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Weierstrass points play an important role in diophantine geometry. Recall
their definition: Assume C is a compact Riemann surface, £ a linebundle
on C, and fi....f, € [(C, L) global sections. Then

W(h,...f) e T(C,L¥ ®w@gr(r—1)/2) is the global section which in a
local coordinate z and a local trivialisation of L is equal to the Wronskian
of f1, ..., f,, that is the determinant of the matrix 1/j!df,-/dzj. If the f; are
linearly independant then W(fi, ..., f;) does not vanish. This follows
because for exponents e; < ex < ... < e, the Wronskian of the powers z&
does not vanish identically. For example for the canonical bundle the
Weierstrass-sections give a map from A8(I(C,w¢) — F(C,wgc(g+1)/2)
which is used to prove the positivity of the relative w in semistable families
which are not isotrivial. The archimedean analogue would be that the
Weierstrass-section has norm < 1.

Here we plan to give estimates for the archimedean norm of W(f, ..., f,)
as well as a non-archimean analogue, that is its divisibility for a semistable

curve over a discrete valuation ring.
30.5./3.6.2013 2 /19



A more intrinsic view of W(fi, ..., f;) is obtained by considering the
jet-bundle J,(£) defined by J,(£) = pri«(prs (L)/I}). where I5 denotes
the ideal of the diagonal in C x C, and pr; the projections from C x C to
C. Jy(L£ admits a filtration with subquotients £ ® w‘?i, and W(fi,...,f)
denotes the determinant of the sections of J,(L£) defined by pri(f;)). In
positive characteristic W(fi, ..., f,) may vanish identically, but a variant
with a higher power of wc is still nonzero: For some big r (for example

r > deg(L) + 1) the space spanned by fi, ..., f; injects in [(C, J,(£)). The
filtration on J,(L) defined by powers of I induces a filtration on the
space spanned by fi, ..., f,. If the nontrivial jumps of this induced filtration
occur in degrees ey, ..... €, then our construction gives a canonical section
of L& @ w@d T This also works for semistable curves.

~ G.Faltings (MPIM)  Norms of Weierstrass-sections 305./362013  3/19



We assume that C is hyperbolic, so its genus g > 1. We choose a point

x € C and write C = D/I as a quotient of the unit disc under a discrete
cocompact torsionfree subgroup ' C PSU(1,1). This defines a coordinate
z on D which gives a local coordinate (with the same name) z near x. It is
welldefined up to multiplication with a constant of absolute value one. The
hyperbolic metric on D is given by the Kshler form —2idz A dz/(1 — |z|?)2.
It is normalised such that the hyperbolic volume of C is 47(g — 1).



The holomorphic differentials o € ['(C,w¢) induce l-invariant
holomorphic differentials a(z)dz with i/2 f]D/r |(2)|?dz A dZ < co. The
coefficient of 2/dz in a(z) = 3, aj7/dz is given by a; = i/2 [}, o A @ for
some form «; € [(C,wc). Then up to a factor dz&(&+1)/2 the value of the
Weierstrass-section at x is the determinant of the matrix defined by
integrating holomorphic forms on C against the @;. So its normsquare (in
some metric on wc) is the product of the square of the norm of dz&(e+1)/2
with the determinant of the matrix with entries i/2 [ o A dy. If we
change the local coordinate z by a factor of absolute value one this does
not change.

~ G.Faltings (MPIM)  Norms of Weierstrass-sections 305./362013  5/19



The a; depend on x. We claim that their squareintegral for the hyperbolic
metric is given by

i/2/ aj/\&j=2g(j+1).
C

We first show this for j = 0: The hyperbolic norm of dz at the origin is
271/2_If B; runs through an orthonormal basis of I'(C,wc) then the value
of B at x is

I'/2/Cﬁj/\0_éo.

If we take the sums of the squares of the hyperbolic norms we get ||avl|?.
On the other hand the squareintegrals of the norms of 3; are 1, thus the
result for j = 0.



Continuation

For higher j's use that the space of holomorphic differentials

a =), apz"dz forms a topologically irreducible representation of the
group G = PSU(1,1). The linear forms a; span an irreducible
Harish-Chandra module in the dual space. The group G operates on the
slightly bigger space of differentials holomorphic in a neighbourhood of the
closure of I, that is the series ), b,z"dz with |b,|R" bounded for some
R > 1. The pairing with I'(D, wp) is formally given by integration but this
may not converge. For a given x € C the restriction to l-invariant forms
maps our Harish-Chandra module to the dual space (that is to the
complex conjugate) of ['(C,wc¢), and extends to the slightly bigger
topological module. Thus the inner product on this space of differentials
induces a -invariant inner product on the topological model. If we
integrate over G/I" we obtain a G-invariant inner product which (because
of irreducibility) must be a multiple of usual square-integration. As the «;
are induced by 3; = (j + 1)/7z/dz the integrals of the squarenorms of «;
are proportional to the squarenorms of the 3;, that is to j + 1.
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The hyperbolic squarenorm at x of the Weierstrass-section is equal to the
product of the g(g + 1)'st power of the norm of dz with the determinant
of the inner products of «;'s. The first factor is 2-8(e+1)/2 For the second
we first replace a; by aj/(j 4+ 1)}/? and then estimate the determinant of
the g-th power of the trace divided by g (inequality between geometric
and arithmetic mean). Thus the squaranorm of W(x) is bounded above by

276E T 2g1g78(Y " oy |?/G + 1)),
j



If we form its g'th root and integrate over C (with the hyperbolic
volumeform) we get as result:

/C|W|2/g < 2—(g—1)/2(g!)1/g.

The dependance on the hyperbolic norm goes away if we integrate
|W|4/g(g+1) because this is naturally a density. The resulting upper bound

is
(g!)z/g(g+1)(27r(g _ 1))(g—1)/(g+1).



p-adic theory

Assume that C is a semistable curve over a discrete valuation ring V, with
smooth generic fibre C,, and special fibre (5. We assume that the
residue-field k of V is algebraically closed. Burnol observed that for
reducible s the Weierstrass section becomes divisible by a power of the
uniformiser m of V. The structure of irreducible components of C; is
described by a graph G whose vertices v € V' label irreducible components
C, of Cs and whose oriented edges e € E label double-points. For each
edge the completed local ring of C in the corresponding double point is
isomorphic to V[[u, v]]/(uv — 7") for some integer re > 1. We let

X = Hi(G,Z) denote its first homology. X is a subgroup of Zf and
consists of sequences ne such that for each vertex v the sum +n, = 0.
The sum is over edges starting or ending in e, and the signs are given by
the orientation. Furthermore we need the symmetric bilinear form on X
(and on ZF) defined by b(me, ne) = > g remene. If we replace C by a
regular semistable model (all r. = 1) we replace each edge e by a chain of
re edges. This does change neither the homology H1(G,7Z) nor the bilinear

form b.
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It is wellknown that the Weierstrass-section is related to the determinant
of cohomology. If we choose a V-point @ of C and a basis ay, ..., ag of

the regular differentials I'(C,w¢) = I(C,wc(Q)) then for each S-point P
of C (S any V-scheme) disjoint from Q the induced map

0% — T(Cs,wc(Q)/we(Q — gP))

has as determinant the Weierstrass-section (at P). On the other hand this
determinant can be identified with the canonical section (the
thetafunction) of the inverse of the determinant of cohomology of

wc(Q — gP) (This line-bundle has degree g — 1 and thus vanishing
Euler-characteristic). If Q is not disjoint from P we need a slight
modification. Namely the image of the Weierstrass-section

W e F(C,wﬁ-(gﬂ)/z) in F(C,wg(gﬂ)/z(gQ)) can be identified with the
canonical section of the inverse of the determinant of cohomology of
wc(Q — gP).
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We fix one line-bundle M of relative degree g — 1 on C, and try to
estimate the m-power dividing the determinant of cohomology of £L ® M,
for a linebundle £ of degree zero. Such L's are parametrised by the
Néron-model of the Jacobian J(C,). The formal completion of this
Néron-model can be described as a quotient G = G/.(X). Here G is an
extension

0-T—-G—A—0,

with A an abelian variety and T the torus with charactergroup X, and it
parametrises line-bundles on C (or its formal completion) whose restriction
to each componet C, has degree zero. ¢ is a map

L X — G(K)

which up tis the sum of a map into G(V/) and the map into T(K)
described by b (or better 7°).
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Linebundles of total degree zero on C have a degree vector

deg(L|C,) € ZV which lies in the kernel of the projection onto

Ho(G,Z) = Z, that is in the image of ZE. Thus the degree-vectors lie in
ZE/X. If C is regular the degree of O(C,) is the sum (over all edges
connecting to v, with sign depending on orientation) Y +e. To form the
Néronmodel we have to divide by these. If we do this on ZE we obtain as
quotient the dual X*, and thus the connected components are
parametrised by X/b(X) as also follows from the description as rigid
quotient.



The (inverse of) the determinant of cohomology of £ ® M is a line-bundle
on the Picard-functor which satisfies the theorem of the cube but
unfortunately is not invariant under tensoring with O(C,)’s. Thus it does
not descend to the Néron-model. In fact we have:

a) The determinant of cohomology remains invariant if we replace £ ® M
by we ® L1 ® M~ thatis £ by we ® L2 @ ML

b) If we replace £ by £(—C,) the inverse of the determinant of
cohomology is changed by the divisor of 7 to the power

deg(L ® M|C,) + 1 — g,, where g, denotes the genus of C,.

c) For a generic linebundle £ with deg(£ ® M|C,) = g, — 1 + n} the
cohomology vanishes (and thus its determinant becomes a unit). Here n;
denotes the number of edges starting in v.
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To get a cubical linebundle on the Néron-model we modify the
determinant of cohomology as follows: The degree-vectors of M and

we ® @M1 differ by the image of a linear combination o = D e Mmee
where all coefficients me are odd integers. Such a representation is unique
modulo 2X. This holds because the parity of deg(wc|C,) is the number of
edges connecting to v. Also the degree of L is the image of an element

B =>.nee, well determined modulo X.

Then for such a representation modify the determinant of cohomology by
the m-power with exponent one eigth the norm squared of the projection of
a — 23 to X*. This is a rational number but its denominator is bounded
so we get a line-bundle over the extension to a finite ramified extension V'
of V (we only change the basering but keep the Néron-model, that is we
do not pass to the model over V' which has more components).
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A cubical bundle 2

One checks that the result is invariant under tensoring with O(C,)’s.
Namely if we replace £ by £(—C,) we get new representatives for the
degree-vectors by substracting +2 from ne, for e an edge starting or
ending at v. Then the sum " _(n2 — 1)/8 changes by the sum over edges
connecting to v of

(— £ ne+1)/2 = (—deg(wc ® LZRM?|C,)+ > 1)/2

= —(gv — 1) — deg(L @ M|C,).
(one needs to change 3 by the image of v in ZE which lies in X1). Also
replacing £ ® M by wcL™t ® M™! gives the same. The inverse
determinant of cohomology defines (over K) a global section of this
bundle (a theta-divisor) which is symmetric in the sense that it is invariant
if we replace £ by wc ® M2 ® L1, On the generic fibre our bundle
coincides with the theta-bundle giving the polarisation, thus differs from
this theta-bundle by a divisor supported in the special fibre. Because both
bundles have cubical structures the coefficients this divisor are constant.
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The polarisation on the Néron-model is given by a thetafunction which is
rigid analytic defined by a sum

> a(wu,

peX

where a(u) is a multiplicatively quadratic function (or better section of a
linebundle on A) of 1 whose quadratic term is w2(##)/2_ On the
component parametrised by p € X! its m-valuation in a generic point is, up
to a constant independant of p, given by the minimum of b(p — /2 + u)/2
for u € X. This follows because the quadratic term in the valuation of a is
b/2 and the thetadivisor is symmetric around «/2. To get the m-adic
valuation on the original determinant of cohomology we have to add one
eigth of the norm square of the projection to X+ of o — 23. The result is
the minimum (over 1 € X) of the normsquare of a — 23 — 2.
Furthermore the unknown constant is determined by c) above and we get:
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The degree-vectors of L@ M and wc @ L~ @ M~ differ by the image of
a linear combination ), mee where all coefficients m. are odd integers.
Such a representation is unique modulo 2X. Then the w-power is the

minimum over all such representations of _(m2 —1)/8.

Namely this is true up to a constant which can be determined by property
c). One also can check directly that it satisfies a) (change the sign of the

me) and c) (one can chose me = +1). O




Remarks a) If C is not a regular semistable model one has to change the
sum to Y, re(n? —1)/8.

b) The divisibility by powers of 7 of the Weierstrass-section is due to the
fact that we and O(2gP — 2Q) have quite different degrees on various
components.

c) A similar reasoning applies to other linebundles (instead of wc¢).

d) The bound need not be optimal as wc(Q — gP) is not a generic
linebundle with given degree-vector. For example it depends on the choice
of @. The most canonical choice is if @ lies in the same component as P,
but this gives the worst estimate.



