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8 questions about random paths/surfaces, some answers
I 1. What is a path?

I For today, it’s mostly a continuous map from [0, 1] or [0,∞) to the complex
plane C ∪∞. Often we are only interested in paths modulo monotone
reparameterization.

I 2. What is a random path?

I Brownian motion most obvious candidate for “canonical random path”.
Uniquely characterized in various ways by symmetries (independence &
stationarity of increments, Markov property, rotational invariance, conformal
invariance, etc.). Fine-lattice limit of discrete random walks.

I 3. What is a non-self-crossing path?

I A path that doesn’t cross itself. Path obtainable as uniform limit as simple
paths, say.

I 4. What is a random non-self-crossing path?
I 5. What is a surface?

I A two dimensional manifold — simply connected with boundary, say.

I 6. What is a random surface?

I 7. What is an imaginary surface?

I 8. What is a random imaginary surface?
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8 questions about random paths/surfaces, some answers
I 1. What is a path?

I For today, it’s mostly a continuous map from [0, 1] or [0,∞) to the plane
C ∪∞. Often we are only interested in paths modulo monotone
reparameterization.

I 2. What is a random path?
I Brownian motion most obvious candidate for “canonical random path”.

Uniquely characterized in various ways by its many symmetries
(independence/stationarity of increments, Markov property, rotational
invariance, conformal invariance, etc.). Fine-lattice of discrete random walks.

I 3. What is a non-self-crossing path?
I A path that doesn’t cross itself. Path obtainable as uniform limit as simple

paths, say.

I 4. What is a random non-self-crossing path? SLE?
I 5. What is a surface?

I A two dimensional manifold — simply connected with boundary, say.

I 6. What is a random surface? Liouville quantum gravity?
I 7. What is an imaginary surface? Surface with imaginary curvature?
I 8. What is a random imaginary surface? Liouville quantum gravity

with extra i thrown in somewhere?
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What is a random non-self-crossing path?

Given a simply connected planar domain D with boundary points a and b and a
parameter κ ∈ [0,∞), the Schramm-Loewner evolution SLEκ is a random
non-self-crossing path in D from a to b.

b

a

η

D

The parameter κ roughly indicates how “windy” the path is. Would like to argue
that SLE is in some sense the “canonical” random non-self-crossing path. What
symmetries characterize SLE?
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Conformal invariance

b

a

η

D

φ

D̃ φ ◦ η

φ(a)

φ(b)

If φ conformally maps D to D̃ and η is an SLEκ from a to b in D, then φ ◦ η is an
SLEκ from φ(a) to φ(b) in D̃.
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Markov Property

b

a

η

D

b

D

Given η up to a
stopping time t...

law of remainder is SLE in
D \ η[0, t] from η(t) to b.

η(t)
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Schramm-Loewner evolution (SLE)

I THEOREM [Oded Schramm]: Conformal invariance and the Markov
property completely determine the law of SLE, up to a single parameter
which we denote by κ ≥ 0.

I Explicit construction: An SLE path γ from 0 to ∞ in the complex upper
half plane H can be defined in an interesting way: given path γ one can
construct conformal maps gt : H \ γ([0, t])→ H (normalized to look like
identity near infinity, i.e., limz→∞ gt(z)− z = 0). In SLEκ, one defines gt via
an ODE (which makes sense for each fixed z):

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z ,

where Wt =
√
κBt =LAW Bκt and Bt is ordinary Brownian motion.
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SLE phases [Rohde, Schramm]

κ ≤ 4 κ ∈ (4, 8) κ ≥ 8
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Revisiting “What is a surface?”: Riemann uniformization

Uniformization Every smooth simply connected Riemannian manifold M can be
conformally mapped to either the unit disc D, the complex plane C, or the
complex sphere C ∪ {∞}.
Isothermal coordinates: M can be parameterized by points z = x + iy in one of
these spaces in such a way that the metric takes the form eλ(z)(dx2 + dy2) for
some real-valued function λ. The (x , y) are called isothermal coordinates or
isothermal parameters for M.

Write D for the parameter space and suppose D is a simply connected bounded
subdomain of C (which is conformally equivalent to D by the Riemann mapping
theorem).

Jason Miller and Scott Sheffield (MIT) Random surfaces: real and imaginary May 28, 2013 10 / 78



Isothermal coordinates

LENGTH of path in M parameterized by a smooth path P in D is
∫
P
eλ(s)/2ds,

where ds is the Euclidean length measure on D.

AREA of subset of M parameterized by a measurable subset A of D is∫
A
eλ(z)dz , where dz is Lebesgue measure on D.

GAUSSIAN CURVATURE DENSITY in D is −∆λ, i.e., if A is a measurable
subset of the D, then the integral of the Gaussian curvature with respect to the
portion of M parameterized by A is

∫
A
−∆λ(z)dz .
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David Xianfeng Gu’s conformal map images
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Observation

I By Riemann uniformization, SLE can be defined on any simply connected
Riemannian surface with boundary, not just a planar domain.

I Riemann uniformation lets us reduce problem of defining random manifold to
problem of defining a random function from a planar domain to the reals.
What is the most natural random (generalized) function from a planar
domain to R?
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The discrete Gaussian free field

Let f and g be real functions defined on the vertices of a planar graph
Λ. The Dirichlet inner product of f and g is given by

(f, g)∇ =
∑

x∼y

(f(x)− f(y)) (g(x)− g(y)) .

The value H(f) = (f, f)∇ is called the Dirichlet energy of f .
Fix a function f0 on boundary vertices of Λ. The set of functions f
that agree with f0 is isomorphic to Rn, where n is the number of
interior vertices. The discrete Gaussian free field is a random
element of this space with probability density proportional to e−H(f)/2.



Discrete GFF on 20× 20 grid, zero boundary
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The continuum Gaussian free field

is a “standard Gaussian” on an infinite dimensional Hilbert space.
Given a planar domain D, let H(D) be the Hilbert space closure of the
set of smooth, compactly supported functions on D under the
conformally invariant Dirichlet inner product

(f1, f2)∇ =

∫

D

(∇f1 · ∇f2)dxdy.

The GFF is the formal sum h =
∑
αifi, where the fi are an

orthonormal basis for H and the αi are i.i.d. Gaussians. The sum does
not converge point-wise, but h can be defined as a random
distribution—inner products (h, φ) are well defined whenever φ is
sufficiently smooth.



Some DGFF properties:

Zero boundary conditions: The Dirichlet form (f, f)∇ is an inner
product on the space of functions with zero boundary, and the DGFF
is a standard Gaussian on this space.

Other boundary conditions: DGFF with boundary conditions f0 is
the same as DGFF with zero boundary conditions plus a deterministic
function, which is the (discrete) harmonic interpolation of f0 to Λ.

Markov property: Given the values of f on the boundary of a
subgraph Λ′ of Λ, the values of f on the remainder of Λ′ have the law
of a DGFF on Λ′, with boundary condition given by the observed
values of f on ∂Λ′.





Scaling limit of zero-height contour line

Theorem (Schramm, S): If initial boundary heights are λ on one
boundary arc and −λ on the complementary arc, where λ is the
constant

√
π
8 , then the scaling limit of the zero-height interface (as the

mesh size tends to zero) is SLE4.

If the initial boundary heights are instead −(1 + a)λ and (1 + b)λ, then
as the mesh gets finer, the laws of the random paths described above
converge to the law of SLE4,a,b.



DGFF with ±λ boundary conditions
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Expectations given values along interface
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Expectations given interface, ±3λ boundary
conditions
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Zero contour lines



GFF References

I The harmonic explorer and its convergence to SLE(4), Ann. Prob.
[Schramm, S]

I Local sets of the Gaussian free field, Parts I,II, and III, Online lecture
series: www.fields.utoronto.ca/audio/05-06 [S]

I Contour lines of the two-dimensional discrete Gaussian free field, Acta
Math [Schramm, S]

I A contour line of the continuum Gaussian free field, PTRF [Schramm, S]
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What is a random surface?

I Discrete approach: Glue together unit squares or unit triangles in a random
fashion. (Random quadrangulations, random triangulations, random planar
maps, random matrix models.)

I Continuum approach: As described above, use conformal maps to reduce to
a problem of constructing a random real-valued function on a planar domain
or a sphere. Using the Gaussian free field for the random function yields
(critical) Liouville quantum gravity.
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“There are methods and formulae in science, which serve as master-
keys to many apparently different problems. The resources of such things
have to be refilled from time to time. In my opinion at the present time
we have to develop an art of handling sums over random surfaces. These
sums replace the old-fashioned (and extremely useful) sums over random
paths. The replacement is necessary, because today gauge invariance
plays the central role in physics. Elementary excitations in gauge theories
are formed by the flux lines (closed in the absence of charges) and the
time development of these lines forms the world surfaces. All transition
amplitude are given by the sums over all possible surfaces with fixed
boundary.”

A.M. Polyakov, Moscow 1981



Discrete construction: gluing squares
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Discrete uniformizing maps

a

b

φ

φ(b) = ∞

φ(a) = 0

Planar map with one-chord-wired spanning tree (solid edges), plus image under
conformal map to H (sketch).
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How about the continuum construction? Defining Liouville quantum gravity?
Takes some thought because h is distribution not function.
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Constructing the random metric

Let hε(z) denote the mean value of h on the circle of radius ε centered
at z. This is almost surely a locally Hölder continuous function of (ε, z)
on (0,∞)×D. For each fixed ε, consider the surface Mε parameterized
by D with metric eγhε(z)(dx2 + dy2).

We define M = limε→0 Mε, but what does that mean?

PROPOSITION: Fix γ ∈ [0, 2) and define h, D, and µε as above.
Then it is almost surely the case that as ε→ 0 along powers of two, the
measures µε := εγ

2/2eγhε(z)dz converge weakly to a non-trivial limiting
measure, which we denote by µ = µh = eγh(z)dz.



Area/4096 square decomposition of eγhd2z for γ = 0



Area/4096 square decomposition of eγhd2z for γ = 1/2



Area/4096 square decomposition of eγhd2z for γ = 1



Area/4096 square decomposition of eγhd2z for γ = 2



Area/4096 square decomposition of eγhd2z for γ = 10



Knizhnik-Polyakov-Zamolodchikov (KPZ) Formula

I Number of size-δ Euclidean squares hit by fractal typically scales like power
of δ, related to fractal dimension.

I In this case, number of quantum δ diadic squares hit scales like different
power of δ.

I Exponents are related by a deterministic (but γ-dependent) formula called
the KPZ formula.

I Quantum exponent heuristically describes corresponding discrete models.

I Derived by KPZ in 1988, first compelling evidence of relationship between
discrete and continuous models.

I Recently proved rigorously [Duplantier, S]. Other forms of KPZ established
by [Benjamini, Schramm], [Rhodes, Vargas], [Duplantier, Rhodes, Sheffield,
Vargas].
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Changing coordinates

I We could also parameterize the same surface with a different domain D̃.

I Suppose ψD̃ → D is a conformal map.

I Write h̃ for the distribution on D̃ given by h ◦ ψ + Q log |ψ′| where
Q := 2

γ + γ
2 .

I Then µh is almost surely the image under ψ of the measure µh̃. That is,

µh̃(A) = µh(ψ(A)) for A ⊂ D̃.

I Similarly, the boundary length νh is almost surely the image under ψ of the
measure νh̃.
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Defining quantum surfaces

I DEFINITION: A quantum surface is an equivalence class of pairs (D, h)
under the equivalence transformations
(D, h)→ (ψ−1D, h ◦ ψ + Q log |ψ′|) = (D̃, h̃).

I Area, boundary length, and conformal structure are well defined for such
surfaces.
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Glue two random surfaces: interface is random path

Theorem [S.]: If you glue two appropriate independent random quantum surfaces
along their boundaries (in a length preserving way) and conformally map the new
surface you get back to the half plane, then the image of the interfaces becomes
an SLE.

Boundary arcs identified

Combined random surface
conformally mapped

to upper half plane

One random surface
Another random surface

One random surface Another random surface
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Stationarity and matching quantum lengths

η

h

I Sketch of interface path η with marks spaced at intervals of equal νh length.

I The random pair (h, η) is stationary with respect to zipping up or down by a
unit of (capacity) time.

I In this pair, h and η are (surprisingly) actually independent of each other.
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Liouville quantum gravity References

I Liouville quantum gravity and KPZ, arXiv [Duplantier, S]

I Duality and KPZ in Liouville quantum gravity, PRL [Duplantier, S]

I Conformal weldings of random surfaces: SLE and the quantum gravity
zipper, arXiv [S]

I Schramm-Loewner evolution and Liouville quantum gravity, PRL
[Duplantier, S]
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What is an imaginary surface?

I h smooth [h(x , y) = x2 + y 2]

I Vector field e ih(x,y)

I A θ-angle ray of h is a flow line of
e i(h+θ), i.e. a solution to

d

dt
η(t) = e i(h(η(t))+θ)

I The rays of h vary smoothly and
monotonically with θ and are
non-intersecting.

I What is a random imaginary
surface?

I Take h to be a multiple of
GFF.

I Flow lines (“straight lines”
on imaginary surface) turn
out to be forms of SLE.
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Rays of e ih/χ, h GFF, χ ≈ 31.97 [κ = 1/256]
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Rays of e ih/χ, h GFF, χ ≈ 11.23 [κ = 1/32]

Jason Miller and Scott Sheffield (MIT) Random surfaces: real and imaginary May 28, 2013 47 / 78



Rays of e ih/χ, h GFF, χ ≈ 7.88 [κ = 1/16]
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Rays of e ih/χ, h GFF, χ = 3.75 [κ = 1/4]
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Rays of e ih/χ, h GFF, χ ≈ 2.47 [κ = 1/2]
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Rays of e ih/χ, h GFF, χ = 1.5 [κ = 1]
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Rays of e ih/χ, h GFF, χ ≈ 1.02 [κ = 3/2]
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Rays of e ih/χ, h GFF, χ = 0.71 [κ = 2]
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Rays of e ih/χ, h GFF, χ ≈ 2.47 [κ = 1/2]
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Rays of random imaginary surface: results

Existence and uniqueness of couplings (η, h) of a GFF h and η ∼ SLEκ are studied in

the works of S., Schramm-S., Dubédat, and Izyurov-Kytöla. Dubédat shows that field

determines path. Recent four-paper series by Miller, S. develops theory of surface rays in

great detail, finds many applications to theory of SLE.
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SLE Duality

The outer boundary of an SLE16/κ process is described by a certain SLEκ process for
κ ∈ (0, 4).

I Predicted by Duplantier

I Natural for certain values of κ, i.e. κ = 2 (LERW) and 16/κ = 8 (UST)

I Proved in various forms by Zhan and Dubédat
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Duality in the Imaginary Geometry: the SLE Light Cone

Flow lines with fixed angle π
2

and −π
2

.
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Duality in the Imaginary Geometry: the SLE Light Cone

Flow lines with angle π
2

and −π
2

; one direction change.
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Duality in the Imaginary Geometry: the SLE Light Cone

Flow lines with angle π
2

and −π
2

; two direction changes.
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Duality in the Imaginary Geometry: the SLE Light Cone

Flow lines with angle π
2

and −π
2

; three direction changes.
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Duality in the Imaginary Geometry: the SLE Light Cone

Flow lines with angle π
2

and −π
2

; four direction changes.
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Duality in the Imaginary Geometry: the SLE Light Cone

Theorem (Miller, S.): The set of all point accessible by SLEκ flow lines (κ ∈ (0, 4))

with angles restricted in [−π
2
, π

2
] is an SLE16/κ process.
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SLE128 Light Cone
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SLE64(32; 32) Light Cone
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The SLEκ fan

Theorem (Miller, S.) The fan is a strict subset of the light cone: the probability that the
fan contains η′(τ ′) for any η′ stopping time τ ′ is zero.

Theorem (Miller, S.) The fan is a deterministic function of η′
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Reversibility

I An SLEκ η from x to y is said to be reversible if the
time-reversal of η (parameterized in the reverse direction)
has the law of an SLEκ from y to x .

I Not obvious from the definition of SLE.

I Holds for κ = 2, 3, 4, 16/3, 6, 8 since for these values it is
the scaling limit of discrete models with reversibility built in.

D

x

y
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Oded Schramm, 2006 ICM proceedings
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Reversibility for κ ∈ (0, 4]

Theorem (Zhan)
SLEκ is reversible for κ ∈ (0, 4].

Theorem (Dubédat, Zhan)
Non-boundary intersecting SLEκ(ρ) is reversible for κ ∈ (0, 4].

Theorem (Miller, S.)
SLEκ(ρ1; ρ2) processes are reversible for κ ∈ (0, 4], even when they intersect the
boundary.

I Based on imaginary geometry techniques

I Independent proof for SLEκ, κ ∈ (0, 4]

I Description of the time reversal of SLEκ(ρ) processes
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Corollary: the fan is “reversible”

Jason Miller and Scott Sheffield (MIT) Random surfaces: real and imaginary May 28, 2013 72 / 78



Reversibility of SLEκ for κ ∈ (4, 8)

Theorem (Miller, S.)
SLEκ processes are reversible for κ ∈ (4, 8).

More generally, SLEκ(ρ1; ρ2) processes are reversible for ρ1, ρ2 ≥ κ
2
− 4 and are

non-reversible if min(ρ1, ρ2) < κ
2
− 4.

I κ
2
− 4 is the critical threshold for these processes to be boundary filling

Important consequence:

I The CLEκ processes (loop version of
SLEκ) are well defined for κ ∈ (4, 8).

I (Recently proved by S. and Werner for
κ ∈ (8/3, 4] using loop soups).

(CLE4.5 simulation)
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SLE6 is reversible
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The SLE8/3 fan is reversible
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The SLE6 and the SLE8/3 fan are not jointly reversible
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Imaginary Geometry References

I Imaginary geometry I: Interacting SLEs, arXiv.org [Miller, S]

I Imaginary geometry II: reversibility of SLEκ(ρ1; ρ)2 for κ ∈ (0, 4),
arXiv.org [Miller, S]

I Imaginary geometry III: reversibility of SLEκ for κ ∈ (4, 8), arXiv.org
[Miller, S]

I Imaginary geometry IV: interior rays, whole-plane reversibility, and
space-filling trees, arXiv.org [Miller, S]
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