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Happy Birthday, Jean-Michel!

“One could say that mathematics is the music of the mind"”
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The determinant

Following Grothendieck, Knudsen and Mumford showed in 1976 that the
determinant line bundle of complexes of vector bundles on a projective
variety X is natural with respect to quasi-isomorphisms. In particular, the
determinant is well-defined in the derived category.
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The determinant

Following Grothendieck, Knudsen and Mumford showed in 1976 that the
determinant line bundle of complexes of vector bundles on a projective
variety X is natural with respect to quasi-isomorphisms. In particular, the
determinant is well-defined in the derived category.

Goals of this talk

@ Construct the n-stack of deformations of a complex of holomorphic
vector bundles of length n on a compact complex manifold X.

@ Extend Kuranishi's construction of the analytic stack of deformations
of a vector bundle to complexes of vector bundles.

@ Define the determinant on this n-stack.

This is a joint project with Kai Behrend.
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Banach algebras and Lie groups

First, we must explain what an n-stack is.
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When A* is a differential graded Banach algebra, what replaces G(A)?
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Banach algebras and Lie groups

First, we must explain what an n-stack is.

The open subset G(A) of invertible elements of a Banach algebra A is a
Lie group. A Lie group is an example of a 1-stack (more or less the same
thing as a Lie groupoid).

When A* is a differential graded Banach algebra, what replaces G(A)?

We will associate an analytic n-stack (Lie n-groupoid) to a differential
graded Banach algebra A* concentrated in degrees (—n,c0). In fact, we
will represent this n-stack by its nerve NgA. This is a simplicial Banach
analytic space.
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The nerve of a group

If n is a natural number, let [n] be the category whose objects are the
natural numbers {0,...,n}, with a single morphism from i to j if ¢ < j.

0 1 2 n
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If n is a natural number, let [n] be the category whose objects are the
natural numbers {0,...,n}, with a single morphism from i to j if ¢ < j.

0 1 2 n

The nerve of a group G is the simplicial set whose n-simplices are the
functors from [n] to G (thought of as a category with a single object).
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The nerve of a group G is the simplicial set whose n-simplices are the
functors from [n] to G (thought of as a category with a single object).

This set is denoted N,,G. In fact, N,,G = G™. We have NyG is the
identity element, and NG is the set of elements of G.
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The nerve of a group G is the simplicial set whose n-simplices are the
functors from [n] to G (thought of as a category with a single object).

This set is denoted N,,G. In fact, N,,G = G™. We have NyG is the
identity element, and NG is the set of elements of G.

This representation is more finite than one might fear: it is not hard to see
that one may reconstruct the group from the 2-skeleton of its nerve.
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The nerve of a group

If n is a natural number, let [n] be the category whose objects are the
natural numbers {0,...,n}, with a single morphism from i to j if i < j.

0 1 2 n

The nerve of a group G is the simplicial set whose n-simplices are the
functors from [n] to G (thought of as a category with a single object).

This set is denoted N,,G. In fact, N,,G = G™. We have NyG is the
identity element, and NG is the set of elements of G.

This representation is more finite than one might fear: it is not hard to see
that one may reconstruct the group from the 2-skeleton of its nerve.

We may also define the nerve of a groupoid (or of any small category): in
this case, NoG is the set of objects of the groupoid.
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Horns

The n-simplex A™ is the simplicial set whose m-simplices are functors
from [m] to [n]. It has a single non-degenerate n-simplex (corresponding
to the identity map from [n] to itself), and all of its non-degenerate
simplices are faces of this one.

In particular, we have the ith face 9; A", which is the (n — 1)-simplex

opposite the ith vertex: its geometric realization is the convex hull of the
vertices {0,...,7,...,n}.
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Horns

The n-simplex A™ is the simplicial set whose m-simplices are functors
from [m] to [n]. It has a single non-degenerate n-simplex (corresponding
to the identity map from [n] to itself), and all of its non-degenerate
simplices are faces of this one.

In particular, we have the ith face 9; A", which is the (n — 1)-simplex
opposite the ith vertex: its geometric realization is the convex hull of the
vertices {0,...,7,...,n}.

The horn A C A™ is the union of all of the faces of the n-simplex that
contain the ith vertex:

A7 =[] o;Am.
J#i
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Let X, be a simplicial set. For each 0 <1 < n, there is a natural map
An,i(Xe) 1 Xy, — Hom(A7, X,)

from the n-simplices of the simplicial set to its horns.

For example, A and Ay 1 take a 1-simplex to its source and target.
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Let X, be a simplicial set. For each 0 <1 < n, there is a natural map
An,i(Xe) 1 Xy, — Hom(A7, X,)

from the n-simplices of the simplicial set to its horns.

For example, A and Ay 1 take a 1-simplex to its source and target.

Theorem (Grothendieck)

A simplicial set X, is the nerve of a groupoid if and only if the maps

)\n,i (Xo)

are bijections forn > 1.
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Let Xo be a simplicial set. For each 0 < ¢ < n, there is a natural map
An,i(Xe) 1 Xy, — Hom(A7, X,)

from the n-simplices of the simplicial set to its horns.

For example, A and Ay 1 take a 1-simplex to its source and target.

Theorem (Grothendieck)

A simplicial set X, is the nerve of a groupoid if and only if the maps

)\n,i (Xo)

are bijections for n > 1. It is the nerve of a group if, in addition, Xy = *.

v
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Several important notions from geometry and algebra are obtained by
tweaking this theorem. For example, X, is the nerve of a category if and
only if the maps )\, ;(X,) are bijections for 0 < i < n.
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More relevant to this talk: a simplicial manifold X, is the nerve of a Lie
groupoid if and only if the maps A, ;(X,) are diffeomorphisms for n > 1,
and surjective submersions for n = 1.

Higher analytic stacks 9 /24



Several important notions from geometry and algebra are obtained by
tweaking this theorem. For example, X, is the nerve of a category if and
only if the maps )\, ;(X,) are bijections for 0 < i < n.

More relevant to this talk: a simplicial manifold X, is the nerve of a Lie
groupoid if and only if the maps A, ;(X,) are diffeomorphisms for n > 1,
and surjective submersions for n = 1.

The following definition is due to Duskin, in the discrete case, and
Henriques, in the smooth case.

Definition
o A k-groupoid is a simplicial set such that

Ani(Xe) : X5y — Hom(A?, X,)

is a surjection for n > 0, and a bijection for n > k.

Higher analytic stacks 9 /24



Several important notions from geometry and algebra are obtained by
tweaking this theorem. For example, X, is the nerve of a category if and
only if the maps )\, ;(X,) are bijections for 0 < i < n.

More relevant to this talk: a simplicial manifold X, is the nerve of a Lie
groupoid if and only if the maps A, ;(X,) are diffeomorphisms for n > 1,
and surjective submersions for n = 1.

The following definition is due to Duskin, in the discrete case, and
Henriques, in the smooth case.
Definition

o A k-groupoid is a simplicial set such that

Ani(Xe) : X5y — Hom(A?, X,)

is a surjection for n > 0, and a bijection for n > k.

o A Lie k-groupoid is a simplicial Banach analytic space such that
)\n,i(X.) is a surjective submersion for n > 0, and an isomorphism for
n > k.

v
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The Maurer-Cartan set of a differential graded algebra

A Maurer-Cartan element of a differential graded algebra A* is an element
p € Al of degree 1 satisfying the equation

Sp+pu® =0.

Of course, this equation is familiar from the theory of connections on
vector bundles: it is the equation for a connection to be flat.
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Let 4, : A* — A**! be the operator § + [u, —]. Then 67 = 0.
Maurer-Cartan elements of A* correspond to deformations of the
differential 9.
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A Maurer-Cartan element of a differential graded algebra A* is an element
p € Al of degree 1 satisfying the equation

Sp+pu® =0.

Of course, this equation is familiar from the theory of connections on
vector bundles: it is the equation for a connection to be flat.

Let 4, : A* — A**! be the operator § + [u, —]. Then 67 = 0.
Maurer-Cartan elements of A* correspond to deformations of the
differential 9.
Definition
e If A* is a differential graded algebra, MC(A) is the set of
Maurer-Cartan elements.
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The Maurer-Cartan set of a differential graded algebra

A Maurer-Cartan element of a differential graded algebra A* is an element
p € Al of degree 1 satisfying the equation

Sp+pu® =0.

Of course, this equation is familiar from the theory of connections on
vector bundles: it is the equation for a connection to be flat.

Let 4, : A* — A**! be the operator § + [u, —]. Then 67 = 0.
Maurer-Cartan elements of A* correspond to deformations of the
differential 9.
Definition
e If A* is a differential graded algebra, MC(A) is the set of
Maurer-Cartan elements.

e If A* is a Banach differential graded algebra, MC(A) is the Banach
analytic space of Maurer-Cartan elements.
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Examples of differential graded algebras
Let X be a topological space, with open cover U = {U; C X };er.
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Examples of differential graded algebras
Let X be a topological space, with open cover U = {U; C X };er.

Let A* be a sheaf of differential graded algebras over X. The normalized
Cech complex of A is the graded vector space

@ ) (Ui, N--- N U, AF9).

10,..0y0g €T
ij1#i;for1<j<gq
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Examples of differential graded algebras
Let X be a topological space, with open cover U = {U; C X };er.

Let A* be a sheaf of differential graded algebras over X. The normalized
Cech complex of A is the graded vector space

@ ) (Ui, N--- N U, AF9).

10,..0y0g €T
ij1#i;for1<j<gq

The differential is

q
(da)iy...i, = 6aiy..iy + Z(—

4= aZO.‘.Z]...Zq Uioﬂ“'mUiq
Jj=0

and the product is

q
(@UDb)ig..iy = § )P ig..ip | Uiy 005, Diig [ U3 N0,
p=0
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The fat simplex
The special case where X is the geometric n-simplex
An:{(t()?"'atn) € [071]n+1 |t0+"'+tn: 1}

covered by the open subsets U; = {t; > 0} (the complements of the faces)
plays a special role in this talk.
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covered by the open subsets U; = {t; > 0} (the complements of the faces)
plays a special role in this talk.

Let ™ be the fat simplex
"™ = coskg A".

It is the nerve of the groupoid whose objects are the vertices of A", with a
single isomorphism between any two vertices.
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The fat simplex

The special case where X is the geometric n-simplex
An:{(t()?"'atn) € [0,1]71—&—1 |t0+"'+tn: 1}

covered by the open subsets U; = {t; > 0} (the complements of the faces)
plays a special role in this talk.

Let ™ be the fat simplex
"™ = coskg A".

It is the nerve of the groupoid whose objects are the vertices of A", with a
single isomorphism between any two vertices.

The fat interval ! is sometimes written .J. lts geometric realization is the
sphere S°°: it has two non-degenerate simplices in each dimension
(0,1,0,...) and (1,0,1,...).
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The nerve of a differential graded algebra
The Cech complex C*({Uy, . .., Uy}, A) is isomorphic to C*( ", A). We

have
@ &y Ak,

0<ig,...,ig<n
ij_1 #ijfor1 <j<gq
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The nerve of a differential graded algebra
The Cech complex C*({Uy, . .., Uy}, A) is isomorphic to C*( ", A). We

have
(}) &y Ak,

0<ig,...,ig<n
ij_1 #ijfor1 <j<gq

Definition
The nerve N, A of a differential graded algebra A* is the simplicial set

N, A = MC(C*( ™, A)).
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The nerve of a differential graded algebra
The Cech complex C*({Uy, . .., Uy}, A) is isomorphic to C*( ", A). We

have
(}9 &y Ak,

0<ig,...,ig<n
ij_1 #ijfor1 <j<gq

Definition
The nerve N, A of a differential graded algebra A* is the simplicial set

N, A = MC(C*( ™, A)).

More explicitly, an n-simplex in N, A is a collection
1—k . . . .
= (ajy..q, € A | 0 <ip,...,ip <nandij #ijq1),
satisfying the equations
Saigin + S8 (1) a5+ (=Dikay, ai i =0
10-.-1k 7=0 10252 7=0 20...05 Y.t T Y
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O-simplices and 1-simplices in the nerve

A O-simplex in N, A is a Maurer-Cartan element of A*:

NoA 22 MC(A).
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A O-simplex in N, A is a Maurer-Cartan element of A*:

NoA 22 MC(A).

Given a 1-simplex (a;,. ;,) € MC(C*( !, A)), the elements = ag and
v = ay are Maurer-Cartan elements.
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0-simplices and 1-simplices in the nerve

A O-simplex in N, A is a Maurer-Cartan element of A*:

NoA = MC(A).
Given a 1-simplex (a;,. ;,) € MC(C*( !, A)), the elements = ag and
v = ay are Maurer-Cartan elements.

A morphism f : u — v between Maurer-Cartan elements p, v € MC(A) is
an element f € A satisfying

0, - f = [0,

The elements f =1+ ag; and g = 1 + a1¢ associated to a 1-simplex
define morphisms f: y —vand g: v — pu.
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Quasi-isomorphisms

A quasi-isomorphism f : ;4 — v is a morphism such that there exists a
morphism ¢ : v — p and homotopies h, k € A~! satisfying the equations

Suh=1—gf 5,k =1— fg.

The morphisms f and ¢ associated to a 1-simplex are quasi-inverse to
each other: take h = ag19 and k = aq01.
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Quasi-isomorphisms

A quasi-isomorphism f : ;4 — v is a morphism such that there exists a
morphism ¢ : v — p and homotopies h, k € A~! satisfying the equations

Suh=1—gf 5,k =1— fg.

The morphisms f and g associated to a 1-simplex are quasi-inverse to
each other: take h = ag19 and k = aq01.

Theorem

A morphism f : u — v is a quasi-isomorphism if and only if there is a
1-simplex (ai,. i, ) € MC(C*( 1, A)) with u = ag, v = a1, and
J=1+ao.
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Quasi-isomorphisms

A quasi-isomorphism f : ;4 — v is a morphism such that there exists a
morphism ¢ : v — p and homotopies h, k € A~! satisfying the equations

Suh=1—gf 5,k =1— fg.

The morphisms f and g associated to a 1-simplex are quasi-inverse to
each other: take h = ag19 and k = aq01.

Theorem

A morphism f : u — v is a quasi-isomorphism if and only if there is a
1-simplex (a;,. 4, ) € MC(C*( 1, A)) with u = ag, v = ay, and
f=1+aon.

When A* is a differential graded Banach algebra, the set of
quasi-isomorphisms is an open subset of MC(A) x MC(A) x A°,
generalizing the corresponding statement for invertible elements of a
Banach algebra.

Higher analytic stacks 15 / 24



The nerve when A* =0, i < 0

If A® =0 for i <0, the element f € A" associated to a 1-simplex is a unit,
with inverse g. This proves the following theorem.
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The nerve when A* =0, i < 0

If A® =0 for i <0, the element f € A" associated to a 1-simplex is a unit,
with inverse g. This proves the following theorem.

Theorem

If A" =0, i <0, then N,A is the nerve of the Deligne groupoid,
associated to the action of the group G(A) = {f € A° | f is invertible} on
the Maurer-Cartan set MC(A):

N, A = MC(A) x G(A)".
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The stack of vector bundles

Consider the differential graded algebra of Cech cochains
A* = C*(U,End(ON)),

where U is a Stein cover of a complex manifold X.
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where U is a Stein cover of a complex manifold X.

The Maurer-Cartan elements of A* are the 1-cocycles, i.e. vector bundles
on X of rank NV:

MC(C*(U, End(OM))) = ZY (U, GL(O, N)).
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The stack of vector bundles

Consider the differential graded algebra of Cech cochains
A* = C*(U, End(ON)),

where U is a Stein cover of a complex manifold X.

The Maurer-Cartan elements of A* are the 1-cocycles, i.e. vector bundles
on X of rank NV:

MC(C*(U, End(OM))) = ZY (U, GL(O, N)).

The group G(C*(U, End(ON))) of units is the group C°(U, GL(O, N)) of
gauge transformations. We recover Kodaira and Spencer's moduli stack of
vector bundles.
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The stack of vector bundles

Consider the differential graded algebra of Cech cochains
A* = C*(U, End(ON)),

where U is a Stein cover of a complex manifold X.

The Maurer-Cartan elements of A* are the 1-cocycles, i.e. vector bundles
on X of rank NV:

MC(C*(U,End(OM))) = ZY (U, GL(O, N)).

The group G(C*(U, End(ON))) of units is the group C°(U, GL(O, N)) of
gauge transformations. We recover Kodaira and Spencer's moduli stack of
vector bundles.

Working with the differential graded algebra C* (U4, 2* @ End(OY))
instead, we obtain the stack of vector bundles of rank NV on X with
connection.
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The general case

Theorem
Let A* be a differential graded algebra.
e If A" =0 fori < —k, the nerve of A* is a k-groupoid.
o IfA' =0 fori < —k and i > 0, the nerve of A* is a k-group.
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The general case

Theorem
Let A* be a differential graded algebra.
e If A" =0 fori < —k, the nerve of A* is a k-groupoid.

@ If A" =0 fori < —k and i > 0, the nerve of A* is a k-group.
Let A* be a differential graded Banach algebra.

o If A" =0 fori < —Fk, the nerve of A* is a Lie k-groupoid.
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The general case

Theorem
Let A* be a differential graded algebra.

e If A" =0 fori < —k, the nerve of A* is a k-groupoid.

@ IfA" =0 fori < —k and i > 0, the nerve of A* is a k-group.
Let A* be a differential graded Banach algebra.

o If A" =0 fori < —Fk, the nerve of A* is a Lie k-groupoid.

Even in the general case, NgA = MC(A). But the set of 1-simplices is

now more complicated, and corresponds to elements of A? which are only
quasi-invertible.
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Moduli of complexes of holomorphic vector bundles

Let X be a compact complex manifold, and let E* be a complex of
holomorphic vector bundles of length n.

Let A%9(X,End(E)) be the (0, q)-forms with values in the graded vector
bundle End(E), with coefficients in the Sobolev space H*~ 4.

Theorem

If s > dimc(X), A%*(X,End(E)) is a differential graded Banach algebra.J
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Moduli of complexes of holomorphic vector bundles

Let X be a compact complex manifold, and let E* be a complex of
holomorphic vector bundles of length n.

Let A%9(X,End(E)) be the (0, q)-forms with values in the graded vector
bundle End(E), with coefficients in the Sobolev space H*~ 4.

Theorem

If s > dimc(X), A%*(X,End(E)) is a differential graded Banach algebra.J

There is also a generalization where the complexes E* are allowed to vary.
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Moduli of complexes of holomorphic vector bundles
Let X be a compact complex manifold, and let E* be a complex of
holomorphic vector bundles of length n.

Let A%9(X,End(FE)) be the (0, q)-forms with values in the graded vector
bundle End(F), with coefficients in the Sobolev space H*79.

Theorem
If s > dimc(X), A%*(X,End(E)) is a differential graded Banach a/gebra.J

There is also a generalization where the complexes E* are allowed to vary.

It follows that N, A%*(X,End(E)) is a Lie n-groupoid. Of course, it is
infinite-dimensional, so it is difficult to compare it to algebraic objects. For
this, we should apply the technique of Kuranishi: let

NoA%(X,End(E)) C NoA%*(X,End(E))
be the Lie n-subgroupoid obtained by imposing the gauge condition

* —
8 G/ZO’Lk - 0

19 / 24
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Equivalence of Lie n-groupoids
Let A™™ = A™ x A™ be the prism. Let A" be the cup

AT = (AT x A") U (A™ x 9A™) € A™"
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Equivalence of Lie n-groupoids

Let A™™ = A™ x A™ be the prism. Let A" be the cup
AT = (AT 5 A) U (A™ x QA™) € AT,

Definition

A simplicial morphism f : X, — Y, between Lie k-groupoids is an
equivalence if, for each n > 0, the morphism

X, xy, Hom(AM"Y) — Hom(dA"™, X) X Hom(9A™,Y) Hom(A(l)’”, Y)

is a surjective submersion.
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Equivalence of Lie n-groupoids
Let A™™ = A™ x A™ be the prism. Let A" be the cup

AT = (AT x A") U (A™ x 9A™) € A™"

Definition

A simplicial morphism f : X, — Y, between Lie k-groupoids is an
equivalence if, for each n > 0, the morphism

X, xy, Hom(AM"Y) — Hom(dA"™, X) X Hom(9A™,Y) Hom(A(l)’”, Y)

is a surjective submersion.

Equivalence of Lie 0-groupoids is isomorphism of Banach analytic spaces.
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Equivalence of Lie n-groupoids
Let A™™ = A™ x A™ be the prism. Let A" be the cup

AT = (A" x A™) U (A™ x 9A™) C A™".
Definition

A simplicial morphism f : X, — Y, between Lie k-groupoids is an
equivalence if, for each n > 0, the morphism

X, xy, Hom(AY",Y) — Hom(OA", X) Xgom(aan y) Hom(Ay™,Y)

is a surjective submersion.

Equivalence of Lie 0-groupoids is isomorphism of Banach analytic spaces.

The equivalences form a saturated subcategory of the category of Lie
k-groupoids:
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Equivalence of Lie n-groupoids
Let A™™ = A™ x A™ be the prism. Let A" be the cup

AT = (A" x A™) U (A™ x 9A™) C A™".
Definition

A simplicial morphism f : X, — Y, between Lie k-groupoids is an
equivalence if, for each n > 0, the morphism

Xn Xy, Hom(Al’”, Y) — Hom(0A", X) X Hom(9An Y) Hom(A(l)’”, Y)

is a surjective submersion.

Equivalence of Lie 0-groupoids is isomorphism of Banach analytic spaces.

The equivalences form a saturated subcategory of the category of Lie
k-groupoids: if f: X — Y and g : Y — Z are morphisms such that ¢gf is
an equivalence and either f or g is an equivalence, then so is the other.
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Kuranishi gauge as an equivalence

Warning: The statement of the following theorem is only approximate.

Theorem
o N, A% (X,End(E)) is a finite-dimensional Lie n-groupoid.

o The inclusion NyA%*(X,End(E)) C NoA%*(X,End(E)) is an
equivalence of Lie n-groupoids.
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Kuranishi gauge as an equivalence

Warning: The statement of the following theorem is only approximate.
Theorem

o N, A% (X,End(E)) is a finite-dimensional Lie n-groupoid.

o The inclusion NyA%*(X,End(E)) C NoA%*(X,End(E)) is an
equivalence of Lie n-groupoids.

This is an analytic version of a theorem of Hirschowitz and Simpson (there
is also a “derived version” of this theorem by Toén, Vacquié and Vezzosi).
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The determinant line bundle
Maurer-Cartan elements of A%*(X,End(E)) are twisted deformations:

o= o]t ppapt e

where i € A%(X, Hom(E*, E*t179)).
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The determinant line bundle
Maurer-Cartan elements of A%*(X,End(E)) are twisted deformations:

M= o) + Myt
where i € A%(X, Hom(E*, E*t179)).

The section pg) deforms the differential of E¥, fi1) deforms the
0d-operator, p is a homotopy expressing the error in the Kodaira-Spencer
equation for juy) et cetera. Such twisted deformations are familiar from
the work of Bismut, Gillet and Soulé.

Higher analytic stacks 22 /24



The determinant line bundle
Maurer-Cartan elements of A%*(X,End(E)) are twisted deformations:

M= o) + Myt
where i € A%(X, Hom(E*, E*t179)).

The section pg) deforms the differential of E¥, fi1) deforms the
0d-operator, p is a homotopy expressing the error in the Kodaira-Spencer
equation for juy) et cetera. Such twisted deformations are familiar from
the work of Bismut, Gillet and Soulé.

We want to define the determinant of a twisted complex, in such a way
that it is invariant under quasi-isomorphism. This was done by Knudsen
and Mumford in 1976, following Grothendieck. Their formulas used
choices of local frames. Knudsen gave a direct construction in 2002 which
relied instead on auxilliary choices associated to the quasi-isomorphism.
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The determinant line bundle
Maurer-Cartan elements of A%*(X,End(E)) are twisted deformations:

M= o) + Myt
where i € A%(X, Hom(E*, E*t179)).

The section pg) deforms the differential of E¥, fi1) deforms the
0d-operator, p is a homotopy expressing the error in the Kodaira-Spencer
equation for juy) et cetera. Such twisted deformations are familiar from
the work of Bismut, Gillet and Soulé.

We want to define the determinant of a twisted complex, in such a way
that it is invariant under quasi-isomorphism. This was done by Knudsen
and Mumford in 1976, following Grothendieck. Their formulas used
choices of local frames. Knudsen gave a direct construction in 2002 which
relied instead on auxilliary choices associated to the quasi-isomorphism.

This auxilliary data is just a lift of the quasi-isomorphism to a 1-simplex in
our nerve.
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The determinant of the twisted complex £, is the line bundle

det(E) _ ® Ark(El)Ez ® ® (Ark(Ei)Ei)—l

i even i odd

with holomorphic structure defined by the Maurer-Cartan form

Str(um) € Ao’l (X)

Theorem

Let f : u — v be the quasi-isomorphism of twisted deformations associated
to a 1-simplex . There is a canonical trivialization of the determinant line
bundle det(E,)~! @ det(E,) associated to the contracting homotopy

<h a0101> _ ( aop10 a0101)
g —k 1+ai0 —aion
55 + 0 + ad (“ ! ) .
0 —v
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for the differential




Maybe this is evidence that the nerve we have explained here is the “right”
realization of the moduli n-stack of (twisted) deformations of a complex of
holomorphic vector bundles.
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