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1.1.1 Reidemeister-Franz Torsion

Let M be a compact manifold of odd dimension n
Let F → M be a flat vector bundle

Choose a CW structure X on M
Let

(
C•(X ; F ), δ

)
denote the cellular cochain complex

Assume that F is acyclic, so H•(M; F ) = H•
(
C•(X ; F ), δ

)
= 0

Assume that F carries a parallel metric gF

Then gF induces a metric on C•(X ; F ).

Definition (Reidemeister ’35, Franz ’35)

log τ(M,F ) =
1
2

n∑
i=0

(−1)n log detim δi

(
δiδ
∗
i
)

Application (Reidemeister ’35, Franz ’35)
τ distinguishes homotopy equivalent but non-homeomorphic
lens spaces
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1.1.2 Ray-Singer Torsion

Let M, F , gF be as above
We still assume that H•(M; F ) = 0 and that gF is parallel

Choose a Riemannian metric gTM on M
It gives rise to the Hodge Laplacian ∆ = dd∗+ d∗d on Ω•(M; F )

Definition (Ray-Singer, ’71)

log T (M,F ) = −1
2

n∑
i=0

i(−1)iζ ′∆i
(0)

This definition is strictly analogous to the definition of τ(M; F )

Theorem (Cheeger ’79, Müller ’78)

τ(M; F ) = T (M; F )
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1.1.3 A Generalisation

Can we define torsion invariants without assuming

dim M odd
H•(M; F ) = 0

∇F gF = 0 ?

Let F → M be flat
Choose metrics gTM , gF

Define T (M,F ) = T
(
M,F ; gTM ,gF) as before

Let h : M → R be a Morse function with gradient field ∇TMh
Assume Smale transversality condition for ∇TMh
Then the unstable cells form a CW structure X on M
Call (V , δ) =

(
C•(X ; F ), δ

)
the Thom-Smale complex of h

The metric gF at the critical points C induces a metric gV on V
Define τ(M,F ) = τ

(
M,F ; gTM ,gF ,h

)
using (V , δ,gV )
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1.1.4 Bismut-Zhang Comparison Formula

Let gH
L2 denote the L2-metric on H = H•(M; F ) ∼= ker ∆

Let gH
V denote the metric induced by gV on H ∼= ker(δ∗δ + δδ∗)

Let e
(
TM,∇TM) denote the Euler form of TM

Let δC denote the δ-distribution at the critical points C of h
Then the Mathai-Quillen current satisfies

d
((
∇TMh

)∗
ψ
(
∇TM ,gTM)) = e

(
TM,∇TM)− δC

Define a characteristic form of the flat vector bundle F by

cho
1(F ,gF ) = tr

(
ωF) = tr

(
(gF )−1∇F gF) ∈ Ω1(M)

Theorem (Bismut-Zhang ’92)

log T (M,F ; gTM ,gF )− log τ(M,F ; gTM ,gF ,h)

= log
‖ · ‖det H,gH

L2

‖ · ‖det H,gH
V

−
∫

M
cho

1(F ,gF ) · (∇TMh)∗ψ
(
∇TM ,gTM)
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1.1.5 Bismut-Zhang Variational Formula

Let gTM and gF be parametrised by a manifold B
Get Euler class e

(
TM,∇TM) ∈ Ωn(M × B; o(TM))

Get cho
1
(
F ,gF) = tr

(
ωF) ∈ Ω1(M × B)

Let gH
L2 be the L2-metric on H = H•(M; F ), parametrised by B

Theorem (Bismut-Zhang ’92)
The Ray-Singer torsion depends on gTM and gF by

dT (M,F ; gTM ,gF ) =

∫
M

e(TM,∇TM) cho
1(F ,gF )

− cho
1
(
H,gH

L2

)
∈ Ω1(B)

Remark
This looks like a family index theorem for the Euler operator



1.1.5 Bismut-Zhang Variational Formula

Let gTM and gF be parametrised by a manifold B
Get Euler class e

(
TM,∇TM) ∈ Ωn(M × B; o(TM))

Get cho
1
(
F ,gF) = tr

(
ωF) ∈ Ω1(M × B)

Let gH
L2 be the L2-metric on H = H•(M; F ), parametrised by B

Theorem (Bismut-Zhang ’92)
The Ray-Singer torsion depends on gTM and gF by

dT (M,F ; gTM ,gF ) =

∫
M

e(TM,∇TM) cho
1(F ,gF )

− cho
1
(
H,gH

L2

)
∈ Ω1(B)

Remark
This looks like a family index theorem for the Euler operator



1.1.5 Bismut-Zhang Variational Formula

Let gTM and gF be parametrised by a manifold B
Get Euler class e

(
TM,∇TM) ∈ Ωn(M × B; o(TM))

Get cho
1
(
F ,gF) = tr

(
ωF) ∈ Ω1(M × B)

Let gH
L2 be the L2-metric on H = H•(M; F ), parametrised by B

Theorem (Bismut-Zhang ’92)
The Ray-Singer torsion depends on gTM and gF by

dT (M,F ; gTM ,gF ) =

∫
M

e(TM,∇TM) cho
1(F ,gF )

− cho
1
(
H,gH

L2

)
∈ Ω1(B)

Remark
This looks like a family index theorem for the Euler operator



1.2.1 Characteristic Classes for Flat Vector Bundles

Let (F ,∇F ) be a flat vector bundle on M
If gF is a metric on F , define the adjoint connection

∇F ,∗ = ∇F + ωF = ∇F + (gF )−1∇F gF

Let c̃h denote the Chern-Simons form with

d c̃h
(
V ,∇V0 ,∇V1

)
= ch

(
V ,∇V1

)
− ch

(
V ,∇V0

)
Both ∇F and ∇F ,∗ are flat, so

d c̃h
(
F ,∇F ,∇F ,∗) = ch

(
F ,∇F ,∗)− ch

(
F ,∇F) = 0

Definition (Kamber-Tondeur ’74, Bismut-Lott ’95)
cho(F ,gF) = πi c̃h

(
F ,∇F ,∇F ,∗) ∈ Ωodd(M)

The class cho(F ) = [cho(F ,gF )] is independent of gF

If gF is parallel then cho(F ,gF) = 0
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1.2.2 The Exterior Differential as a Superconnection

Let p : E → B be a smooth submersion with compact fibres M
Let TM = ker dp denote the vertical tangent bundle
Choose a horizontal subbundle T HE ∼= p∗TB with

TE = TM ⊕ T HE

This induces splittings

Λ•T ∗E ∼= Λ•T ∗M ⊗̂ p∗Λ•TB
and Ω•(E ; F ) ∼= Ω•

(
B; Ω•(E/B; F )

)
with Ω•(E/B; F ) = p∗Λ•T ∗M → B a bundle of infinite rank

The exterior differential dE becomes a superconnection

A′ = dE = dM + L ·̄ − ι[ ·̄ , ·̄ ]TM

This superconnection is flat because (A′)2 = d2
E = 0
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1.2.3 The Bismut Superconnection

Let NM be the vertical number operator on Ω•(E/B; F ) with

NM |Ωk (E/B;F ) = k id

Rescaling the superconnection A′ gives A′t = tNM/2 A′ t−NM/2

Choose a vertical metric gTM and a metric gF on F
These metrics induce an L2-metric on Ω•(E/B; F )→ B
Let A′′t be the adjoint superconnection of A′t and put

Xt = A′′t − A′t ∈ Ω•
(
B; End Ω•(E/B; F )

)
Remark (Bismut-Lott ’95)
At = 1

2

(
A′′t + A′t

)
(almost) equals the Bismut superconnection

Its curvature is A2
t = −X2

t /4.
The part X[0]

t ∈ Ω0(B; End Ω•(E/B; F )
)

of horizontal degree 0
is
√

t (d∗ − d), a fibrewise skewadjoint Hodge-Dirac operator
Let f (z) = z ez2

, then f ′(Xt/2) is closely related to the heat
operator used in Bismut’s proof of the family index theorem
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1.2.4 Bismut-Lott Torsion

Let H = H•(E/B; F )→ B denote the fibrewise cohomology and

χ(H) =
∑

(−1)i rk H i , χ′(H) =
∑

(−1)i i rk H i

Definition (Bismut-Lott ’95)

T
(
T HE ,gTM ,gF) = −

∫ 1

0

(
4s(1− s)

2πi

)NB
2
∫ ∞

0

(
str
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NM f ′(Xt/2)
)

− χ′(H)−
(n

2
χ(H)− χ′(H)

)
f ′(
√
−t/4)

)
dt
2t

ds

The component T
(
T HE ,gTM ,gF)[0] of degree 0 represents

(the logarithm of) the Ray-Singer torsion of the fibre.

Computable for bundles with compact structure groups
by [Bunke ’99, ’00] and [Bismut-G ’04]
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1.2.5 Bismut-Lott Index Theorem

Recall the L2-metric gH
L2 on H ∼= kerX[0] → B

Theorem (Bismut-Lott ’95)

dT (T HE ,gTM ,gF ) =

∫
E/B

e
(
TM,∇TM) cho(F ,gF)

− cho(H,gH
L2

)
∈ Ωodd(M)

Remark (Bismut-Lott ’95)
Generalises the variational formula for the Ray-Singer torsion
Passing to cohomology, we get

cho(H) =

∫
E/B

e(TM) cho(F )
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1.3.1 Algebraic K -Theory

Flat vector bundles on X are classified by homotopy classes of
maps from X to BGLCδ, that is, by [X ,BGLCδ]

Algebraic K -theory classes on X are classified by [X ,BGLC+
δ ]

Here ·+ denotes the Quillen Plus Construction
The natural map BGLCδ → BGLC+

δ turns a flat vector bundle F
into an algebraic K -theory class [F ].

For p : E → B as above, there is a Becker-Gottlieb transfer

trBG : [E ,BGLC+
δ ]→ [B,BGLC+

δ ]

Similarly for ordinary cohomology classes,

trBG =

∫
E/B

e(TM) ∪ · : H•(E ;R)→ H•(B;R)

as in the Bismut-Lott index theorem
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1.3.2 Dwyer-Weiss-Williams Index Theorem

Theorem (Dwyer-Weiss-Williams ’03)
If p : E → B is a smooth fibre bundle with compact fibres, then

[H•(E/B; F )] = trBG[F ] ∈ [B,BGLC+
δ ]

Applying cho, we recover the cohomological version of the
Bismut-Lott index theorem

Note that both sides above exist for topological fibre bundles
The smooth structure is needed for the theorem to hold

This theorem is not known for general algebraic K -theory
classes that do not come from flat vector bundles

If both sides vanish, one can define a Dwyer-Weiss-Williams
Smooth Torsion.
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1.4.1 Framed Functions

Let p : E → B be a fibre bundle as above
Sometimes there exists no fibrewise Morse function h : M → R

Definition (Igusa ’87)
A generalised fibrewise Morse function is a function h : M → R
such that each fibrewise singularity is of Morse or of birth-death
type

It is a framed function if moreover the unstable vertical tangent
bundle T uM → C along the fibrewise critical set C is trivial

Theorem (Igusa ’87

; Eliashberg-Mishachef ’00

)
Framed functions exist if dim M > dim B.
Generalised Morse functions always exist.
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1.4.2 Igusa-Klein Torsion

Let p : E → B be a fibre bundle as above
Let F → E be flat, gF parallel, H = H•(E/B; F ) = 0
Let h : M → R be a framed function

These data induce a “classifying map” ξ : B →Whh(C,U)
where Whh(C,U) is called the acyclic unitary Whitehead space

There exists a nontrivial class τ ∈ H4•(Whh(C,U);R
)

Definition (Klein ’89, Igusa-Klein ’93, . . . , Igusa ’02)

τ(E/B,F ) = ξ∗τ

Application (Igusa ’02, G-Igusa, G-Igusa-Williams)
τ(E/B; F ) distinguishes smooth structures of different bundles
with fibre M and base B that are homeomorphic as bundles

Question: is τ(E/B,F ) related to T (T HE ,gTM ,gF ) ?
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1.5.1 Families of Thom-Smale Complexes

Let p : E → B, F , T HE , gTM and gF be as above
Let h : E → R be a fibrewise Morse function
Assume that ∇TMh satisfies Smale transversality on each fibre
Then the Thom-Smale complexes (V , δ) on the fibres
form a locally trivial family with V = p̂∗F |C

Hence A′ = δ +∇V is a flat superconnection on V → B.
Define A′t =

√
t δ +∇V , A′′t =

√
t δ∗ +∇V ,∗ and Xt = A′′t − A′t

Definition (Bismut-Lott ’95)

T (A′,gV ) = −
∫ 1

0

(
4s(1− s)

2πi

)NB
2
∫ ∞

0

(
str
(

NV f ′(Xt/2)
)

− χ′(H)−
(
χ′(V )− χ′(H)

)
f ′(
√
−t/4)

)
dt
2t

ds

This is analogous to the definition of T (T HE ,gTM ,gF )
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Hence A′ = δ +∇V is a flat superconnection on V → B.
Define A′t =

√
t δ +∇V , A′′t =

√
t δ∗ +∇V ,∗ and Xt = A′′t − A′t

Definition (Bismut-Lott ’95)

T (A′,gV ) = −
∫ 1

0

(
4s(1− s)

2πi

)NB
2
∫ ∞

0

(
str
(

NV f ′(Xt/2)
)

− χ′(H)−
(
χ′(V )− χ′(H)

)
f ′(
√
−t/4)

)
dt
2t

ds

This is analogous to the definition of T (T HE ,gTM ,gF )



1.5.2 A Comparison Formula

Let ζ denote the Riemann ζ-function
Define an additive characteristic class 0J by

0J =
1
2

∞∑
k=1

ζ ′(−2k) ch( · )[4k ] ∈ H4•( · ;R)

Let c̃ho denote the Chern-Simons form for cho such that

d c̃ho(F ,gF
0 ,g

F
1
)

= cho(F ,gF
1
)
− cho(F ,gF

0
)

Theorem (Bismut-G ’01)

T
(
T HE ,gTM ,gF) = T (A′,gV ) + p̂∗ 0J

(
T sM − T uM

)
rk F

+

∫
E/B

(
∇TMh

)∗
ψ
(
∇TM ,gTM) · cho(F ,gF)+ c̃ho(H,gH

L2 ,gH
V
)

This generalises the Bismut-Zhang comparison formula
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1.5.3 Igusa’s Framing Principle

The fibrewise Morse function h above is not necessarily framed.

For a generalised fibrewise Morse function h : E → R
and a fibrewise acyclic flat bundle F → E with parallel metric gF

one still gets ξh ∈ [B,Whh(C,U)] and considers ξ∗hτ ∈ H•(B;R)

We still define τ(E/B; F ) ∈ H•(B;R) using a framed function

Theorem (Igusa ’02)
ξ∗hτ = τ(E/B; F ) + 2p̂∗ 0J(T uM) rk F

If F is fibrewise acyclic and gF is parallel,
then T (A′,gV ) = ξ∗hτ (see below), and hence

T
(
T HE ,gTM ,gF) = ξ∗hτ + p̂∗ 0J(T sM − T uM) rk F

= τ(E/B; F ) + trBG
0J(TM) rk F

One can modify the smooth structure of p : E → B in such a
way that ξ∗hτ remains fixed and only p̂∗ 0J(T uM) changes
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2.1.1 A more general Comparison Formula ?

Most p : E → B do not admit a fibrewise Morse function such
that ∇TMh satisfies Thom-Smale transversality on each fibre
Whenever T (A′,gF ) and τ(E/B; F ) are both defined,
they are zero

Problem
I Generalise T (V ,A′,gF ) using framed functions
I Relate T (V ,A′,gF ) to τ(E/B; F ) if both are defined
I Prove the comparison formula

T
(
T HE ,gTM ,gF) = T (V ,A′,gV ) + c̃ho(H,gH

L2 ,gH
V
)

+

∫
E/B

(
∇TMh

)∗
ψ
(
∇TM ,gTM) · cho(F ,gF)

+ p̂∗ 0J
(
T sM − T uM

)
rk F
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2.1.2 Birth-Death Singularities

Two problems with generalised fibrewise Morse functions
I lack of Smale transversality on some fibres

I birth-death singularities

Birth-death singularities can be separated algebraically from
the rest of the Thom-Smale complex such that(

V+,A′+,g
V
+

) ∼= (
V−,A′−,g

V
−
)
⊕
(

F ⊕ F ,
(

0 0
1 0

)
+∇F⊕F ,gF⊕F

)
We call the right summand an elementary complex
It suffices to ensure that elementary complexes never
contribute in the following constructions
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2.1.3 Lack of Transversality

Non-transversality leads to varying Thom-Smale complexes

indh=k+1

indh=k

The exceptional flow line can be used to construct an
isomorphism between the two Thom-Smale complexes

It is of the form id +a1, and a1 decreases the value of h

A smoothing procedure produces a flat superconnection

A′ = a0(b) +∇V + a1(b)
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2.1.4 The Thom-Smale superconnection

A small loop in B can lead to nontrivial holonomy in Aut V
However, non-transversal flow lines of codimension 2 give a
cochain homotopy back to idV

Similarly, one gets higher and higher homotopies over small
simplices in B from non-transversalities of higher codimension

Smoothing this gives a full-fledged flat superconnection

A′ = a0 +
(
∇V + a1

)
+ a2 + . . . , ai ∈ Ωi(B; End1−i V

)
The ai strictly respect a local filtration on V induced by h

Such superconnections are classified by [B; Wh(C,GL)]
Restricting to fibrewise acyclic flat bundles F with parallel
metric gF leads to Igusa’s

[
B; Whh(C,U)

]
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2.2.1 Generalising Torsion Forms

Consider A′t , A′′t and Xt = A′′t − A′t on V as above, with

Xt = t
1
2 (a∗0 − a0) +

(
∇V ,∗ + a∗1 −∇V − a1

)
+ t−

1
2 (a∗2 − a2) + . . .

Problem
For t → 0, the integrand str

(
NV f ′(Xt/2)

)
of the

finite-dimensional Bismut-Lott torsion diverges

Solution
Replace the integral over [0,1] in the construction of T (A′,gF )

First idea: finite-dimensional Witten deformation
Works, but dependence on h prevents definition on Wh(C,GL)
The following approach is equivalent, but independent of h
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2.2.2 An Adapted Superconnection

For s, t ∈ [0,1], we define a new superconnection

2A = t
(

(1− s) A′ + s A′′
)

+ (1− t)
(

(1− s)∇V + s∇V ,∗
)

+ (2s − 1) NV d log t

For s = 0, it strictly respects the local filtration by h
For s = 1, it strictly respects the orthogonal filtration
In particular, 2A2|s=0 and 2A2|s=1 are strictly triangular

For t = 1, it interpolates between A′ and A′′

For t = 0, it interpolates between ∇V and ∇V ,∗

In particular

(2πi)
1−NB

2

∫ 1

s=0

1
2

str
(

e−
2A2|t=0

)
= πi c̃h

(
F ,∇F ,∇F ,∗) = cho(∇F ,gF)
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2.2.3 Torsion for General Thom-Smale Complexes

Let p : E → B, F → E , h : E → R and gV be as above
Then define Xt and 2A as before

Definition

T
(
V ,A′,gV )

= −(2πi)−
NB

2

∫ 1

0

∫ ∞
1

(
str
(
NV f ′

(√
s(1− s) Xt

))
− χ′(H)

−
(
χ′(V )− χ′(H)

)
f ′
(√
−s(1− s)t

)) dt
2t

ds

−(2πi)−
NB

2

∫ 1

0

∫ 1

0

(
1
2

strV

(
e−

2A2
)

−
(
χ′(V )− χ′(H)

) (
f ′
(√
−s(1− s)t
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2.3.1 The Transgression Formula

Theorem
dT
(
V ,A′,gV ) = cho(V ,gV )− cho(H,gH)

0 s
0

t

1

1

Proof.
The picture describes the integration
in the definition of T (V ,A′,gV )

The integrand (up to correction terms)
is the Chern form of a
superconnection on V that
interpolates between the
superconnections in the corners of
the two rectangles

The Statement follows from the
fibrewise Stokes theorem
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2.3.2 Another Proof of the Bismut-Lott Theorem

Theorem

d
(

T
(
V ,A′,gV )+ c̃ho(H,gH

L2 ,gH
V
)

+

∫
E/B

(
∇TMh

)∗
ψ
(
∇TM ,gTM) · cho(F ,gF))

=

∫
E/B

e
(
TM,∇TM) cho(F ,gF)− cho(H,gH

L2

)

Passing to cohomology, we see as before that

cho(H) =

∫
E/B

e(TM) cho(F ) = trBG cho(F )

Proof.
This follows using the properties of c̃ho(H,gH

L2 ,gH
V ) and of the

Mathai-Quillen current ψ(∇TM ,gTM)
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2.3.3 A Comparison Formula ?

Comparing the left hand sides of the two versions of the
Bismut-Lott index theorem, we could guess a relation
between T (T HE ,gTM ,gF ) and T (V ,A′,gV )

But from the comparison formula of [Bismut-G ’01] and Igusa’s
splitting principle, we also expect the 0J-class to appear

Conjecture

T
(
T HE ,gTM ,gF) = T (V ,A′,gV ) + c̃ho(H,gH

L2 ,gH
V
)

+

∫
E/B

(
∇TMh

)∗
ψ
(
∇TM ,gTM) · cho(F ,gF)

+ p̂∗ 0J
(
T sM − T uM

)
rk F

The proof should use Witten deformation and an adapted
quasi-isomorphism

I :
(
Ω•(B; Ω•(E/B; F )),A′

)
→
(
Ω•(B,V ),A′

)
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2.4.1 Cohomological Invariants

Assume that F carries a parallel decreasing filtration FF
and that all subquotients FkF/Fk+1F carry parallel metrics

Then there exists a form L(FF ,gF ) such that

dL
(
FF ,gF) = cho(F ,gF)

and L(FF ,gF ) is unique up to exact forms in degrees ≥ 2.

Definition
Assume that both F and H are filtered as above. Then put

T (E/B,F ) =
[
T
(
T HE ,gTM ,gF)+ L

(
FH,gH

L2

)
− L
(
FF ,gF)][≥2]

T (E/B,F ,h) =
[
T
(
V ,A′,gV )+ L

(
FH,gH

L2

)
− p̂∗L

(
FF ,gF)][≥2]

If h is framed, put T (E/B; F ) = T (E/B,F ,h) independent of h
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2.4.2 A Cheeger-Müller Type Theorem

Theorem
If h is framed and both torsions below are defined, then

T (E/H,F ) = τ(E/H,F )

If h is framed and the conjecture above holds, then

T (E/H,F ) + trBG
0J(TM) rk F = T (E/H,F )

These formulas fit with Igusa’s axiomatic approach

Theorem (Igusa ’08)
Each torsion invariant for families with H•(E/B;C)→ B trivial
(or, more generally, unipotent) that satisfies the additivity and
the transfer axiom is a linear combination of τ(E/B,C) and the
generalised Miller-Morita-Mumford class trBG

0J(TM)
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Thanks for your attention


