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Common situation in dissipative PDE

- a “conservative” part + a “dissipative” part

- the conservative part alone does not induce relaxation
- the dissipative part is degenerate and not sufficient

..... but the combination of the two leads to relaxation.

Problem: How is the convergence as t — +o0? (how
fast, etc.)
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Two typical examples from kinetic theory

Unknown: f(t,z,v) >0,z € R" (or 2 C R"), v € R"




Two typical examples from kinetic theory

Unknown: f(t,z,v) >0,z € R" (or 2 C R"), v € R"

e the linear kinetic Fokker—Planck equation

2 X, dX, dB,
— _VV(X,) — =t ot
dt2 VVI(X) dt V2 dt




Two typical examples from kinetic theory

Unknown: f(t,z,v) >0, x € R" (or Q CR"), v € R”

e the linear kinetic Fokker—Planck equation

FP) O o 0V V@) VS = AV ()

conservative diffusion /friction



Typical examples from kinetic theory

Unknown: f(t,z,v) >0,z € R" (or 2 C R"), v € R"

e the linear kinetic Fokker—Planck equation

FP) S o 0V V@) VS = AV ()

conservative diffusion /friction

e the nonlinear Vlasov—Landau equation

0
(BE) a—{ + v Vo f+ FIf]-Vof = Qulf, f)

transport collisions
v - V,: simple differential linear operator, “mixes” x, v

()r: complicated diffusion bilinear operator, acts only
on v



e the Boltzmann equation

o,
BE) 4wV = QUL

transport collisions

v - V,: simple differential linear operator, “mixes” x,v

(): complicated integral bilinear operator, acts only on v

Always the problem is to put the two properties
together.



Collision operator

N = [ [ 1)) = 1)) o - vl doav,

(v, )

) Tk

collision (o, v) {’U’ = (v +v)/2 +(Jv—vl/2)0
vy =(0+v)/2 = (Jo —wl/2)0

Q(f, f) = 0if and only if f is hydrodynamic, i.e.

_ Jv—u(x)|?

plz)e T
(27T ()2

f(.fU,’U) — MpuT —




Some difficulties

e For both (kFP) and (BE) the dissipative (collisional)
part acts only on the variable v

—> (BE) ceases to be dissipative on hydrodynamical
states: Q(M,y1, M,y1) =0

—> (kFP) ceases to be dissipative on states
f(z,0) = p(x) e 1T/

e For Boltzmann, additional difficulties: nonlinearity,
complexity, just one Lyapunov functional (entropy) and
the understanding of its production is very tricky

....Anyway we need to cleverly use the
conservative part



Grad’s intuition

“the question 1s whether the deviation from a local
Mazwellian, which s fed by molecular streaming in the
presence of spatial inhomogeneity, is sufficiently strong to
ultimately wipe out the inhomogeneity” (...)

“a valid proof of the approach to equilibrium in a spatially
varying problem requires just the opposite of the procedure
that 1s followed in a proof of the H-Theorem, viz., to
show that the distribution function does not approach too
closely to a local Maxwellian.”

On Boltzmann’s H Theorem (1965)



Incomplete bibliography for kinetic Fokker—Planck

Various convergence results by probabilistic methods
(Wu, Rey-Bellet, Bakry—Cattiaux—Guillin,
Mattingly—Stuart...)

Desvillettes—V (2001): convergence in O(t~>°) for
V ~ a|x|? at infinity and fo/fs € L(!)

Exponential convergence for fy/fs € L*(fs):
Hérau—Nier (2004), Helffer—Nier, Hérau....



Incomplete bibliography for Boltzmann

(With adequate boundary conditions)

Desvillettes—V (2005): If f(¢,x,v) is uniformly smooth
and positive, then convergence like O(t~*°), and the
decay bounds can be estimated from the smoothness and
positivity bounds

Guo, Strain: fy(x,v) close enough to equilibrium =
convergence to equilibrium like O(e~*) (or O(e™"))

(Note: For Boltzmann equation in the large we don’t
know any estimate!)



The Desvillettes—V. method

Based on four first-order and second-order differential

inequalities coupled by functional inequalities.

Uses

(a) Lower bound on the entropy production far from
hydrodynamic states (information-theoretical input)

(b) Instability of the hydrodynamic approximation in
presence of gradients (fluid mechanics input)

(¢) Geometric inequalities (Poincaré, Korn)

(d) Study of the system of differential inequalities
(“Gronwall” style)

+ a lot of interpolation (trade smoothness for exponents)



Hydrodynamic approximation (fluid mechanics)

o |'U—u|2
e~ 2T

(2r TN/

ft,z,0) — M) =p

M7 = best approximation of f by a hydrodynamic state
(“projection”)

.

p(t, ) ::/fdv (density)

_/\

1
u(t, x) == — / fuduv (mean velocity)
p

1
\T(t, T) = N, / flo—ul?dv (temperature)



Entropy production
H(f)= [ flog fdvdx

f(v) f(v)

f') f(wl)

v — v, | do dv dv,

D) = 1 [ (#6500 = F@)f(w2)) log

Best known lower bound

(precursors: Carlen—Carvalho, Toscani-V)

D(f) > K.(f) [H(f) — H(MP)]™

.
€

K.(f) depends on { regularity (high order Sobolev norms) of f
| positivity: f > Ke ARl

Rk: Inequality with e = 0 (Cercignani conjecture) is false



...The system

—L[H(f) = H(M)] > K[H(f) — H(M)]'*

dt2 ”f uT”L2 > KfQ IVT|? dx
(1 = M p122) T = a[H(f) — H(M)]

%”f - Mpfu<T>”%2 Z KfQ ‘VSymu|2dx
1—e¢
— = (I = ML, o l22) " = 6[H(f) — H(M)]

dt2 ”f 01HL2 > KfQ IV pl|? dx
(1 — M) — BH () — H(M)




....'he system

(—L[H(f) — HM)] > K[H(f) — H(MT )1+
ENf =M |2 > K [, VT da
(I = M |2.) " = & [H(f) — H(M)]

C?_;”f o M;L(T)”%ﬁ > KfQ ‘Vsymu|2dﬂf
1—e¢
S (1 = M l12.) T — G H(f) — H(M)]

LN f— Mo |2 > K [, [Vp|? do
1—¢
\ —g= (I = MJoull72) " = 0[H(f) — H(M))




....'he system

(—L[H(f) — H(M)] > K[H(f) — H(M?)]'+
ENf =M% > K [, VT de
(I = M |2.) T = & [H(f) — H(M)]

C?_;”f o beu<T>”%2 > KfQ ‘Vsymu|2dﬂf
1—e¢
S (1 = M l12.) T — G H(f) — H(M)]

LN f— Mo |2 > K [, [Vp|? do
1—¢
\ —g= (I = MJoull72) " = 0[H(f) — H(M))




....T'he system

(—L[H(f) — H(M)] > K[H(f) — H(M/)]"
SNf = M |2 > K [ VT da
(I = M pl122) T = ai[H(f) — H(M)]

@l = My )i = K Jo [Vl de
1—e
_52?—8(Hf—Mfu<T>H%2) — 0| H(f) — H(M)]

2
%”f o be(nHQLz > KfQ |v,0|2d:lj

\ —53?_€(Hf—M501H%2)

................... H(f(t)) — H(M) = O(t1/200¢)

1—¢

— 03|H(f) — H(M)]



Two goals which were subsequently pursued

(1) Find simpler (maybe less intuitive) methods

(2) Identify general structures gathering various models
with a “degenerate diffusive part” and start a “toolbox”

—> Hypocoercivity (Memoirs AMS, 2009)
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Rather frequent situation:

- a “conservative’ part + a “dissipative part”

- the conservative part alone does not induce relaxation
- the dissipative part is degenerate and not sufficient

..... but the combination of the two leads to relaxation.

Analogy with (parabolic) hypoellipticity theory

- a first-order part + a second-order part

- the first-order part does not induce any regularization
- the second-order part is degenerate

..... but the combination leads to regularization

Denomination: hypocoercivity for the first situation

(Gallay)



Recall: Hormander’s “>° X? + X;” theorem

(a;)o<i<m smooth vector fields in dimension n

(a;) < X; = a;-V differentiation operators in direction q;

% = (;XerXO)u
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Recall: Hormander’s “>° X? + X;” theorem

(@;)o<i<m smooth vector fields in dimension n

(a;) < X; = a; -V differentiation operators in direction q;
ou
i>1

Ellliptic case: rank ((X;)) =n = C* regularization
Still regularizing if
rank ((X;), (|X;, XjD? ([ X, Xkl Xj])v ) =n

i.e. by taking a finite number of commutators involving
the dissipative and the conservative part, one can

generate all directions



The “A*A + B” theorem

(abstract linear result in a Hilbert space)

A= (A,...,A,), B*=—-BinH, L=A"A+B
Co=4A4, [C;,Bl=Cji+Rjm1 (J<Ne), Cney1=0,
( (i) [A4, Ck] bounded relatively to {C }o<j<k, {CjA}o<j<k—1

(ii) [A*, Ck] bounded relatively to I, {C;}o<j<k
(iii) Ry bounded relatively to {C;}o<j<k—1,{CjA}o<j<k—1

/\

\



The “A*A + B” theorem

(abstract linear result in a Hilbert space)

A= (A, ...,A,), B*=—-BinH, L=A"A+B
Co=A, [C;Bl=Ciji+Rip1 (<N, Cn41=0,
[ (i) [A, C)] bounded relatively to {C;}o< <k, {C;AYo<j<i_1

(ii) [A*, Ck] bounded relatively to I, {C;}o<j<k
(iii) Rx bounded relatively to {C;}o<j<k—1,{C;A}o<i<k—1

I\

\

+ (H) Z?:CO C3C; is coercive



The “A*A + B” theorem

(abstract linear result in a Hilbert space)

A= (Ay,...,A,), B*=—-BinH, L=A"A+B
Co=4, [C;,Bl=Cji+Rjs1 (1 <No), Ones1 =0,
[ (i) [A, C] bounded relatively to {C;}o<i<p, {C;A o< j<p_1

(ii) [A*, Ck] bounded relatively to I, {C}}o<j<k
(iii) R bounded relatively to {C;}o<j<k—1,{CjA}o<i<k—1

N\

\

+ (H) Z?;Co C3Cj is coercive

—tL

Then ||e

s O(e™)  |Ihl3s = Il* + ZIIC;h)?




Application of the A*A + B theorem to kFP

% F0-Vof = VV(2)-Vof = Af + Y, - (fo)

h=f/fe €H=L*fedxdv)
A=V, B=v-V,—VV(z)-V,



Application of the A*A + B theorem to kFP

of
ot

h=f/fe €H=L*fedxdv)
A=V, B=uv-V,—VV(z)-V,

+ 0V f = VV(2) - Vof = Auf + V, - (fo)

Assumptions are satisfied as soon as
( ) ]V2V] < const. (1 + |VV])

V' dx satisfies a Poincaré inequality:

/|v h|%e _de>K/|h hY|? eV da

Then ||h(t) — 1|| = O(e™) constructive rate

(most general result at the time)



Core of the proof of A*A+ B

Introduce a Lyapunov functional: (say N, = 1)

F(h) = [|n]]* + al AR +cl[[4, Blh|



Core of the proof of A*A+ B

Introduce a Lyapunov functional: (say N, = 1)
F(h) = |hlI* + al| AR|*+2bRe (Ah, [A, B]h) + c[|[A, B]hl*
1>a>b>c b < \ac
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Core of the proof of A*A+ B

Introduce a Lyapunov functional: (say N, = 1)
F(h) = |hlI* + al| AR|I*+2bRe (Ah, [A, B]h) + c||[A, Blhl*
1>a>b>c b < \ac

Key algebraic identity:
d
—| (Al [A, Blh) = (ABh, |A, B]h) + (Ah, |A, B| Bh)
B

= ||[A, BIL|I* + (AR, [[A, B], B]h)



Core of the proof of A*A+ B

Introduce a Lyapunov functional: (say N. = 1)

F(h) = ||h||* + a||AR||*+2bRe (Ah, [A, B]h) + c||[A, B]h||?
1>a>b>c; b << +/ac

Key algebraic identity:
@1 (Ah,[A, By = (ABh.[A. BIk) + (Ah.[A, B)BE)
B

= ||[A, BIL|I* + (AR, [[A, B], B]h)

Rks: ¢ Not unrelated to tricks by Guo and Talay

e Often one can use similar Lyapunov functionals to

prove Hormander’s hypoelliptic regularity bounds
(Hérau, V)

— (Global regularization theorems



Regularization from L' data

Of +v-Vof =VV -V, f=A,f+V,-(fv)
[ folz,v) (1 + |z|* + |[v]*) dvdr < +0

Prove that f; € HFH(R™ x R™) 77

Note carefully: Because of the behavior at infinity,
there is no regularization L' — L* !!



Global hypoellipticity (in 4 steps)

L' initial datum — (flat) Sobolev regularity

Step 1: Energy estimate

En(f)= ) akg/yvgvfjﬂ?dm

3k+£<3m
= [1vzsp s [vingp [ r

Choose ad hoc coeflicients apy —>

Computation using integration by parts...

d&x(f)
dt

< —K/yv§m+1fy2dxdv+cgm(f)



Step 2: Mixed derivatives

Mm(f)zfvglf-vg”vvfdxdv (:/fo-vvf if m=1)

... Computation using commutator |V,,v-V,] =V,

dM,,

<K [IVifPddo + ¢ Y [ IVEVLT
3k+0<3m
k<m




Step 3: Interpolation

Based on anisotropic Nash inequality

/ | DA D! f1? dx dv

<C (/\Dg’fﬁdsgdw/\Dﬁ'f\2dﬂfdv)19 (/f>8

(i)
1+g($+i)

A=u=0, NV =y =1 — usual Nash inequality in R*"

9:

€ (0,1)



\

(/\vmfﬁ /\v3mfy2 / ><5 gc(

M| < CELS

d&,,
Mg
dt —

[rwemses [r<c (e \Vim“fP)w
djc\; < K/\vmf|2+0</lv3mf\2 / )

—K/ V4 C e

)



(/\vmfﬁ /\v3mfy2 / ><g <c<

M| < CELS

dEn _
8 dt

[1mses [ e [rozsps [romge)
djc\; < K/\vmf|2+0</lv?’mf\2 / )

— E,(f) =0, Kk =min(6, 0/(1—0))

—K/ VISP A+ CE

)



Regularization in Fisher information sense

F(t, f) Z/flogf+at/flvvlogf\2
w2t [ F(V,10g £,V log £

+ct3/f V., log [

(adaptation of a trick by Hérau)
..... compute .... choose coefficients well = (d/dt)F < 0

/ft\Vx,U log f|* dvdv < (C't™) /fg log fo dx dv

Discovery: Computations almost similar for A% or hlog h!



d
E/\Chﬁdu = — 2/ |C Ah|* dp — 2/<[C, A*|Ah, Ch) dp

) / (C AR, (A, CIhY dy

d
E/h!Clogh|2d,u:—2/h\CAlogthu
—2/h([C,A*]Alogh,Clogh> du

) / b (C'Alog b [A. C|log h) dy:

—Z/h Z[Ai,cj]* ((Ajlogh) (Cjlogh)) dp

(Compare with Bakry—Emery) Proof is by brute force.



Conclusion

Convergence in L!

(a) |VV| < C

(b) log Sobolev inequality for eV dz (e.g. V2V > k1, at o)
(¢) [ folz,v) (1 +|v]* + |z|*) dzdv < +o0

Then f; — f in L' (and in entropy) exponentially fast



Conclusion

Convergence in L'

(a) |VV| < C

(b) log Sobolev inequality for eV dz (e.g. V2V > kI, at o)
(¢) [ folz,v) (1 +|v]* + |z|*) dzdv < 400

Then f; — f in L' (and in entropy) exponentially fast

Compare: Convergence in L?

(a) IV2V] < C (14 |VV))

VV[?

(b) Poincaré inequality for e™" dz (e.g. :

(¢) fo/ foo € L*(fo0)
Then f;/foo — 1 in L?(fs) exponentially fast

— AV — )



Remark: Completely different approach to exponential
convergence in (weak) L', by Hairer—Mattingly



Remark: Completely different approach to exponential
convergence in (weak) L', by Hairer—Mattingly

What about nonlinear models?



Another framework: fully nonlinear equations

Of + Bf =Cf in a scale of Banach spaces (X®)s>¢ that
are in interpolation; X" is Hilbert

f is uniformly bounded in all X?*

B, C are Lipschitz X* — X* (loss of index allowed)
B is “conservative” and C is “dissipative”

foo: stationary state

£: (Lyapunov) functional > K ||f — fo||**®

(IT;)1<j<y: nonlinear “projection” operators, twice
differentiable X* — X*' IL; o 11 = Ilax(j k)



Assumptions (simplified)

/

[£(F) — €M) = K ||f — T f |+
(KL = fool P < E(LS) = E(foo) < CITLS — fc |

E(f)-(Bf) =0
—E(f) - (CF) > K[E(f) — E(IL )]

Vi, I(fe) = foo;  Collj=0  Tlf = fu

@ Joa-rmp, o 2 el -nns

— ||/ = ool = O(t™) (quantitative)



Application to the Boltzmann equation

In a nonaxisymmetric box: 3 projections:

Hlf:MpuT H2f:Mpu(T> HSf:Mp01 Haf = foo

For other boundary conditions, change the projectors.....



An unconditional nonlinear convergence result

0 VS 4 F(t2) Vo = Af + Y, ()

F(t,z) = —/VW(x—y)f(t,y,w)dydw

where z € TV, W € C*(TY), [W =0,
/fo(ili,v) (1+ ]”U\Q) dx dv < +00

max |[W| < 1= unique equilibrium f.



An unconditional nonlinear convergence result

g—{+v-vmf+F(t,x)-VUfZAUf+Vv-(fv)

Ft.) =~ [ YW(o = y) f(t. g w) dy du
where z € TV, W € C*(TY), [W =0,
/fo(x,v) (1 + |v|*) dvdv < +o0
max |[W| < 1= unique equilibrium f.

The general convergence theorem allows to prove

max [W| <038 = ||fi — fool = O(t™)



The Lyapunov functional for the fully nonlinear case

L(f) =€) + D ay{ (=) f. (1 =1L} - (Bf))

1> ay > asy...> ay chosen recursively, depending on
the smoothness bounds and how close to equilibrium

Remark: In practice, £ might be quite complicated!!



Vu:D V-R
oltz /fl gf_ /f MZUT)(vaf+MPJCUT{[ ?;T T pT ]
v—u vT V-D v—u v—u) |
+\/T[_<3+1)\/T p\/_] Z(ﬁ)(ﬁ) 0
+Z(vi—uz’>2[8 u._v-u_Vu:D_V-R]_l_ U—u2<v_u>. VT}
VT rlt TN NpT  NpT VT vT ) 2VT

R O s

o Wl vt G s
2 () (), e

o] (=) R B L ) })

(1),

o fur (o )







Further examples
The Landau—Lifschitz—Gilbert—Maxwell model
(by Capella, Loeschcke, Wachsmuth)

(8 = J(h —m)
\V-h:—v-m,

m : R? — R? = linearized magnetization
h : R? — R’ = linearized magnetic field

J[Clﬁlaflfz,il?s] — [—5172,331]-

This is of the form A*A + B and general theorem applies
after 3 commutators



2d incompressible flow

Model problem for the stability of Oseen vortices, studied
by Gallagher, Gallay, Nier:

H=L*R;C); L.=(-+a>+1)+1f,

| el
f(x) = ( WE ) (typically), e —0




2d incompressible flow

Model problem for the stability of Oseen vortices, studied
by Gallagher, Gallay, Nier:

H=L*R;C); L.=(-2+2>+1)+1Ff
(1— €—|w|2/4)

]2

f(x) = (typically), e —0

Discovery: The antisymmetric part enhances the

dissipation by a factor ¢1/2

(or e=2/4+k) if f is Morse and decays like |z|~*)

How to prove this??



e Hard approach: localize the spectrum by microlocal
techniques and semiclassical asymptotics a la Hormander,
Sjostrand, Zworski, Helffer, Nier.... Get

Reo(L.) > Ke1/?



e Hard approach: localize the spectrum by microlocal
techniques and semiclassical asymptotics a la Hormander,
Sjostrand, Zworski, Helffer, Nier.... Get

Reo(L.) > Ke™ /2

e Alternative approach: look at the evolution problem:

search p s.t. |[e7 || < Ce H,

Set A=0,+x, B=(i/e)f, then L, = A*A+ B



e Hard approach: localize the spectrum by microlocal
techniques and semiclassical asymptotics a la Hormander,
Sjostrand, Zworski, Helffer, Nier.... Get
Reo(L.) > Ke™ /2

e Alternative approach: look at the evolution problem:
search p s.t. |[e7 || < Ce H,

Set A=0,+x, B=(i/e)f, then L, = A*A+ B

£ [ (B 5 (o) +0Re (i 0,0+ 5.7 )

A*A+ [A, B*[A, B] = :ﬂ%+x+1+2f@f



e Hard approach: localize the spectrum by microlocal
techniques and semiclassical asymptotics a la Hormander,

Sjostrand, Zworski, Helffer, Nier.... Get
Reo(L.) > K e 1/?

e Alternative approach: look at the evolution problem:
search p s.t. |[e7 ™| < Ce H

Set A=0,+x, B=(i/e)f, then L. = A*A+ B

£ [ (o o) b Re s 0+ 5 )
R 2 2 ' x :

A*A+[ABl*[AB] = L. = 0>+ 2> +1+ = f’(a:)2

( 1/2t)



Other hypocoercivity results

Sometimes commutators are not well-behaved, neither
fractional powers

—> Play with projections...
e Linearized Boltzmann in the torus: Mouhot—Neumann

Dolbeault—-Mouhot—Schmeiser (2013)

0
a;]: - Tf Lf 11 = projkerL

L*=L, —(Lf,[) =AU —-T)f[]
™ =-=T, |[TILf|* > AlILf|I®
[ITTI = 0 4+ some technical conditions (boundedness...)

)

A= (1 + (TH)*(TH))_l(TH)*

Then ||f]|* +c(Af, f) =~ ||f||* is a contracting norm



Some mysteries?

Qualitative understanding of the role of confinement

Ohh+v-V,h =A,h—v-V,h

in L2(aT? x R%: e~ 1V1°/2 qy dx)

e Spectrum is real (!) — physical implications

e Bottom of spectrum is equal to Aoy for a small

oh+v-V,h—wr-Vyh=A,h—v-V,hin
L2(RE x RY; e~ @llP+1)/2 gy do)

e DBottom of spectrum is 5 + im.part as w — o0

e “Best” choice is w =1/2



Large dimensions: Models of heat conduction

,
g = —VV(q;) = VW(q; — gj—1) + VW (qj31 — q5)
d/ dw

— = —l + gy — Ky—
7 Y€+ 0qo fiedt

(do = ~VV(g) + VW (11 — qo) + /¢

Spectral properties as N — oo?

/.

e Does the stationary p satisty a Poincaré inequality?
e Meaningful asymptotics? Better work in entropy?

e [Fstimates as N — o0??

— For a related model with weak coupling,
Liverani—Olla prove the hydrodynamic limit toward
diffusion model using both hypoelliptic (sum of squares)
and hypocoercive (A*A + B) methods.



Riemannian case

Of +Ef =Avf—v-Vyf

Set in tangent or cotangent formalism

Use Vv, Vg in place of V,,, V.,

e Regularization: L?, L!': same as in flat space

e Hypocoercivity in L*: ok

e Hypocoercivity in L*: ?? The problem is that

[di, &] = O(Jv]*)Vy cannot be easily controlled in

entropy estimates

[ 1of
(/

V, log h

V., logh

“hdp <

Zhdu+/\v3 logh\thu> does NOT hold



Weakly diffusive Landau damping in low regularity?

%,
VT FIVS = £ Qul )

=&V { /R = (Fe)Vuf () = F@)Vuf(0-) dv*}
o c=logA/(27A)~102 =107 « 1



Weakly diffusive Landau damping in low regularity?

%{ + v-Vof + FIf]-Vof = € Quf.f)

=€ Vy- {/]R3 Hﬁ:i)ﬁ (f(v*)vaf(v) - f(v)vvf(v*)) dv*}
o c=logA/(27A)~1072 =107 <« 1

e [Expect: regularize in G¥, like O(exp(et)™"/2=%)) in v,
maybe O(exp(e”(et)3/(2=3))) in o

e Expect: homogenize at least as fast as VP (diffusion;
stability of homogeneity), i.e. O(exp —t")

1

e Deduce: damping on time scale e ¢ < ¢!, while

entropy increase is O(e!™¢) <« 1



Weakly diffusive Landau damping in low regularity?

% + v-Vof + F[f]-Vof = € Qu(f, f)

_ . vt IV, _ V.f(v.))d *}
<0, { [ Bt (Fe)Vu ) - @9 0) do
o c=logA/(27A) ~107* - 10"« 1

o [xpect: regularize in G¥, like O(exp(et)™/2=)) in v,
maybe O(exp(e”(et)3/(2=3))) in x

e Expect: homogenize at least as fast as VP (diffusion;
stability of homogeneity), i.e. O(exp —t")

1

e Deduce: damping on time scale e7¢ < ¢!, while

entropy increase is O(e!™¢) <« 1
e Heuristics: ¢ ~ 8/9... (1/6 without z-smoothness)






