
KE edge metrics Weil-Peterson geometry Renormalized volumes

Asymptotic expansions of canonical metrics:
methods and applications

Rafe Mazzeo

Stanford University

May 31, 2013



KE edge metrics Weil-Peterson geometry Renormalized volumes

or ....

Asymptotics in geometric analysis,

A rhapsody in three parts



KE edge metrics Weil-Peterson geometry Renormalized volumes

Conference in honor of Jean-Michel Bismut
Orsay, May 2013



KE edge metrics Weil-Peterson geometry Renormalized volumes

Three short vignettes about the role of asymptotic analysis in
problems involving metrics with special geometry.

1) Kähler-Einstein metrics with edges along a (SNC) divisor.
Asymptotics at the divisor turn out to be crucial in proof of
existence of these metrics.

2) The Weil-Peterson metric on Rγ , the Riemann moduli space
Rγ on a surface of genus γ. Goal: spectral geometry and index
theory on Rγ . Need asymptotics of gWP at divisors of
Deligne-Mumford compactification to be able to do things like
define det ∆WP , etc.

3) Poincaré-Einstein metrics (asymptotically hyperbolic,
AdS/CFT). The renormalized volume is the basic action
functional. Behaviour under Ricci flow.
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Kähler-Einstein theory

Let Ω be a domain in Cn. If φ ∈ C2(Ω), then a typical complex
Monge-Ampére (CMA) equation is a fully nonlinear partial
differential equation of the form

det

(
Id +

√
−1

∂2 φ

∂zi∂zj

)
= F (z, φ,∇φ).

(Elliptic precisely when the matrix Id + HessC(φ) is a positive
definite Hermitian matrix.)
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Intrinsic formulation when the domain Ω is replaced by a Kähler
manifold (M,g).
If g is a Kähler metric and φ ∈ C2(M), define a new Hermitian
(1,1) tensor gφ by

(gφ)i ̄ = gi ̄ +
√
−1

∂2 φ

∂zi∂zj
= gi j̄ +

√
−1φi ̄.

This is a metric if the matrix on the right is Hermitian positive
definite, and in this case, we write φ ∈ Hg .
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Using the complex structure, convert Ric into a (1,1) form

ρg =
∑
i,̄

Rici ̄dzi ∧ dzj .

g is KE if and only if ρg = µωg for some µ ∈ R.

Standard fact:
1

2πi
[
ρg
]

= c1(M).
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Assume that c1(M) = 0 or else contains a positive or negative
definite representative.

When c1(M) < 0, respectively c1(M) = 0, then there always
exists gφ which is KE with µ < 0, respectively µ = 0. (Aubin,
Yau)

For c1(M) > 0, existence if and only if K-stability. (Tian,
Chen-Donaldson-Sun).
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As a PDE, this amounts to solving the complex Monge-Ampère
equation

det
(
gi ̄ +

√
−1φi ̄

)
det
(
gi ̄
) = eF−µφ,

where F ∈ C∞ measures the discrepancy from g itself being
Kähler-Einstein.
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Kähler-Einstein edge metrics

Now suppose that (M,g) is Kähler as before, and that D ⊂ M is
a divisor with simple normal crossings: D = D1 ∪ . . .∪DN where
each Dj is a smooth complex codimension one submanifold.

Locally, in coordinates each Di can be described by an
equation {zi = 0} for some choice of complex coordinates
(z1, . . . , zn), and near intersections,

Di1 ∩ . . . ∩ Di` = {zi1 = . . . = zi` = 0}.
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Problem (proposed by Tian in the early ’90’s, and more recently
by Donaldson, mid 2000’s)

Assume that c1(M)−
∑N

j=1(1− βj)c1(LDj ) = µ[ω] for some
choice of constants β1, . . . , βN ∈ (0,1) and µ ∈ R. Can one
then find a Kähler-Einstein metric with ρ′ = µω′ in the same
Kähler class as g and which is ‘bent’ with angle 2πβj along Dj
for every j?

This adds a small amount of flexibility to the problem.
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Analogous situation: (M3,g) hyperbolic ‘conifold’ (or
cone-manifold). This is an incomplete stratified space which
carries a hyperbolic metric on its open dense three-dimensional
stratum, and which has singular set Σ ⊂ M a geodesic
one-dimensional network, along each smooth component of
which M has an edge with fixed angle.
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Back to the KE problem:

Jeffres-M-Rubinstein, 2011; existence when D smooth,
β < 1.
M-Rubinstein, 2012. Existence in general case and
resolution of Tian-Donaldson conjectures; general D,
β < 1.

Following work by Jeffres, mid ’90’s (uniqueness for a given β);
Berman, 2010, existence for general D, β < 1/2 (generalized
solution, no asymptotic information);
Campagna-Guenancia-Paun, 2011, general D, µ ≤ 0, β ≤ 1/2
(approximation techniques, again not much asymptotic
information); Donaldson, 2011, D smooth, local deformation
theory, β ∈ (0,1), all µ; Brendle, 2011, existence when D
smooth, µ = 0 and β ≤ 1/2
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Sidenote: Many things simplify in the “orbifold regime” β ≤ 1/2.

Continuity method:

det
(
gi ̄ +

√
−1φi ̄

)
det
(
gi ̄
) = etF−µφ, (?)

and, as usual, the set J = {t ∈ [0,1] : ∃ a solution to (?)}.

J is nonempty (0 ∈ J trivially).
J is open
J is closed.
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One needs to start with an initial guess gβ; this is a Kähler
metric with the correct edge geometry (and in particular angles
2πβj along Dj .

In the flat space Cn, for D = {z1 = . . . = zk = 0},

ωβ =
1
2

√
−1

k∑
j=1

|zj |2βj−2|dzj |2 +
n∑

`=k+1

|dz`|2.

For the actual problem, choose a holomorphic section sj on LDj

and a Hermitian metric hj on each of these line bundles, and set

ωβ = ω + ε

k∑
j=1

√
−1∂∂|sj |

2βj
hj

Here ω is a smooth Kähler form on M and 0 < ε� 1.
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For this the cohomological condition
c1(M)−

∑
(1− βj)c1(LDj ) = µ[ω] is necessary!

There are difficulties with both the openness and closedness
parts of the continuity argument:

For openness, must obtain nonstandard mapping properties of
Lt0 = ∆gt0

+ µ.
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For closedness, the most serious problem is that the method to
derive the C2 a priori estimate by Aubin and Yau fails in this
setting. It requires a lower bound on the bisectional curvature,
but bisectional curvature of the initial model metric gβ is
definitely NOT bounded below when any βj > 1/2.

Recall, if X and Y are orthonormal, then

Bisec(X ,Y ) = Riem(X ,X ,Y ,Y ).
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New continuity path:

det
(
gi ̄ +

√
−1φi ̄

)
det
(
gi ̄
) = eF−sφ, (??),

−∞ < s ≤ µ.

This was introduced by Rubinstein in his work on Kähler-Ricci
iteration, which is a type of discretization of Kähler-Ricci flow.
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Function spaces

Consider the simple edge case first (D smooth). Recall that

g ∼ |z1|2β|dz1|2 + . . .+ |dzn|2.

Choose coordinates z1 = ρei θ̃, z ′ = (z2, . . . , zn) and
y = (Re (z ′), Im (z ′)).

Finally, set

r =
ρ1+β

1 + β
, θ = (1 + β)θ̃

and we use (r , θ, y).
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In these coordinates

∆g ∼
∂2

∂r2 +
1
r
∂

∂r
+
β2

r2
∂2

∂θ2 + ∆y .

Find function spaces on which ∆g has good mapping and
regularity properties.

There are (at least) two reasonable choices of function spaces:



KE edge metrics Weil-Peterson geometry Renormalized volumes

Ck ,α
w (M,D) based on differentiating by

∂

∂r
,
1
r
∂

∂θ
,
∂

∂yj

the wedge Hölder spaces (used by Donaldson, Brendle), and

Ck ,α
e (M,D) based on differentiating by r

∂

∂r
,
∂

∂θ
, r
∂

∂yj

the edge Hölder spaces.

Both behave well with respect to dilations
(r , θ, y) 7−→ (λr , θ, λy + y0) (homogeneous of degrees −1 and
0, respectively).
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Define the Hölder-Friedrichs domain:

Dk ,α
w/e = {u ∈ C2,α

w/e : ∆u ∈ Ck ,α
w/e}

Note: if u ∈ C2,α
e , then we expect that ∆u = O(r−2), so if

u ∈ D0,α
e , then it has at least some extra regularity properties

near the edge which allow the cancellation to happen.
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The usual mechanism:

u ∼ a01(y) log r+a00(y)+r
1
β (a11(y) cos θ+a12(y) sin θ)+r2ũ(r , θ, y).

The indicial roots of this problem are k
β , k ∈ Z.

Friedrichs extension =⇒ the coefficent a01(y) ≡ 0.

Big difference: if β < 1/2, then 1/β > 2 so we only need to
worry about the leading terms.

Regularity of the coefficients aij in y complicates matters –
these lie in a homogeneous weighted Besov space Ḃs

∞,∞, but
to deal with this properly one would need to construct and
study the Poisson operator.
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Donaldson: consider the L2 Friedrichs extension of the
Laplacian and its Green function G. He proved ‘by hand’ that if
we compose G with any two wedge derivatives, then the
resulting operators

∂ ◦G, ∂∂ ◦G,

are bounded on C0,α
w .

In other words, although the ‘real’ derivatives may give
problematic terms, the complex (z and z̄) derivatives do not,
and this is sufficient to understand issues related to the
Laplacian of a Kähler metric, which is built out of these complex
derivatives.

This turns out to be enough to handle the entire existence
theory when all βj < 1/2. (Brendle).
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A closer look at G (using the theory of pseudodifferential edge
operators) leads to:

Theorem (Jeffres-M-Rubinstein)
For all β < 1, the ‘Riesz potential operators’

∂

∂zi
◦G,

∂

∂zj
◦G,

∂2

∂zi∂zj
◦G

are all bounded on C0,α
e . If β ≤ 1/2, then

∂2

∂r2 ◦G,
1
r
∂

∂r
◦G,

1
r2
∂2

∂θ2 ◦G,
1
r

∂2

∂r∂yj
◦G,

∂2

∂yi∂yj
◦G

are all bounded on C0,α
e .
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C0 estimates can be handled almost as in the smooth closed
case.

C2 estimate: based on an old inequality due to Chern and Lu,
essentially a generalized Schwarz Lemma. This uses an upper
bound on the bisectional curvature of the initial Kähler metric g
and a lower bound on the Ricci curvature of the metric gs along
the continuity path. However, this lower bound is trivial precisely
because gs is a solution to a complex Monge-Ampère equation
which states that its Ricci curvature is sωt − F ≥ −C > −∞.
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Remarkable fact: the initial Kähler edge metric g does have an
upper bound on its bisectional curvature for all β ≤ 1!

For D smooth this is based on some calculations by C. Li and
worked out by Li and Rubinstein. A difficult calculation.

For general D, this is still true, and unfortunately an even more
difficult calculation.
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C2,α
e estimate (enter the role of asymptotics!):

It suffices to prove this estimate in Whitney cubes

Bε,y0 = {(r , θ, y) : ε/2 ≤ r ≤ 2ε, |y − y0| ≤ 2ε, θ ∈ S1},

but these edge Hölder spaces are homogeneous with respect
to dilation (in r and y ), so it is actually enough to prove the
estimate in cubes B1,y0 , where it reduces to a now standard
local version of the Evans-Krylov estimate.
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We can now take a limit of solutions in C2,α
e (the convergence

does not take place in this space but the limiting function does
lie in this space).

Caveat: the openness argument fails for solutions/metrics in
these edge spaces – need stronger regularity to make the
linear theory work.

The way out: a regularity theorem. The limiting solution u = us0

solves a complex Monge-Ampère equation. Must prove that it is
polyhomogeneous along D, i.e.

u ∼
∞∑

i,`=0

(
r

i
β

+`ai`1 cos(jβθ) + aj`2 sin(jβθ)
)

with all ai`j(y) ∈ C∞(D).
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Hence this regularity theorem serves as a crucial intermediary,
rather than a cosmetic afterthought, since it is what allows us to
cycle back from the closedness to the openness argument.

The form of the expansion leads to some important and useful
geometric facts: e.g. D is “totally geodesic” when β < 2/3.
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When D has simple normal crossings:

First, blow up M along each of the Dj : M̃ =
[
M; D1; D2; . . .DN

]
.

This is independent of order since the Dj are transverse to one
another.

This is a manifold with corners, with coordinates
(r1, . . . , rN , θ1, . . . , θN , y1, . . . , y2n−2N).

Blow up the intersections where any subcollection of the r’s
vanish, {ri1 = . . . = ri` = 0}, ` ≤ N. (only necessary on M ×M,
not on M itself).

Solutions u(r1, . . . , rN , θ1, . . . , θN , y) are not polyhomogeneous
in these coordinates, but only in some blown up picture.
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The Weil-Peterson metric on moduli space

Let Σ be a compact surface of genus γ ≥ 2.

Consider the Teichmüller space

Tγ = {all conformal structures on Σ}/Diff0(Σ)

and the Riemann moduli space

Rγ = {all conformal structures on Σ}/Diff(Σ)

Here Diff0(Σ) and Diff(Σ) are the groups of all diffeomorphism
isotopic to the identity, respectively all diffeomorphisms, of Σ.
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Note that
Rγ = Tγ/Map(Σ),

where
Map(Σ) = Diff(Σ)/Diff0(Σ)

is the discrete mapping class group.

It is classical that Tγ ∼= R6γ−6. The picture is reminiscent of a
hyperbolic quotient Hn/Γ.

Moduli space Rγ has some interior orbifold singularities (we
regard these as “trivial” and neglect them)
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We can realize the elements of Tγ and Rγ by hyperbolic
metrics g on Σ, modulo the relevant class of diffeomorphisms.

Natural metric on Tγ :

For κ1, κ2 ∈ TgTγ ,

gWP(κ1, κ2) =

∫
Σ
〈κ1, κ2〉g dAg

It was realized long ago that (Tγ ,gWP) is not complete: there
are paths leaving every compact set with finite length.
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On the other hand, gWP is invariant under Map(Σ), hence
descends to Rγ .

It turns out that (Rγ ,gWP) has finite diameter. Consider its
compactification

Rγ
WP
.

Remarkable fact: this compactification is identified with the
Deligne-Mumford compactification Rγ

DM, defined through
algebraic geometry:

Rγ
WP ∼= Rγ

DM
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The singular set

Sing(Rγ
WP

) = Rγ
WP \ Rγ

(again, forgetting the orbifold points) is a union of immersed
divisors D1 ∪ . . . ∪ DN .
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Simple geometric description: choose a maximal collection of
simple closed curves c1, . . . , cN′ dividing Σ into pairs of pants;
choose c1, . . . , cN amongst these which are not identified by
mapping class group.

If g is a hyperbolic metric, let `j(g) denote the length of the
unique geodesic on (Σ,g) which is freely homotopic to cj .

Fact: The sequence [gk ] tends to infinity in Rγ if and only if at
least some `j(gk )→ 0 as (some subsequence of) k →∞.

The double-points of Dj correspond to when two curves in the
original collection which are identified under Map(Σ) have their
lengths tending to 0.
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The limits of these sequences correspond to noded surfaces,
which carry complete finite area hyperbolic metrics, thus
represent elements in unions of Rγ′,n′ (the n′ corresponds to
the number of punctures).

Near a given singular divisor D away from intersections, one
has coordinates: length `, twist (rotation) θ, and some
coordinate system y on D itself (interior coordinates on the
lower dimensional moduli space).
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In terms of these coordinates:

gWP ∼
d`2

`
+ `3dθ2 + dy2 with appropriate constant factors

This quasi-isometric form was first determined by Masur (’70’s).

Later work: Wolpert (’90’s), Yamada (’01). Improved from
quasi-isometry to the beginnings of an expansion.

Also, Liu-Sun-Yau (’04), computed approximately 4 terms in
expansion (actually, they obtained certain estimates on the
curvature of the Ricci metric, so four derivatives of gWP itself).
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Near the crossing DK := D1 ∩ . . . ∩ Dk , have length functions
`1, . . . , `k , as well as θ1, . . . , θk , and

gWP ∼
k∑

j=1

(
d`2j
`j

+ `3j ) + dy2,

where y is a coordinate system on DK .

Notable feature: the factors are asymptotically orthogonal at
the Di ∩ Dj (the curves ci and cj are a long distance apart!).
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A slightly different form: use rj =
√
`j . Then

gWP ∼
k∑

j=1

(dr2
j + r6

j ) + dy2,

This has “crossing cusp-edges”.

Unbounded sectional curvatures, etc.
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Theorem (M-Swoboda)
The Weil-Peterson metric has a complete asymptotic expansion
as all rj ↘ 0, with all exponents in N (and possibly some log
terms). Coefficients are “in principle” computable.

Our proof uses a global analysis formulation instead of the
more traditional complex analytic formulation (holomorphic
quadratic differentials, etc.). However, most of it is classical and
could have been done long ago.

The difficulty: gWP does not satisfy an equation (e.g.
Monge-Ampere), so PDE enters only at a secondary level.
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Before describing proof, here are some applications:

Consider ∆WP , the Laplacian on functions on Rγ with respect
to gWP .

Theorem (Ji-M-Müller-Vasy)
∆WP is essentially self-adjoint, with discrete spectrum satisfying
a Weyl law.

This allows one to study local and global spectral invariants.
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1) Standard Weyl asymptotics: N(λ) ∼ cnVol(Rγ)λ3γ−3.

2) The heat trace Tr e−t∆WP has complete expansion as t ↘ 0
(Gell-Redman).
(Indeed, he constructs the entire heat kernel as a
‘polyhomogeneous object’ using methods of geometric
microlocal analysis.)

3) det ∆WP makes sense.

Still to do: Obstructions to essential self-adjointness for Hodge
Laplacian or Dirac operator?; signature theorem?
(Gauss-Bonnet was accomplished by Liu-Sun-Yau); indices of
other Dirac operators, etc.
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Some ideas in proof of essential self-adjointness:

Define Dommin(∆WP), the graph closure of ∆WP in L2 over the
core domain C∞0 ((Rγ)reg), and Dommax(∆WP), the space of all
u ∈ L2 such that ∆WPu ∈ L2.

Must show that these domains are equal. It suffices to check
that if u ∈ Dommax(∆WP), then u can be approximated in graph
norm by uj ∈ C∞0 , and for this it is enough to check that u has
some a priori decay, u ∈ (r1 . . . rN)ηL2, η > 0.
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This is done by deriving a priori bounds for ||wδ(r)u||L2 where

wδ(r) =
∏

(δ + rj)
−η

using a chain of inequalities (including Hardy inequality with
precise constant).

Amusing feature: this proof is borderline; works more easily for
metrics of the form dr2 + r2kdθ2 + gD for k > 3; still works for
k = 3 (Weil-Peterson case), but approximation is weaker.

Analogous to the fact that essential self-adjointness for scalar
Laplacian on C∞0 (Rn) holds for n ≥ 4 but borderline for n = 4.
(Same radial part).



KE edge metrics Weil-Peterson geometry Renormalized volumes

Ideas in proof of asymptotics of gWP :

First, identify TgRγ with

STT(g) = {κ ∈ S2(T ∗Σ) : trgκ = 0, δgκ = 0}.

the transverse-traceless tensors. This is orthogonal to the
Diff(Σ) orbit in Met−1, the space of all hyperbolic metrics. (The
gauge condition).
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Consider a simple loop c with `g(c)→ 0. Model: hyperbolic
collar,

gmodel = ds2 + `2 cosh2 s dφ2

(on Σ), |s| ≤ | log `|.

ġ = 2` cosh2 s dφ2. Need to put in gauge.

κ = ġ − δ∗ω − 1
2

tr(ġ − δ∗ω)g

where
(∇∗∇− Ric)ω = (∆ + 2)ω = δg ġ.
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Eventually, one needs to find a uniform inverse for P` = ∆` + 2
which is polyhomogeneous as `↘ 0.

One could do this directly (separation of variables, etc.) for
model cylinder, and then glue together with parametrix on the
rest of Σ (still need to do work to make sure that true inverse is
polyhomogeneous).
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One technical tool: harmonic map parametrization by Mike
Wolf. Let (Σ0,g0) be the noded surface (with ` = 0). This is
complete, noncompact, with two cusp ends. Wolf produces a
real analytic parametrization of a neighbourhood of g0 in Rγ
using infinite energy harmonic maps

Ug : (Σ0.g0) −→ (Σ,g).

We use this to pull all computations back to the fixed surface
Σ0.

The other difficulty is that L2 − STT(g0) = 0, so the projector
onto STT(g) disappears in limit. (It has a perfectly nice limit on
the infinite model cylinder ds2 + cosh2 s dφ2, s ∈ R, which is
the front face of the natural blowup.)
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Poincaré-Einstein metrics and renormalized volume

Final vignette: Let (M,g) be a Poincaré-Einstein manifold. This
means:

i) Mn is the interior of a smooth compact manifold with
boundary.

ii) g = ρ−2g where g is a smooth metric on M and ρ is a
defining function for ∂M (ρ = 0 precisely on this boundary
and dρ 6= 0 there).

iii) Ric(g) = −(n − 1)g.
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Basic (string) action

Ren− Vol(M,g) = F.P.
ε=0

Vol (M ∩ {x ≥ ε})

To make sense of this:

Associated to g is its conformal infinity,
c(g) = [ρ2g|T∂M ] = [g|T∂M ], which is a conformal class on ∂M.

(Graham-Lee). To any choice of representative h0 ∈ c(g), there
is a unique defining function x such that

g =
dx2 + h(x)

x2 , h(x) ∼ h0 + xh1 + . . .
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In fact (Fefferman-Graham), when n is even, the expansion of h
has no odd terms x jhj for j ≤ n − 2, and hn−1 ∈ STT(h0). (For n
odd, there are no odd terms for j ≤ n − 1, but then xn log xh̃n,
etc.). (Vindicated by Chrusciel-Delay-Lee-Skinner).

To define the renormalized volume we use one of these special
boundary defining functions.

Theorem (Henningson-Skenderis, Graham-Witten)

This definition is well-defined when n even. (When n odd, there
is a conformal anomaly.)

Can define renormalized volume for all conformally compact
(g = ρ−2g) metrics provided the same evenness condition
holds (for all special boundary defining functions).
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Basic question: Let n be even and (Mn,g0), n conformally
compact and even up to order n − 2 with special properties of
hn−1. Let g(t) be solution of Ricci flow with initial condition g0.
How does renormalized volume evolve under flow?

To do this, we must first establish that the class of
polyhomogeneous conformally compact metrics is invariant
under Ricci flow (accomplished by Bahuaud ’11).

Simple case: suppose (M,g0) is Poincaré-Einstein through
order n, i.e. E(g0) = Ric(g0) + (n − 1)g0 is O(xn+1).
(Qing-Shi-Wu). Method: compute evolution of E and use
maximum principle.
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Theorem (Bahuaud-M-Woolgar)

If (Mn,g0) is polyhomogeneous and even to order n, then the
solution g(t) to Ricci flow has the same property for t < T (time
of existence of flow). The renormalized volume Ren− Vol(g(t))
is monotone in t.

Thus

g(t) =
1
x2

t

(
dx2

t +

h0 + x2
t h2(t) + . . .+ xn−2

t hn−2(t) + xn−1
t hn−1(t) + . . .

)
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The difficult part is to show that if the initial metric is even to
order m then g(t) is even to order m. We first do this for the
gauged Ricci-de Turck flow and then show that the
diffeomorphism which takes the solution of the gauged flow to
that for the ungauged flow preserves this property.

This relies on linear theory, specifically the existence of a
(filtered) even subcalculus of the heat calculus; one must show
that the heat kernel for the Lichnerowicz Laplacian of an even
(to order m) metric lies in this even subcalculus, etc.

A further trick: “test” against the solution of the Ricci flow g̃(t)
which has the same h0 and which is asymptotically P-E.
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Happy Birthday Jean-Michel!
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