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Let M be a Kähler manifold with a Kähler metric ω.

In local coordinates z1, · · · , zn, the metric ω is given by a
Hermitian positive matrix-valued function (gij̄):

ω =
√
−1

n∑
i,j=1

gij̄dzi ∧ dz̄j

ω being Kähler⇔ dω = 0
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We say ω is Kähler-Einstein if it is Kähler and Einstein, i.e.,

Ric(ω) = λω,

where λ is a constant, say −1, 0, 1 after normalization, and
Ric(ω) denotes the Ricci curvature, in local coordinates,

Ric(ω) = −
√
−1∂∂̄ log det(gij̄).
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In 50s, E. Calabi started the study of Kähler-Einstein metrics
on a compact Kähler manifold M .

A necessary condition is thatM has definite first Chern class
c1(M).

The existence of Kähler-Einstein metrics was established by

• Aubin, Yau independently in 1976 when c1(M) < 0

• Yau in 1976 when c1(M) = 0
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The Ricci flow was introduced by Hamilton in early 80’s:
∂gij
∂t

= −2Rij

g(0) = a given metric

• For any initial metric, there is a unique solution g(t) on
M × [0, T ) (Hamilton, DeTurck).
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If g(0) is Kähler, so is every g(t). Hence, after scaling and
reparametrization, we can consider the (normalized) Kähler-
Ricci flow:  ∂ω(t)

∂t
= λω(t) − Ric(ω(t))

ω(0) = a given Kähler form ω0,

where λ = −1, 0, 1. Here ω(t) is the Kähler form of g(t).

From now on, we will denote a Kähler metric by its Kähler
form.
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In 1986, Cao proved that if c1(M) = λ[ω0], then the above
Kähler-Ricci flow has a global solution ω(t) for t ≥ 0,
furthermore, he proved that if λ ≤ 0, ω(t) converge to a
Kähler-Einstein metric on M as t tends to∞.

This gives an alternative proof of the Aubin-Yau Theorem
and Calabi-Yau theorem.

In last ten years, there were many progresses on Kähler-
Ricci flow and its singularity formation, referred as the
analytic Minimal Model Program (aMMP). For instance,
Tian-Zhang proved a sharp local existence theorem for the
flow with any Kähler metric as initial value.
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What about the limit of ω(t) when λ = 1?

In this case, c1(M) > 0, that is, the underlying M is a Fano
manifold.

Not every Fano manifold admits a Kähler-Einstein metric.

For now on, we always assume that M is Fano and
[ω0] = c1(M).
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There are obstructions:

1. The automorphism group of M being reductive due to
Matsushima in 50s;

2. The Futaki invariant introduced by Futaki in 1983;

3. The K-stability introduced by myself in 1996 and refor-
mulated by Donaldson in a more algebraic way in 2002.
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Futaki invariant: It is a character of η(M) of holomorphic
vector fields on M defined by

fM (X) =

∫
M
X(h0)ωn0 ,

where h0 is chosen by

Ric(ω0)− ω0 =
√
−1∂∂̄h0,

∫
M

(
eh0 − 1

)
ωn0 = 0.

Futaki (1983): fM is an invariant and vanishes if M admits
a Kähler-Einstein metric.
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K-stability:

By Kodaira, for ` >> 1, any basis of H0(M,K−`M ) gives
an embedding: M 7→ CPN . So we may consider M as
a subvariety in CPN . For any algebraic subgroup G0 =
{σ(t)}t∈C∗ of SL(N + 1,C), there is a unique limiting cycle

M0 = lim
t→0

σ(t)(M) ⊂ CPN .

Ding-Tian (1992): If M0 is normal, one can associate a
generalized Futaki invariant fM0

(X).
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M is called K-stable for ` if fM0
(X) ≥ 0 for any

G0 ⊂ SL(N + 1) with a normal M0 and the equality holds
if and only if M0 is biholomorphic to M . M is K-stable if it
is K-stable for all sufficiently large `.

Tian (1996): If M is a Fano manifold without holomorphic
fields, M admits a Kähler-Einstein metric only if M is K-
stable.

The converse, i.e., YTD conjecture in the case of Fano
manifolds, has been proved last Fall. Thanks to Bismut, I
lectured on my proof here last April.
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Hence, one can not expect that ω(t) has a limit on M in
general.

Conjecture (Hamilton, Tian, 90s): (M,ω(t)) converges to
a generalized shrinking Kähler-Ricci soliton (M∞, ω∞) in
the Cheeger-Gromov topology.

Here (M∞, ω∞) is a compact metric space which is smooth
outside a closed subset of Hausdorff codimension at least 4,
moreover, ω∞ is a smooth Kähler metric on the regular part
of M∞ satisfying:

Ric(ω∞)− ω∞ =
√
−1∂∂̄u, ∇1,0∂u = 0.
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It is known that this conjecture implies the YTD conjecture
for Fano manifolds: If M is a K-stable, then M admits a
Kähler-Einstein metric.

The K-stability condition on M assures that M∞ in the HT
conjecture coincides with M and g∞ is Kähler-Einstein.
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Reduction to scalar equation:

Write
ω(t) = ω0 +

√
−1∂∂̄ϕ,

then the Kähler-Ricci flow becomes

∂ϕ

∂t
= log

(
(ω0 +

√
−1∂∂̄ϕ)n

ωn0

)
− ϕ− h0, ϕ(0) = 0,

where h0 is determined by ω0.
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To solve the scalar equation, one needs to establish a prior
estimates for ϕ(t). In fact, by using Maximum principle,
one can reduce to establish the C0-estimate for ϕ(t). But
such an estimate does not hold for general Fano manifolds.
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Using his W-functional, Perelman proved (2003):

• ω(t) has uniformly bounded scalar curvature and diameter;

• (Non-collapsing) There is a positive constant c > 0 such
that

V ol(Br(x, ω(t))) ≤ c r2n, ∀x ∈M, r ≤ diam(M,ω(t));

• u(t), |∇u(t)| and ∆u are uniformly bounded, where
u(t) = ∂ϕ

∂t .
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R. Ye, Q. Zhang (2007): There is a uniform bound on the
Sobolev constants of ω(t), that is, there is a uniform A satis-
fying: for any f on M ,(∫

M
|f |

2n
n−1ω(t)n

)n−1
n
≤ A

∫
M

(|∇f |2 + f2)ω(t)n.

Q. Zhang (2011): There is a uniform constant C such that

V ol(Br(x, ω(t))) ≤ Cr2n.
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It follows that any sequence ω(ti) with ti → ∞ has a sub-
sequence converging to a length space (M∞, d∞) in the
Gromov-Hausdorff topology.

The conjecture of Hamilton-Tian can be then reduced to the
regularity of (M∞, d∞).
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Two supporting evidences:

• (Sesum-Tian, 2004): If the Ricci curvature of ω(t) is uni-
formly bounded, then the conjecture holds. The proof is
based on a compactness theorem of Cheeger-Colding-Tian.

• (Tian-Zhu, 2007): If M has a Kähler-Einstein metric, then
ω(t) converges to the Kähler-Einstein metric. This was first
claimed by Perelman. Our proof used the K-energy intro-
duced by Mabuchi.
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Recently, Zhenlei Zhang and I solved the HT conjecture for
dimension ≤ 3:

If dimM ≤ 3, then (M,ω(t)) converges to a generalized
Kähler-Ricci soliton (M∞, ω∞). Moreover, M∞ is a normal
variety.

The proof is based on the following two results.
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1. (Tian-Zhang, 2013) There is a uniform bound on the L4-
norm of Ricci curvature along the normalized Kähler-Ricci
flow.

This is proved by some delicate computations using Perel-
man’s estimates and Bochner techniques.

Question: Is there a uniform bound on Lp-norm of Ricci
curvature for some p > n?
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2. (Tian-Zhang, 2013) If the Lp-norm of Ric(ω(t)) is uni-
formly bounded for some p > n, then for any ti → ∞,
{ω(ti)} contains a subsequence converging to a generalized
Kähler-Ricci soliton (M∞, ω∞) such that M∞ is a normal
variety.

There are three ingredients in the proof of this.
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1. Extend Cheeger-Colding’s and Cheeger-Colding-Tian’s
theories to metrics with Lp-bounded Ricci curvature:

Assume (Mi, gi) converge to (M∞, d∞) in the GH topology
with∫

M+i
|Ric(gi)|pdv(gi) ≤ Λ, vol(Br(x, gi)) ≥ κrm,

where 2p > m = dimMi, x ∈Mi and r ≤ 1.

Then M∞ = R ∪ S satisfying: S is a closed subset of
codimension ≥ 2, R is C1,α-smooth and d∞ is induced by
a Cα-metric g∞ onR, where α < 2− m

p .

Moreover, if (Mi, gi) are Kähler, S is of codimension ≥ 4.
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2. Regularity of Kähler-Ricci flow:

If the above (Mi, gi) = (M,ω(ti)) arise from a solution ω(t)
of the normalized Kähler-Ricci flow, then by using an exten-
sion of Perelman’s pseudo-locality and the regularity theory
of Ricci flow, R is smooth and g∞ is smooth, furthermore,
gi converge to g∞ in the smooth topology outside S, i.e., in
the Cheeger-Gromov topology.

To see g∞ is a Kähler-Ricci soliton on R, we use the W-
functional of Perelman.
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For any Kähler metric ω on M with [ω] = c1(M),

W(ω, f ) =

∫
M

(s + |∇f |2 + f − n) efdv.

Let f solve the following along the Kähler-Ricci flow:

∂f

∂t
= −∆f + |∇f |2 + ∆u,

then
d

dt
W(ω(t), f (t)) =

∫
M

(|∇1,0∂̄(u− f )|2 + |∇1,0∂f |2)dv.

This implies that |∇1,0∂u|(ti) goes to 0 in the L2-norm, so
ω(ti) converges to a Kähler-Ricci soliton onR.
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3. Partial C0-estimate for Kähler-Ricci flow:

As I pointed out before, the normality of M∞ follows from
a version of the partial C0-estimate for Kähler-Ricci flow.
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By Kodaira, for ` >> 0, any basis of H0(M,K−`M ) embeds
M into a certain projective space CPN . For any t > 0,
choose a Hermitian metricH(t) onK−`M with curvature ω(t),
then we have an induced inner product on H0(M,K−`M ), let
{Sa} be any orthonormal basis with respect to this inner
product, define

ρt,`(x) =
∑

H(t)(Sa, Sa)(x).
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Partial C0-estimate: There are ck = c(k, n, β0) > 0 for
k ≥ 1 such that for a sufficiently large `

ρt,`(x) ≥ c`.

This can be proved by similar arguments in the proof of
the partial C0-estimate for Kähler-Einstein metrics (Tian,
Donaldson-Sun) once we establish corresponding analytic
tools: Gradient estimate and the L2-estimate for ∂̄-operators.
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1. Gradient estimate: There is C = C(n, ω0) such that for
any ` > 0 and σ ∈ H0(M,K−`M ), we have

sup
M

(
|σ|2t + `−1|∇σ|2t

)
≤ C `n

∫
M
|σ|2ω(t)n.

Here | · |t denotes the norm induced by ω(t).
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2. L2-estimate: There is `0 = `0(ω0, n) such that for ` ≥ `0
and t ≥ 0 and τ ∈ Λ0,1(M,K−`M ) with ∂̄τ = 0, we can find
ϑ satisfying:

∂̄ϑ = τ,

∫
M
|ϑ|2tω(t)n ≤ 1

`

∫
M
|τ |2tω(t)n.

This is a modification of the standard L2-estimate.
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With the above two estimates, for any x ∈M , we can trans-
plant constant functions on tangent cones at x to a section
σ ∈ H0(M,K−`M ) whose norm is bounded uniformly from
below near x.

This leads to the partial C0-estimate. Then the known argu-
ments, e.g., as in Chi Li’s thesis, show that M∞ is a normal
variety.


