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Let M be a Kidhler manifold with a Kidhler metric w.

In local coordinates z1,-- - , zp, the metric w 1s given by a
Hermitian positive matrix-valued function (g;;):

n
W = \/—_1 Z gijdzi /N\ de

1,7=1
w being Kihler < dw = 0



We say w 1s Kidhler-Einstein if it 1s Kédhler and Einstein, 1.e.,

Ric(w) = Aw,

where A i1s a constant, say —1, 0, 1 after normalization, and
Ric(w) denotes the Ricci curvature, in local coordinates,

Ric(w) = —v—l@élogdet(gij).



In 50s, E. Calabi started the study of Kahler-Einstein metrics
on a compact Kahler manifold M.

A necessary condition is that M has definite first Chern class
c1(M).

The existence of Kahler-Einstein metrics was established by
e Aubin, Yau independently in 1976 when c¢; (M) < 0

e Yau in 1976 when ¢{(M) = 0



The Ricci flow was introduced by Hamilton in early 80’s:
09
ot M
g(0) = a given metric

e For any initial metric, there is a unique solution ¢(¢) on
M x |0, T) (Hamilton, DeTurck).



If ¢(0) is Kahler, so is every g(t). Hence, after scaling and
reparametrization, we can consider the (normalized) Kahler-
Ricci flow:
)
Ow(t
% — Mw(t) — Ric(w(t))
| w(0) = a given Kihler form wy,

where A = —1,0, 1. Here w(?) is the Kéhler form of g(%).

From now on, we will denote a Kihler metric by its Kahler
form.



In 1986, Cao proved that if ¢; (M) = A|wyl, then the above
Kéhler-Ricci flow has a global solution w(t) for t > 0,
furthermore, he proved that if A < 0, w(t) converge to a
Kéhler-Einstein metric on M as ¢ tends to oo.

This gives an alternative proof of the Aubin-Yau Theorem
and Calabi-Yau theorem.

In last ten years, there were many progresses on Kahler-
Ricct flow and its singularity formation, referred as the
analytic Minimal Model Program (aMMP). For instance,
Tian-Zhang proved a sharp local existence theorem for the
flow with any Kdhler metric as initial value.



What about the limit of w(¢) when A\ = 1?

In this case, ¢i (M) > 0, that is, the underlying M is a Fano
manifold.

Not every Fano manifold admits a Kahler-Einstein metric.

For now on, we always assume that M 1s Fano and
wo] = c1(M).



There are obstructions:

1. The automorphism group of M being reductive due to
Matsushima in 50s;

2. The Futaki 1nvariant introduced by Futaki in 1983;

3. The K-stability introduced by myself in 1996 and refor-
mulated by Donaldson in a more algebraic way in 2002.



Futaki invariant: It is a character of n(/) of holomorphic
vector fields on M defined by

fu(X) = /MX(ho) W
where h( 1s chosen by

Ric(wp) — wg = v/ —190hy, / (ehO — 1) wy = 0.
M

Futaki (1983): fj, is an invariant and vanishes if M admits
a Kihler-Einstein metric.



K-stability:

By Kodaira, for £ >> 1, any basis of H'(M, K]\_f) gives
an embedding: M — CPY. So we may consider M as
a subvariety in CPY. For any algebraic subgroup Gy =
{o(t)}tecx of SL(N + 1, C), there is a unique limiting cycle

My = lim o(t)(M) c CPV.
t—0

Ding-Tian (1992): If M, 1s normal, one can associate a
generalized Futaki invariant fj,(X).



M is called K-stable for ¢ if fy; (X) > 0 for any
Go C SL(N + 1) with a normal M and the equality holds
if and only 1f My 1s biholomorphic to M. M 1s K-stable if it
is K-stable for all sufficiently large /.

Tian (1996): If M 1s a Fano manifold without holomorphic
fields, M admits a Kahler-Einstein metric only if M 1s K-
stable.

The converse, 1.e., YID conjecture in the case of Fano
manifolds, has been proved last Fall. Thanks to Bismut, I
lectured on my proof here last April.



Hence, one can not expect that w(t) has a limit on M in
general.

Conjecture (Hamilton, Tian, 90s): (M,w(t)) converges to
a generalized shrinking Kihler-Ricci soliton (Mg, woo) in
the Cheeger-Gromov topology.

Here (Mo, woo) 1S @ compact metric space which is smooth
outside a closed subset of Hausdorff codimension at least 4,
MOreover, Wqo 1s a smooth Kihler metric on the regular part
of M~ satistying:

Ric(weo) — woo = V—180u, Vou = 0.



It 1s known that this conjecture implies the YTD conjecture
for Fano manifolds: If M 1s a K-stable, then M admits a
Kihler-Einstein metric.

The K-stability condition on M assures that M in the HT
conjecture coincides with M and g~ 1s Kahler-Einstein.



Reduction to scalar equation:

Write )
w(t) = wo+ v —100¢,

then the Kihler-Ricci flow becomes

9, wy + V/—100p)"
a—f:log(<O . @)—w—ho, ©(0)
“

where h( is determined by wy.



To solve the scalar equation, one needs to establish a prior
estimates for ¢(¢). In fact, by using Maximum principle,
one can reduce to establish the CV-estimate for o(t). But
such an estimate does not hold for general Fano manifolds.



Using his W-functional, Perelman proved (2003):
e w(t) has uniformly bounded scalar curvature and diameter;

e (Non-collapsing) There 1s a positive constant ¢ > 0 such
that

Vol(Br(z,w(t))) < cr’™, Vo€ M, r < diam(M, w(t));

o u(t), |Vu(t)| and Au are uniformly bounded, where
_ 9y



R. Ye, Q. Zhang (2007): There 1s a uniform bound on the
Sobolev constants of w(t), that is, there is a uniform A satis-
fying: for any f on M,

([ 1) Py [ 0VIP+ Pruter

Q. Zhang (2011): There is a uniform constant C' such that
Vol(By(z,w(t))) < Cro".



It follows that any sequence w(t;) with ¢; — oo has a sub-
sequence converging to a length space (Mo, do) in the
Gromov-Hausdorff topology.

The conjecture of Hamilton-Tian can be then reduced to the
regularity of (Mo, doo).



Two supporting evidences:

e (Sesum-Tian, 2004): If the Ricci curvature of w(t) is uni-
formly bounded, then the conjecture holds. The proof 1s
based on a compactness theorem of Cheeger-Colding-Tian.

e (Tian-Zhu, 2007): If M has a Kihler-Einstein metric, then
w(t) converges to the Kidhler-Einstein metric. This was first

claimed by Perelman. Our proof used the K-energy intro-
duced by Mabuchi.



Recently, Zhenle1 Zhang and I solved the HT conjecture for
dimension < 3:

If dim M < 3, then (M,w(t)) converges to a generalized
Kéhler-Ricci soliton (M, weo ). Moreover, M is a normal

variety.

The proof 1s based on the following two results.



1. (Tian-Zhang, 2013) There is a uniform bound on the LA
norm of Ricci curvature along the normalized Kéahler-Ricci
flow.

This 1s proved by some delicate computations using Perel-
man’s estimates and Bochner techniques.

Question: Is there a uniform bound on LP-norm of Ricci
curvature for some p > n?



2. (Tian-Zhang, 2013) If the LP-norm of Ric(w(?)) is uni-
formly bounded for some p > n, then for any ¢; — o0,
{w(t;)} contains a subsequence converging to a generalized
Kéhler-Ricci soliton (Mo, wso) such that My, is a normal
variety.

There are three ingredients in the proot of this.



1. Extend Cheeger-Colding’s and Cheeger-Colding-Tian’s
theories to metrics with LP-bounded Ricci curvature:

Assume (M;, g;) converge to (Mo, doo) in the GH topology
with

/ [Ric(g;)[Pdv(g;) < A, wvol(By(z,g;) > wr',
M+

where 2p > m = dim M;, x € M, and r < 1.

Then My, = R U S satisfying: § is a closed subset of
codimension > 2, R is C L,a_smooth and d~o 18 Induced by

a C'“-metric goo on R, where av < 2 — %.

Moreover, if (M;, g;) are Kahler, S is of codimension > 4.



2. Regularity of Kihler-Ricci flow:

If the above (M;, g;) = (M, w(t;)) arise from a solution w(t)
of the normalized Kéhler-Ricci1 flow, then by using an exten-
sion of Perelman’s pseudo-locality and the regularity theory
of Ricci flow, R i1s smooth and g~ 1S smooth, furthermore,
g; converge to goo in the smooth topology outside S, i.e., in
the Cheeger-Gromov topology.

To see g~o 1s a Kiahler-Ricci soliton on R, we use the W-
functional of Perelman.



For any Kihler metric w on M with [w]| = ¢ (M),

W(w, f) = /M(3+ VfP?+ f—n) el dv.

Let f solve the following along the Kihler-Ricci flow:

of

= —A 2+ A
3¢ f+|Vf|]©+ Au,

then

CZVW (), f(t)) = /M(Ivl’oﬁ(u — F)IF + VM0 f %) dv

This implies that |V1Y9ul(¢;) goes to 0 in the L?-norm, so
w(t;) converges to a Kédhler-Ricci soliton on k.



3. Partial C'-estimate for Kihler-Ricci flow:

As I pointed out before, the normality of M, follows from
a version of the partial C U_estimate for Kihler-Ricci flow.



By Kodaira, for £ >> 0, any basis of H(M, K ]\_/) embeds

M 1nto a certain projective space CPY. For any t > 0,
choose a Hermitian metric H (¢) on K ¢ with curvature w(t ,
M

then we have an induced inner product on H(M, K ]\_/ ), let
{S,} be any orthonormal basis with respect to this inner
product, define

Ptﬁ ZH (54, Sa)().



Partial C'-estimate: There are ci. = c(k,n,By) > 0 for
k > 1 such that for a sufficiently large ¢

pro(z) > ¢y

This can be proved by similar arguments in the proof of
the partial CY-estimate for Kahler-Einstein metrics (Tian,
Donaldson-Sun) once we establish corresponding analytic
tools: Gradient estimate and the L?-estimate for J-operators.



1. Gradient estimate: There is C' = C'(n, wyp) such that for
any ¢ > 0 and 0 € H(M, K]\_f), we have

sup (|of? + €7Vl < ce”/ o 2w(t)"
M M

Here | - |t denotes the norm induced by w(t).



2. L’-estimate: There is ¢y = £y(wp, n) such that for £ > ¢
and¢t > 0 and 7 € AV (M, K]\_/) with 7 = 0, we can find
v satisfying:

({979 — T, / |19]tw / ‘T‘tw

This is a modification of the standard L?-estimate.



With the above two estimates, for any x € M, we can trans-
plant constant functions on tangent cones at x to a section
o€ H(M,K ]\_/) whose norm is bounded uniformly from
below near x.

This leads to the partial CV-estimate. Then the known argu-
ments, e.g., as 1in Chi L1’s thesis, show that M 1s a normal
variety.



