorphisms of BGL in SH(Spec(Z)) an bedesribed as ompatible families of series in Z[[U ]]. Proposition 5.2.8 shows that this informa-tion an be redued to a single element in Z[[U ]]. However, I do not know to whih subgroupof Z[[U ]] these endomorphisms orrespond. It obviously ontains 1 + U and 1/(1 + U), whihorresponds to the identity Ψ1 and the duality Ψ−1 (see subsetion 5.3). Aording to [3℄, thisgroup is stritly bigger and even unountable!5.3 Adams operations on BGLQThe triangulated ategory SH(S) may be loalised so as to invert ertain or all primes. Forinstane, we may de�ne SH(S)Q as the full subategory of SH(S) onsisting of objets Asuh that for any prime p, the multipliation by p on A is an isomorphism. The left adjoint

−Q : SH(S) → SH(S)Q to this inlusion is alled the Q-loalisation funtor. We let BGLQbe the image of BGL by this funtor. Then, for any �nitely presented objet X of SH(S) 1,1An objet X in a triangulated ategory T where oproduts exist is �nitely presented if the funtor
HomT (X,−) from T to the ategory of abelian groups ommutes with (in�nite) oproduts. They onstitutea triangulated subategory T

pf of T . In the ase T = SH(S), SH(S)pf is the pseudo-abelian hull of the trian-gulated subategory generated by objets of the form (P1)−n
∧ U+ for U ∈ Sm/S (see [35, Proposition 1.2℄).23



the anonial map HomSH(S)(X,BGL)⊗Z Q → HomSH(S)(X,BGLQ) is a bijetion and themethods used to obtain orollaries 5.2.4 and 5.2.7 give the following result:Corollary 5.3.1 Let S be a regular sheme. For all i ∈ Z, we have a anonial isomorphism:
HomSH(S)Q(BGLQ,BGLQ[−i]) ≃ lim(Ki(S) ⊗Z Q)Ω .De�nition 5.3.2 For all k ∈ Z−{0}, we let Ψk ∈ EndSH(S)Q(BGLQ) be the endomorphismorresponding to the family (k−n(1 +U)k)n≥0 ∈ limQΩ (this family will also be denoted Ψk).We obviously have the relations Ψk◦Ψk′

= Ψkk′ . These Adams operations are onstrutedhere with Q-oe�ients, but it su�es to invert k to de�ne Ψk (there might exist an obstru-tion to uniqueness in R1 limK1(S)[ 1
k ]Ω, in whih ase we may, as above, onstrut it �rst on

Spec(Z) and hange the base).To obtain a better understanding of the ring of endomorphisms of BGLQ, we fous onprojetive systems AΩ in the ase where A is a Q-vetor spae:De�nition 5.3.3 Let n ≥ 0. We de�ne pn = 1
n! logn(1 + U) ∈ Q[[U ]]. For any Q-vetorspae A, we de�ne an appliation σ : AN → A[[U ]] by the formula

σ((an)n∈N) =

∞∑

n=0

anpn .The in�nite sum makes sense beause the U -valuation of pn equals n and thus tends to
+∞.Lemma 5.3.4 For any Q-vetor spae A, the morphism σ : AN → A[[U ]] is an isomorphismof topologial groups. If we let s : AN → AN be the shift operator s((an)n≥0) = (an+1)n≥0, wehave the equality σ ◦ s = ΩP1 ◦ σ.The topologies onsidered on AN and A[[U ]] are the in�nite produt topologies of thedisrete topology on A. Then, the �rst statement obviously follows from the fat that the
U -valuation of pn is n. The seond follows from the equalities ΩP1(pn) = pn−1 for all n ≥ 1and ΩP1(p0) = 0.Proposition 5.3.5 For any Q-vetor spae, we may de�ne Σ: AZ → limAΩ by the formula

Σ((an)n∈Z) = (σ(an, an+1, an+2, . . . ))n≥0 ,i.e., Σ((an)n∈Z) =
∑

n∈Z anπn where πn = (pn+k)k≥0 ∈ limQΩ (with pi set to zero for i < 0).It immediately follows from lemma 5.3.4 whih identi�es the projetive system AΩ to theprojetive system
. . .

s
→ AN s

→ AN s
→ AN ,whose projetive limit is AZ.
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Remark 5.3.6 If A = K0(S) ⊗Z Q, a variant of proposition 5.1.1 identi�es A[[U ]] to
EndSm/SoppAb(K0(−) ⊗Z Q) ,so that the omposition law indues a law ⋆ on A[[U ]] (see also remark 5.1.4). The operator

ΩP1 de�nes an endomorphism of the ring (A[[U ]],+,⋆) so that limAΩ inherits a struture ofa topologial ring, whih is, as a ring, isomorphi to EndSH(S)Q(BGLQ).Proposition 5.3.7 If QN is endowed with its obvious ring struture and Q[[U ]] with thelaw ⋆, then σ : QN → Q[[U ]] is an isomorphism of topologial rings. The same onlu-sion applies to the isomorphism Σ: QZ ∼
→ limQΩ whose target identi�es to a subring of

EndSH(S)Q(BGLQ) for any nonempty regular sheme S.We know that the Q-vetor spae of Q[[U ]] spanned by elements Ψk = (1 +U)k, k ≥ 0, isdense in Q[[U ]]. Hene, it remains to prove the onsisteny of the formulas Ψkk′

= Ψk⋆Ψk′with respet to the appliation of σ−1 : A[[U ]]
∼
→ AN. This springs from the following lemma:Lemma 5.3.8 Let k ∈ Z − {0}. Then,

(1 + U)k = σ((kn)n≥0) , Ψk = Σ((kn)n∈Z) .Let (λn)n≥0 = σ−1(Ψk), where Ψk is identi�ed to (1+U)k. We know that ΩP1(Ψk) = kΨk.Then, lemma 5.3.4 implies that for all n ≥ 0, λn+1 = kλn, so that λn = knλ0. It remains toompute λ0. But, as it is the onstant term of the series (1 + U)k, we �nally get λ0 = 1.De�nition 5.3.9 For any n ∈ Z, the element πn ∈ limQΩ was introdued in proposition 5.3.5and it is also the image by Σ: QZ → limQΩ of the harateristi funtion of {n} ⊂ Z.Thanks to proposition 5.3.7, for any regular sheme S, πn identi�es to an idempotent of
EndSH(S)Q(BGLQ). As SH(S) has in�nite sums, it is pseudo-abelian (see [44, Proposi-tion II.1.2.9℄) and we may denote BGL

(n)
Q ⊂ BGLQ the image of the projetor πn.Theorem 5.3.10 Let S be a regular sheme. The obvious morphism

⊕

n∈Z

BGL
(n)
Q → BGLQis an isomorphism in SH(S).Let n ≥ 0. We let χ[−n,n] be the harateristi funtion of {−n, . . . , n} ⊂ Z. The or-responding element of limQΩ via Σ and the assoiated endomorphism of BGLQ are alsodenoted χ[−n,n]. It is the sum of the orthogonal idempotents πi for −n ≤ i ≤ n. Then, theimage of χ[−n,n] identi�es to ⊕

−n≤k≤n BGL
(k)
Q .To prove that the morphism above is an isomorphism, it su�es to prove that for any�nitely presented objet X ∈ SH(S), the indued map

HomSH(S)(X,
⊕

n∈Z

BGL
(n)
Q ) → HomSH(S)(X,BGLQ)is a bijetion. Due to previous observations, this map is injetive and its image is madeof elements x ∈ HomSH(S)(X,BGLQ) suh that for a big enough n, χ[−n,n](x) = x. Asthe sequene (χ[−n,n])n∈N of elements of QZ tends pointwise to the onstant funtion 1, thetheorem shall be a onsequene of the following general lemma:25



Lemma 5.3.11 Let S be a regular sheme. Let (fn)n∈N be a sequene of elements in thegroup lim(K0(S) ⊗Z Q)Ω whih onverges to an element f . Then, for any �nitely presentedobjet X in SH(S) and x ∈ HomSH(S)(X,BGLQ), there exists an integer N suh that for all
n ≥ N , fn(x) = f(x), where fn and f are identi�ed to endomorphisms of BGLQ.Using the fat that the triangulated ategory SH(S)pf identi�es to the pseudo-abelian hullof the ategory SW (S)ft [45, page 591℄, we may assume that X = (P1)∧−k ∧ Y where Y is aspae of �nite type (e.g., Si ∧ U+ where i ≥ 0 and U ∈ Sm/S). Then, we are redued to anunstable lemma:Lemma 5.3.12 Let S be a regular sheme. Let (τn)n∈N be a sequene of elements in the group
K0(S)Q[[U ]] whih onverges to an element τ . Then, for any spae of �nite type X ∈ H•(S)and y ∈ HomH•(S)(X,Z × Gr), there exists N ≥ 0 suh that for all n ≥ N , τn(y) = τ(y).Variants of lemma 5.1.2 and remark 5.1.3 show that the lemma is true if Y = U+ with
U ∈ Sm/S. It holds more generally if X is a pointed smooth S-sheme, for the obviousmap HomH•(S)(X,Z ×Gr) → HomH•(S)(X+,Z×Gr) is a split monomorphism, whih, aftertensoring with Q, ommutes to τ and the τn.The general ase follows. As X is of �nite type, any x ∈ HomH•(S)(Y,Z×Gr) will fatorthrough a disjoint union of �nite Grassmann varieties. Then, there exists a pointed smooth
S-sheme U , u ∈ HomH•(S)(U,Z × Gr) and f : Y → U in H•(S) suh that y = f⋆(u). Bythe previous ase, there exists an integer N suh that τn(u) = τ(u) for n ≥ N . Hene,
τn(y) = τn(f⋆u) = f⋆τn(u) = f⋆τ(u) = τ(y) for n ≥ N .Remark 5.3.13 One may �nd some inspiration from lemma 5.3.11 so as to de�ne a topologyon groups of morphisms HomT (E,F) in a triangulated ategory T (where oproduts exist):the weakest one suh that for any morphism x : X → E with X ∈ T pf , the omposition with
x indues a ontinuous map HomT (E,F) → HomT (X,F) where the target is endowed withthe disrete topology. Then, the lemma would say that in the ase of EndSH(S)(BGLQ), thistopology is the same as the one introdued in remark 5.3.6.Proposition 5.3.14 For any n ∈ Z, the diret fator BGL

(n)
Q of BGLQ is preserved by Ψkfor all k ∈ Z − {0} and Ψk ats on it by multipliation by kn.It follows from the following equalities in EndSH(S)(BGLQ):

Ψk ◦ πn = πn ◦ Ψk = knπn ,whih an be proved using their interpretations in the ommutative subring QZ (see proposi-tion 5.3.7).Corollary 5.3.15 For all k ∈ Z−{0,±1} and n ∈ Z, the endomorphism Ψk−knid of BGLQhas a kernel whih is BGL
(n)
Q .Using easy omputations in QZ, we get the existene of an automorphism φn,k of BGLQsuh that φn,k ◦ (Ψk − knid) = id − πn. Hene, the kernel of Ψk − knid is the same as thekernel of id − πn, whih is BGL

(n)
Q by de�nition.In other words, the deomposition of theorem 5.3.10 an be thought as a deompositionof BGLQ into a sum of eigenspaes BGL

(n)
Q for the Adams operations.26



Remark 5.3.16 For any a ∈ Ki(S)Q, the onstant family a(1+U) belongs to limKi(S)ΩQ (itan be interpreted as the natural transformationK0(−)Q → Ki(−)Q given by the multipliationby a). It indues a morphism µa : BGLQ → BGLQ[−i]. If a ∈ Ki(S)(r), one easily sees that
µa maps BGL

(n)
Q to BGL

(n+r)
Q [−i] for all n ∈ Z. Hene, we get a map

Ki(S)(r) → HomSH(S)(BGL
(n)
Q ,BGL

(n+r)
Q [−i])whih is easily shown to be a bijetion for all n ∈ Z and r ∈ Z.It S is a regular sheme of �nite Krull dimension, the γ-�ltration on Ki(X) has �nitelymany steps for all X ∈ Sm/S (see [42, �2℄); it an be used to prove that BGLQ is not onlythe diret sum of the BGL

(n)
Q but also their in�nite produt in SH(S). This allows to givea desription of morphisms BGLQ → BGLQ[−i] as in�nite matries (am,n)(m,n)∈Z2 where

am,n ∈ Ki(S)(m−n) orresponds to µam,n : BGL
(n)
Q → BGL

(m)
Q [−i].De�nition 5.3.17 Let S be a regular sheme. We set HÁ = BGL

(0)
Q ∈ SH(S)Q.Using the periodiity isomorphism Hom•(P

1,BGLQ) ≃ BGLQ, we get anonial iso-morphisms BGL
(n)
Q ≃ HÁ ∧ (P1)∧n for all n ∈ Z.Remark 5.3.18 By its �de�nition� as an eigenspae of Adams operations on the objet BGLQwhih represents rationalized algebrai K-theory, this objet HÁ represents motivi ohomologyas it was �rst introdued by Beilinson (see [7℄).6 Riemann-Roh theorems6.1 Adams-Riemann-RohThe Adams-Riemann-Roh theorem [14, Theorem 7.6℄ says that if f : X → S is a projetivemorphism between regular shemes, then for all k ∈ Z − {0} and x ∈ K0(X) ⊗Z Q:

Ψk(f⋆x) = f⋆(Ψ
kx · (θkΩf )−1) ,where f⋆ : K0(X) → K0(S) is the diret image in K-theory and θkΩf is Bott's annibalistilass assoiated to the virtual otangent bundle. It an be stated as a ommutative square:

K0(X)
Ψk(−)·(θkΩf )−1

//

f⋆

��

K0(X)

f⋆

��

K0(S)
Ψk

// K0(S)We shall obtain that for a projetive and smooth morphism between regular shemes,this diagram an be re�ned as a ommutative diagram in SH(S), where K0(S) is replaedby BGLQ,S (we add the subsript S as a remainder of the base sheme) and K0(X) by
Rf⋆BGLQ,X where Rf⋆ : SH(X) → SH(S) is the funtor onstruted in [37, Proposition 4.4℄.The proof will proeed by showing that the diagram in SH(S) ommutes if and only if therelation stated at the level of K0 in the standard Adams-Riemann-Roh theorem is true not27



only for f : X → S but for all morphisms fT : XT → T dedued from f by base hange alongsmooth morphisms T → S.One may expet that the homotopi version of Adams-Riemann-Roh we state below(see theorem 6.1.2.1) has both sense and truthfulness for more general projetive morphismsbetween regular shemes. However, the assumption that f is projetive and smooth shall beused at several steps and thus should be onsidered as important in this method.6.1.1 Pushforwards on BGLProposition 6.1.1.1 Let f : X → S be a projetive and smooth morphism between regularshemes. There exists a morphism Rf⋆BGLX
f⋆
→ BGLS in SH(S) suh that for any n ∈ Z,

i ∈ N, T ∈ Sm/S, the map indued after applying the funtor HomSH(S)((P
1)∧n∧Si∧T+,−)identi�es to the usual pushforward in K-theory f⋆ : Ki(XT ) → Ki(T ) where XT = X ×S T .Lemma 6.1.1.2 Let f : X → S be a projetive and smooth morphism between regularshemes. There exists a morphism Rf⋆(Z × GrX)

f⋆
→ Z × GrS in H•(S) suh that afterthe appliation of HomH•(S)(S

i ∧ T+,−) for all T ∈ Sm/S, we get the usual pushforward in
K-theory f⋆ : Ki(XT ) → Ki(T ) where XT = X ×S T .We have to use an homotopial desription of these pushforwards in a way whih shouldbe strily funtorial in T ∈ Sm/S. We use Thomason's model [43, Lemma 3.5.3℄: for anyregular sheme X, we onsider the ompliial biWaldhausen ategory C(X) of perfet boundedabove omplexes of �at OX-modules 2. For any (regular) base sheme S, it is easy to turnthis onstrution into a presheaf CS of ompliial biWaldhausen ategories over Sm/S, with
CS(X) equivalent to C(X) for all X ∈ Sm/S. Then, the assoiated presheaf of K-theoryspaes KCS is a model of algebrai K-theory (i.e., it is anonially isomorphi to Z × Gr in
H•(S), see Proposition 3.1.5). At this stage, it is obvious that KCX is ayli for the funtor
f⋆, i.e., we have a anonial isomorphism Rf⋆KCX ≃ f⋆KCX in H•(S).We shall onstrut the expeted morphism f⋆ : Rf⋆(Z×GrX) → Z×GrS as a morphism
f⋆KCX → KCS. The details follow. We hoose a �nite open over U = {U1, . . . , Un} of Xsuh that all the indued morphisms fi : Ui → S are a�ne (as we assumed S separated, anya�ne open over of X has this property). For any nonempty subset I of {1, . . . , n}, we set
UI = ∩i∈IUi and denote fI : UI → S the restrition of f to these subshemes.For any T ∈ Sm/S, we onsider the base hange fT : XT → T of f along T → S andintrodue the morphisms fI,T : UI ×S T → T dedued from fI for all nonempty subsets I of
{1, . . . , n}. These morphisms fI,T are a�ne and �at. For anyM ∈ C(XT ), we de�ne (f•,T )⋆Mas the total omplex of the �eh type biomplex:

· · · → 0 → ⊕1≤i≤n(fi,T )⋆M → ⊕1≤i<j≤n(fi,j,T )⋆M → . . . ,where the �rst a priori non trivial objet lies in ohomologial degree 0. As f is �at, the objet
(f•,T )⋆M is a bounded omplex of �at OT -modules and from standard results in oherentohomology (see [20, Théorème 3.2.1℄), (f•,T )⋆M represents RfT ⋆M in the derived ategory
D(T,OT ) and is perfet. Hene, we have de�ned a funtor (f•,T )⋆ : C(XT ) → C(T ) for any
T ∈ Sm/S. This onstrution ommutes up to anonial isomorphisms with the inverse imagefuntors (i.e., the presheaf struture on CS) assoiated to morphisms T ′ → T in Sm/S. It2Note that we have to �x suitable ardinality bounds so as to get (essentially) small ategories.28



is an easy game to modify the de�nitions so as to get strit ompatibilities. Finally, we mayapply the K-theory funtor to obtain the expeted morphism f⋆KCX
f⋆
→ KCS of presheavesof pointed sets on Sm/S.The ompatibility between pushforwards and external produts implies that we may usethe morphism from lemma 6.1.1.2 to de�ne a morphism Rf⋆BGLX → BGLS up to stablyphantom maps (i.e., in SHnaïve(S)). In the statement of proposition 6.1.1.1, there is nouniqueness laim. However, we shall see in the sequel that it will be the ase after tensoringwith Q.6.1.2 Statement of the theoremTheorem 6.1.2.1 Let f : X → S be a projetive and smooth morphism between regularshemes. Then, the following diagram in SH(S) ommutes:

Rf⋆BGLQ,X

f⋆

��

Rf⋆(θk(Ωf )−1·Ψk(−))
// Rf⋆BGLQ,X

f⋆

��

BGLQ,S
Ψk

// // BGLQ,Swhere both vertial maps are the pushforward morphism onstruted in proposition 6.1.1.1(tensored with Q), the lower map is Ψk ∈ EndSH(S)(BGLQ,S) (see de�nition 5.3.2) and theupper map is obtained by applying Rf⋆ to the endomorphism of BGLQ,X orresponding to Ψkmultiplied by the inverse of Bott's annibalisti lass 3.Corollary 6.1.2.2 Let f : X → S be a projetive and smooth morphism between regularshemes. Then, the following diagram ommutes for any i ∈ Z:
Ki(X)

Ψk(−)·(θkΩf )−1

//

f⋆

��

Ki(X)

f⋆

��

Ki(S)
Ψk

// Ki(S)Corollary 6.1.2.2 is dedued from the statement of theorem 6.1.2.1 by applying funtors
HomSH(S)(S

i ∧ T+,−). Conversely, I laim that two morphisms Rf⋆BGLQ,X → BGLQ,Sin SH(S) are equal as soon as they indue equal maps after the appliation of funtors
HomSH(S)((P

1)∧−n ∧ T+,−) for all n ∈ N and T ∈ Sm/S. This will be the goal of the-orem 6.1.3.2 in the paragraph whih follows. Then, theorem 6.1.2.1 shall follow from thelassial Adams-Riemann-Roh theorem (i.e., the ase i = 0 in orollary 6.1.2.2).6.1.3 Morphisms Rf⋆BGLQ,X → BGLQ,SDe�nition 6.1.3.1 For all (i, j) ∈ Z2, we de�ne a funtor πi,j : SH(S) → Sm/SoppAb by
(πi,jE)(U) = HomSH(S)((P

1)∧j ∧ Si−2j ∧ U+,E) ;they are the funtors �presheaves of stable homotopy groups�.3It makes sense as previous results show that EndSH(X)(BGLQ,X) is a module over K0(X) ⊗Z Q.29



Theorem 6.1.3.2 Let f : X → S be a projetive and smooth morphism between regularshemes. Let τ : Rf⋆BGLQ,X → BGLQ,S be a morphism in SH(S) suh that for all n ∈ Z,
π2n,n(τ) = 0 4. Then, τ = 0.We use the theory of stable homotopi funtors (see [6℄ and also [37, Remarque 4.6℄).Thus, we have a diret image funtor with proper support Rf! : SH(X) → SH(S) whihhas a right adjoint f !. As f is projetive, we have a anonial isomorphism Rf!

∼
→ Rf⋆.Then, by adjuntion, the morphism τ : Rf⋆BGLQ,X → BGLQ,S orresponds to a morphism

τ̃ : BGLQ,X → f !BGLQ,S .Lemma 6.1.3.3 We let f : X → S be a projetive and smooth morphism between regularshemes.(i) There exists a anonial isomorphism f !BGLQ,S ≃ BGLQ,X in SH(X).(ii) For any vetor bundle E over X, we have a anonial isomorphism BGLQ,X ∧ Th E ≃
BGLQ,X in SH(X).By de�nition of f !, for any E ∈ SH(S), we have an isomorphism f !E ≃ f⋆E∧ThTf where

Tf is the relative tangent bundle of f and ThTf its Thom spae. As f⋆BGLQ,S identi�es to
BGLQ,X , (i) will follow from (ii).To prove (ii), we onsider the isomorphism Th E ≃ P(E⊕OX)/P(E) 5 and the lass ξ of thefundamental sheaf O(1) in K0(P(E ⊕OX)). We may set v = ξr− [∧1E ]ξr−1 +[∧2E ]ξr−2 + · · ·+
(−1)r[∧rE ] ∈ K0(P(E ⊕ OX)) where r is the rank of E . The lass v vanishes when restritedto P(E). Hene, v atually de�nes an element in K̃0(Th E). In this paragraph, K̃0(Y ) is theredued K-theory of a pointed spae Y , i.e., HomH•(S)(Y,Z × Gr), whih identi�es to thekernel of the map K0(Y ) → K0(S) given by the base-point. Even if we use the same notation,it should not be onfused with the kernel of rk: K0(X) → Zπ0(X), whih makes sense for
X ∈ Sm/S.Using the multipliative struture on Z×Gr, we may onsider the external produt with
v in H•(S):

Z × Gr → RHom•(Th E ,Z × Gr) ,whih is seen to be an isomorphism thanks to omputations using the projetive bundleformula. Using this morphism termwise, we get the expeted isomorphism
BGLX

∼
→ RHom•(Th E ,BGLX)in SHnaïve(X) 6. As Th E is invertible for the ∧-produt on SH(X) (see proposition 4.1.1),property (ii) follows.4One may notie that π2n,n(τ ) = 0 implies π2(n+1),n+1(τ ) = 0.5We, relutantly, do not follow Grothendiek's onvention. Here, P(E) is the projetivisation of the sym-metri algebra of the dual of E .6This onstrution may also be dedued from a more universal pairing (Z × Gr) ∧ BGL → BGL whihshould be onstruted �rst in SH(Spec(Z)). However, when one want to takle the trouble of stably phantomsmorphisms, one has to use di�erent arguments than those appearing in this artile. To do this, we an use [36,Lemma A.6℄ whih we used there to obtain another proof of the onstrution of BGL, see orollary 5.2.7. Thismethod an be ontinued in order to obtain an assoiative and ommutative pairing BGL∧BGL → BGL in

SH(S) (see [21, Theorem 2.2.1℄). 30



Lemma 6.1.3.4 Let ψ : E → F be a morphism in SH(S). We assume that F is suh thatfor any U ∈ Sm/S, vetor bundle E on U and n ∈ Z, the anonial map F̃2n,n(ThU E) →
F2n,n(P(E ⊕ OU )) is injetive 7. We also assume that π2n,n(ψ) = 0 for all n ∈ Z. Then, forany vetor bundle E on U ∈ Sm/S and any n ∈ Z, the map HomSH(X)((P

1)∧n∧ThU (−E), ψ)vanishes (see de�nition 4.1.2).Using Jouanolou's trik, we may assume that U is a�ne. Then, the virtual bundle −Eidenti�es to a di�erene F − Ok
U where F is a genuine vetor bundle and k ∈ N. Then, wewant to prove that for any n ∈ Z, the morphism HomSH(S)((P

1)∧n ∧ThU F , ψ) vanishes. As,
ThU F = P(F⊕OU )/P(F), the result follows from the seond assumption for U = P(F⊕OU )and the injetivity stated in the �rst assumption.Now, we shall prove theorem 6.1.3.2. We may apply lemma 6.1.3.4 to τ : Rf⋆BGLQ,X →
BGLQ,S . Then, as f!E ≃ f♯(E ∧ ThX(−Tf)) for any E ∈ SH(X), we obtain the vanishingof the maps HomSH(S)(f!((P

1)∧n ∧ U+), τ) for all n ∈ Z and U ∈ Sm/X. By adjuntion, itimplies that the maps HomSH(X)((P
1)∧n∧U+, τ̃) vanish. As we know that τ̃ an be identi�edto an endomorphism of BGLQ,X (see lemma 6.1.3.3), we an use the results of setion 5 toassert that τ̃ = 0. Finally, by adjuntion, τ = 0.6.2 Motivi Eilenberg-Ma Lane spetra6.2.1 Morphisms Z × Gr → K(Z(n), 2n)De�nition 6.2.1.1 Let k be a perfet �eld. For any n ≥ 0, we denote K(Z(n), 2n) the motiviEilenberg-Ma Lane spae de�ned in [45, �6.1℄. For i ≥ 0. we let K(Z(n), 2n − i) be its ithloop spae.By de�nition, for any n ≥ 0 and i ≥ 0, the group HomH(k)(X,K(Z(n), 2n−i)) identi�es tothe motivi ohomology group H2n−i(X,Z(n)). The omparison with (higher) Chow groups[46℄ implies that for any n ≥ 0, there is a anonial isomorphism π0K(Z(n), 2n) ≃ CHn(−)in Sm/koppAb where CHn(−) is the presheaf X 7−→ CHn(X).Theorem 6.2.1.2 Let k be a perfet �eld. Let n ≥ 0. Then, the funtor π0 indues a bijetion:

HomH(k)(Z × Gr,K(Z(n), 2n))
∼
→ HomSm/koppSets(K0(−), CHn(−)) .Moreover, the graded algebra (HomSm/koppSets(K̃0(−), CHn(−))n∈N identi�es to the polyno-mial algebra Z[c1, c2, . . . ] where ci lies in degree i and orresponds to the ith Chern lass

ci : K̃0(−) → CH i(−).The �rst statement follows from the fat that whenever d ≤ d′ and r ≤ r′, the inlusion
Grd,r ⊂ Grd′,r′ indues a split monomorphisms M(Grd,r) ⊂ M(Grd′,r′) on motives. Thisfat follows from the ellularity of Grd,r, Grd′,r′ and Grd′,r′ −Grd,r (see [24, �3℄ for a similarstatement). Then, any objet representing a ohomology whih fators through the ategoryof motives will satisfy property (K) with any number of operands (see de�nition 1.2.2) andwe may use theorem 1.1.6.The seond part arises from the omputation of Chow groups of Grassmann varieties Grd,rfor d, r ≥ 0 (see [19℄) and the passage to the limit r → ∞ and d → ∞ as it was done for thealgebrai K-theory.7We use standard impliit onvention. More preisely, this map is the result of the appliation of the funtor
HomSH(S)((P

1)∧n
∧ −,F) to the anonial morphism P(E ⊕ OU )+ → ThU E in H•(S).31



6.2.2 Additive morphismsThe proof of theorem 6.2.1.2 applies not only to natural transformations K0(−) → CHn(−)but also to natural transformations involving several operands, e.g., K0(−) × K0(−) →
CHn(−). Hene, H-group morphisms Z × Gr → K(Z(n), 2n) orrespond to morphisms
K0(−) → CHn(−) in Sm/koppAb (see proposition 2.2.3). The group of these morphisms isdesribed in the following proposition:Proposition 6.2.2.1 Let k be a perfet �eld. For any n ≥ 0, the map given by the evaluationat [O(1)] in K0(P

n) indues an isomorphism:
HomSm/koppAb(K0(−), CHn(−))

∼
→ lim

r∈N
CHn(Pr) ≃ CHn(Pn) ≃ Z .We denote χn : K0(−) → CHn(−) the anonial generator given by this isomorphism. It isharaterised by the fat that χn([L]) = [D]n anytime L is a line bundle on X ∈ Sm/S and

D is the divisor of a rational setion of L.The proof of the injetivity of the map
HomSm/koppAb(K0(−), CHn(−))

∼
→ lim

r∈N
CHn(Pr)is similar to that of proposition 5.1.1. The group limr∈NCHn(Pr) is easily identi�ed to thegroup Z, generated by the ompatible family made of nth powers of lasses in hyperplanes in

Pr for all r ∈ N. For the surjetivity, i.e., the existene of χn, we shall use the following lemma,whih is a onsequene of the theory of symmetri polynomials (hint: use [1, VI 4.3-4.4℄):Lemma 6.2.2.2 Let n ≥ 1. There exists a unique funtorial homomorphism
χn : (1 +A[[t]]+,×) → (A,+)for all ommutative rings A suh that for any x ∈ A,

χn(1 + xt) = xn ,and χn vanishes on the subgroup 1 + tn+1A[[t]].Note that by looking at the universal situation, we know that χn(
∑

i≥0 ait
i) is given by apolynomial in a1, . . . , an and it is homogeneous of total degree n if we set deg ai = i.For any X ∈ Sm/k, u ∈ K0(X), we onsider the Chern polynomial ct(u) ∈ CH⋆(X)[[t]]and apply the onstrution of the lemma to this series : χn(ct(u)) ∈ CHn(X). This onstrutsa natural transformation K0(−) → CHn(−) to whih we give the same name χn. This �nishesthe proof of the proposition in the ase n ≥ 1; the remaining ase n = 0 is trivial.Remark 6.2.2.3 As we have seen it, the natural transformation χn : K0(−) → CHn(−) isgiven by a polynomial involving Chern lasses. It an be omputed indutively using Newtonrelations:

χk − c1χk−1 + · · · + (−1)k−1ck−1χ1 + (−1)kkck = 0 .For instane, χ1 = c1, χ2 = c21 − 2c2, χ3 = c31 − 3c1c2 + 3c3.32



The following similar result gives a omputation of the group of H-group morphisms
Z × Gr → K(Z(n), 2n) in H•(k).Corollary 6.2.2.4 Let k be a perfet �eld, n ≥ 0, i ≥ 0. For any 0 ≤ j ≤ min(i, n) and
x ∈ H2j−i(k,Z(j)), we de�ne a natural transformation x · χn−j : K0(−) → H2n−i(−,Z(n))of presheaves of abelian groups on Sm/k, obtained as the omposition of χn−j and the multi-pliation by x on motivi ohomology. Then, the group of natural transformations K0(−) →
H2n−i(−,Z(n)) identi�es to the diret sum of the groups H2j−i(k,Z(j)) for 0 ≤ j ≤ min(i, n),as follows:

HomSm/koppAb(K0(−),H2n−i(−,Z(n))) ≃

min(i,n)⊕

j=0

H2j−i(k,Z(j)) · χn−j .6.2.3 Stable morphismsThe motivi Eilenberg-Ma Lane spetrum HZ is obtained from the sequene of objets
K(Z(n), 2n) (see [45, �6.1℄). We may desribe its image in SHnaïve(k) by saying that thedi�erent Eilenberg-Ma Lane spaes are related by the anonial isomorphism K(Z(n), 2n) ≃
RHom•(P

1,K(Z(n + 1), 2n + 2) indued by the external produt with the lass of the 1-odimensional yle [∞] in CH1(P1). This onstrution generalises to give a P1-spetrum
HA for any oe�ient abelian group A.In order to study morphisms BGL → HZ[−i] for i ≥ 0, we use the following de�nition.De�nition 6.2.3.1 Let n ≥ 1 and i ≥ 0. Let τ : K0(−) → H2n−i(−,Z(n)) be an additivenatural transformation, i.e., a morphism in Sm/koppAb. We de�ne a natural transformation
ΩP1(τ) : K0(−) → H2n−2−i(−,Z(n− 1)) whih shall be haraterised by the ommutativity ofthe following diagram for all X ∈ Sm/k:

K0(X)
u⊠−

//

Ω
P1 (τ)

��

K0(P
1 ×X)

τ

��

H2n−2−i(X,Z(n − 1))
[∞]⊠−

// H2n−i(P1 ×X,Z(n))where u = [O(1)] − 1 ∈ K0(P
1) and [∞] is the lass of a rational point in CH1(P1) =

H2(P1,Z(1)).Lemma 6.2.3.2 Let k be a perfet �eld. For any n ≥ 1, we have ΩP1(χn) = nχn−1.By the splitting priniple, it su�es to hek that ΩP1(χn) and nχn−1 oinide on elementsof the form [L] ∈ K0(X) where L is a line bundle on some X ∈ Sm/k. Let D be the divisorof a rational setion of L. Considering CH⋆(X × P1) both as an algebra over CH⋆(X) and
CH⋆(P1), we get:

[∞] ⊠ ΩP1(χn)([L]) = χn(u⊠ [L])

= χn([O(1) ⊠ L]) − χn(OP1 ⊠ L)

= ([∞] + [D])n − [D]n = n[∞][D]n−1

= [∞] ⊠ (nχn−1([L])) ,33



whih proves the expeted result: ΩP1(χn)([L]) = nχn−1([L]).This lemma leads to a desription of the projetive system
(Hom+

H•(S)(Z × Gr,K(Z(n), 2n)))n∈Ndedued from the bonding morphisms on BGL and HZ; it identi�es to a projetive systemwhih we shall denote Z!:
· · · → Z

5
→ Z

4
→ Z

3
→ Z

2
→ Z

1
→ Z .We generalise this de�nition:De�nition 6.2.3.3 Let A be an abelian group. We de�ne a projetive system A! of abeliangroups indexed by N by saying that in degree n ∈ N, (A!)n = A and the transition map

(A!)n → (A!)n−1 is the multipliation by n on A.De�nition 6.2.3.4 If X• = (· · · → Xn
fn−1
→ Xn−1 → · · · → X1

f0
→ X0) is a projetive systemof abelian groups indexed by N, we de�ne a new projetive system sX• = (· · · → Xn

fn−1
→

Xn−1 → · · · → X1
f0
→ X0 → 0).Proposition 6.2.3.5 Let A be an abelian group. We let HA be the motivi Eilenberg-MaLane spetrum with oe�ients in A. Then, for any i ∈ Z, the projetive system

(Hom+
H•(k)(Z × Gr,K(A(n), 2n − i))n∈Nassoiated to the P1-spetra BGL and HA[−i] identi�es to

i∏

j=0

sjH2j−i(k,A(j))! .For i ≥ 0, it follows from A-valued variants of orollary 6.2.2.4 and lemma 6.2.3.2. If
i < 0, K(A(n), 2n− i) identi�es to RHom•(G

∧−i
m ,K(A(n), 2n)) and both projetive systemsvanish.Then, we observe that for any abelian group A, limA! ≃ Hom(Q, A) and R1 limA! ≃

Ext(Q, A), and that the shift funtor s does not hange lim and R1 lim of projetive systems.Thus, we get the following theorem:Theorem 6.2.3.6 Let k be a perfet �eld. Let A be an abelian group. Let i ∈ Z. There is aanonial short exat sequene:
0 →

i+1∏

j=0

Ext(Q,H2j−i−1(k,A(j))) → HomSH(k)(BGL,HA[−i])

→
i∏

j=0

Hom(Q,H2j−i(k,A(j))) → 0 ,where the group on the right side identi�es to morphisms in SHnaïve(k) and the group on theleft to stably phantom morphisms. 34



Corollary 6.2.3.7 (Existene of nonzero stably phantom morphisms) Let k be a per-fet �eld. There exists an isomorphism
HomSH(k)(BGL,HZ[1]) ≃ Ext(Q,Z) ≃ Ẑ/Z ,and all these morphisms f : BGL → HZ[1] are stably phantom, i.e., for any morphism in

SH(k) of the form g : (P1)∧−n ∧W → BGL where n ∈ Z and W ∈ H•(k), the omposition
f ◦ g vanishes (see [37, Dé�nition 6.6℄).Remark 6.2.3.8 Most of the results appearing in this artile have homologues in the lassialhomotopy theory and are oherent with �omplex points funtors� from A1-homotopy ategoriesto usual (topologial) homotopy ategories. In partiular, the spetrum BGL(C) obtained asthe image of BGL by the �omplex points funtors� SH(C) → SHtop represents topologialomplex K-theory (see [37, Remarque 2.16℄). Then, if Htop

Z ∈ SHtop is the lassial Eilenberg-Ma Lane spetrum, we get the same omputation of the group HomSHtop(BGL(C),Htop
Z [1]).The example of stably phantom morphisms in SHtop whih we hereby get may be onsideredas simpler than those onstruted by Christensen [8, Proposition 6.10℄.De�nition 6.2.3.9 Let k be a perfet �eld. We let ch : BGL → HQ be the anonial generatorof HomSH(k)(BGL,HQ) ≃ Q. This is the Chern harater. Using Bott periodiity (BGL ≃

RHom•(P
1,BGL)), we dedue from it a sequene of morphisms chi : BGLQ → HQ(i)[2i]where HQ(i) = HQ ∧ (P1)∧i[−2i]. The total Chern harater is ∏

i chi:
cht : BGLQ →

∏

i∈Z

HQ(i)[2i](the in�nite produt on the right is also a diret sum).Remark 6.2.3.10 Remark 5.3.18 may be ontinued as follows. One easily sees that the Chernharater ch : BGLQ → HQ vanishes on BGL
(i)
Q (see theorem 5.3.10) for i 6= 0 so that itfators through its diret fator HÁ (see de�nition 5.3.17) as BGLQ → HÁ ch(0)

→ HQ. Itfollows from known results (see [29℄) that ch(0) : HÁ → HQ is an isomorphism; equivalently,
cht : BGLQ → ⊕i∈ZHQ(i)[2i] is an isomorphism.6.3 Grothendiek-Riemann-RohFor simpliity, we only onsider the ase of a projetive and smooth morphism f : X → S in
Sm/k where k is a perfet �eld. We let d be the relative dimension of f . The �restrition� of
HQ ∈ SH(k) to X and S provides objets in SH(X) and SH(S) whih shall also be denoted
HQ; they satisfy f⋆HQ ≃ HQ. To f is attahed a morphism of motives Z(d)[2d] →M(X) in
DM(S) (see [22, �I.4.4℄) whih indues a morphism f⋆ : RHom•(X+,HQ) → HQ(−d)[−2d] in
SH(S). This morphism indues the pushforward maps

f⋆ : Hp(X ×S T,Z(q)) → Hp−2d(T,Z(q − d)) ,for all T ∈ Sm/S. 35



Theorem 6.3.1 Let k be a perfet �eld. Let f : X → S be a projetive and smooth morphismin Sm/k. Then, the following diagram ommutes in SH(S):
Rf⋆BGLQ

f⋆

��

Rf⋆(ch·TdTf )
//
∏

i∈Z Rf⋆HQ(i)[2i]

f⋆

��

BGLQ
ch

//
∏

i∈Z HQ(i)[2i]The proof is similar to that of theorem 6.1.2.1. This statement is equivalent to the usualGrothendiek-Riemann-Roh theorem for morphisms fT : X ×S T → T for all T ∈ Sm/S(whih is known to be true, see [13, Chapter 15℄). The reason for this is the variant oftheorem 6.1.3.2: a morphism τ : BGLQ → HQ(i)[2i] vanishes if and only if it vanishes afterthe appliation of funtors π2n,n : SH(S) → Sm/SoppAb for all n ∈ Z.Corollary 6.3.2 Let k be a perfet �eld. Let f : X → S be a projetive and smooth morphismin Sm/k. For any j ∈ N, the following diagram ommutes:
Kj(X)

cht·TdTf
//

f⋆

��

∏
i∈ZH

2i−j(S,Q(i))

f⋆

��

Kj(S)
cht

//
∏

i∈ZH
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