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Abstract. We construct a new Hodge theory on the cotangent bundle
of a Riemannian manifold X. The corresponding Laplacian is a second
order hypoelliptic operator, which is self-adjoint with respect to a Her-
mitian form whose signature is (∞,∞). This Hodge theory interpolates
between the classical Hodge theory on X and the geodesic flow on T ∗X.
We also give results obtained with G. Lebeau on the analysis of the
hypoelliptic Laplacian and on the hypoelliptic analytic torsion. Finally
we explain the connections of this construction with Chern’s proof of
Chern-Gauss-Bonnet.

Introduction

The purpose of this paper is to describe a deformation of the classical
Hodge theory of a compact Riemannian manifold X, whose corresponding
Laplacian is a hypoelliptic operator on the cotangent bundle T ∗X.

This construction came from the author’s attempt to develop the Hodge
theory of the loop space LX of X, and to construct the Witten deforma-
tion [Wit82] of the Hodge Laplacian of LX which would be associated to
the energy functional E. Such a Witten deformation, if it existed, would
interpolate between the Hodge Laplacian �LX on LX and the Morse theory
for E, whose critical points are the closed geodesics in X. There is indeed
no Hodge theory on LX, one difficulty being the construction of a L2 scalar
product on the de Rham complex of LX. Still one can think of our con-
struction as being the semiclassical limit of the non existing Hodge theory
of LX.

Needless to say, the construction of the hypoelliptic Laplacian can be
done without any explicit reference to the loop space LX. Still many of the
remarkable properties of this operator can be anticipated if one accepts the
fact it is the ‘shadow’ of a Hodge theory to be on LX.

Another impetus came from the realization of the fact that many proper-
ties of the Witten deformation are related to an infinite dimensional version
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of the proof by Chern [Che44] of Chern-Gauss-Bonnet. Indeed our strategy
was to try finding what exotic Hodge theory corresponded to a formally
defined supersymmetric path integral associated to the energy functional E
on LX.

This paper is organized as follows. In section 1, we construct the adjoint
of the de Rham operator dT

∗X with respect to an exotic bilinear form on
the de Rham complex of T ∗X.

In section 2, we give the Weitzenböck formula for the corresponding Lapla-
cian, which turns out to be a hypoelliptic operator on T ∗X.

In section 3, we show that the new Laplacian interpolates between clas-
sical Hodge theory and the geodesic flow.

In section 4, we give a self-adjointness property of the hypoelliptic Lapla-
cian with respect to a Hermitian form of signature (∞,∞).

In section 5, we summarize some of the results on the analysis of the new
Laplacian obtained in [BL06] jointly with Lebeau.

In section 6, we state the main result we obtained in [BL06] saying that
the Ray-Singer metric for the hypoelliptic Laplacian is the same as the Ray-
Singer metric associated to the classical Laplacian.

Finally in section 7, we relate the above constructions to infinite dimen-
sional versions of Chern-Gauss-Bonnet.

The construction of the hypoelliptic Laplacian was announced in [Bis04c,
Bis04b, Bis04d]. It is detailed in [Bis05]. For a survey, we also refer to
[Bis04a]. The analysis of the hypoelliptic Laplacian, and applications to
analytic torsion are carried through in joint work with Lebeau [BL06].

1. A non standard Hodge theory

Let M be a smooth manifold. Let η be a nondegenerate bilinear form on
TM . Let φ : TM → T ∗M be the morphism such that if U, V ∈ TM ,

(1.1) η (U, V ) = 〈U, φV 〉 .

Let η∗ the bilinear form on T ∗M which corresponds to η by the morphism
φ. Then η∗ induces a nondegenerate bilinear form on Λ· (T ∗M). Let dvM be
a volume form on M . Let

(
Ω· (M) , dM

)
be the de Rham complex of smooth

compactly supported differential forms on M . We equip Ω· (M) with the
nondegenerate bilinear form,

(1.2)
〈
s, s′

〉
=
∫
M
η∗
(
s, s′

)
dvM .

Note that this bilinear form is in general neither symmetric nor antisym-
metric.

Let dM be the formal adjoint of dM with respect to the bilinear form
(1.2), so that if s, s′ ∈ Ω· (M), then

(1.3)
〈
s, dMs′

〉
=
〈
d
M
s, s′

〉
.
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Note that in general the formal adjoint of dM in the sense of (1.3) is not
equal to dM .

Let X be a compact manifold of dimension n. Let π : T ∗X → X be
the cotangent bundle on X. Let θ = 〈p, dx〉 be the canonical 1-form on
T ∗X. Let ω = dT

∗Xθ be the canonical symplectic form on T ∗X. This is a
nondegenerate bilinear form on TT ∗X.

Let dT
∗X be the formal adjoint of dT

∗X with respect to the bilinear form
〈 〉 on Ω· (T ∗X), which is associated to ω and to the symplectic volume
dvT ∗X .

It is easy to show that

(1.4)
[
dT
∗X , d

T ∗X
]

= 0.

Observe that equation (1.4) is valid on any symplectic manifold. Indeed by
using Darboux’s theorem, equation (1.4) is just a reflection of the fact that
ω (ξ, ξ) = 0.

Equation (1.4) says that the Laplacian which is associated to the above
bilinear form vanishes identically. Recall that our ultimate purpose is to
produce a hypoelliptic Laplacian. The vanishing of our symplectic Laplacian
simply indicates we have gone too far in the right direction.

Let us now explain in more detail the construction of the hypoelliptic
Laplacian. Let gTX be a metric on TX. We identify TX and T ∗X by the
metric gTX . Let ∇TX be the Levi-Civita connection on TX, and let RTX

be its curvature. The connection ∇TX induces the splittings,

TT ∗X = π∗ (TX ⊕ T ∗X) , T ∗T ∗X = π∗ (T ∗X ⊕ TX) .(1.5)

From (1.5), we get the isomorphism,

(1.6) Λ· (T ∗T ∗X) = π∗
(
Λ· (T ∗X) ⊗̂Λ· (TX)

)
.

We denote with a ̂ the objects which refer to the second factor in the
right-hand side in (1.6). Let ∇Λ·(T ∗T ∗X) be the connection induced by ∇TX
on Λ· (T ∗T ∗X).

Put

(1.7) φ =
(

1 −1
1 0

)
.

We identify φ with an automorphism of TT ∗X = TX ⊕ T ∗X. The bilinear
form η which is associated to φ as in (1.1) is given by

(1.8) U, V → η (U, V ) = 〈π∗U, π∗V 〉gTX + ω (U, V ) .

Let 〈 〉φ be the associated nondegenerate bilinear form on Ω· (T ∗X). Let

d
T ∗X
φ the formal adjoint of dT

∗X with respect to 〈 〉φ and to the symplectic
volume form dvT ∗X .

Let H : T ∗X → R be a smooth function. Let Y H be the corresponding
Hamiltonian vector field, so that

(1.9) dT
∗XH+ iYHω = 0.
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Set

(1.10)
〈
s, s′

〉
φ,H =

∫
T ∗X

η∗
(
s, s′

)
e−2HdvT ∗X .

Put

dT
∗X
H = e−HdT

∗XeH, d
T ∗X
φ,H = eHd

T ∗X
φ e−H.(1.11)

Then dT
∗X

φ,2H is the formal adjoint of dT
∗X with respect to 〈 〉φ,H, and dT

∗X
φ,H is

the formal adjoint of dT
∗X
H with respect to 〈 〉φ.

Set

Aφ,H =
1
2

(
d
T ∗X
φ,2H + dT

∗X
)
, Aφ,H =

1
2

(
d
T ∗X
φ,H + dT

∗X
H

)
.(1.12)

Clearly,

(1.13) Aφ,H = e−HAφ,He
H.

If Z is a vector field on T ∗X, let LZ be the corresponding Lie derivative
operator acting on Ω· (T ∗X).

More generally, let
(
F,∇F

)
be a complex flat vector bundle on X, and let

gF be a non necessarily flat Hermitian metric on F . Let
(
Ω· (T ∗X,π∗F ) , dT

∗X
)

be the de Rham complex of smooth compactly supported forms on T ∗X with
coefficients in F . The operator LZ still acts naturally on Ω· (T ∗X,π∗F ). Set

(1.14) ω
(
∇F , gF

)
=
(
gF
)−1∇F gF .

The 1-form ω
(
∇F , gF

)
takes values in self-adjoints endomorphisms of F .

Also there is an obvious extension of the bilinear form in (1.10) to a
skew-linear form on Ω· (T ∗X,π∗F ), in which the metric gF is incorporated
in the obvious way. It is then possible to extend the above constructions,
and still obtain operators like the ones in (1.11)-(1.13), which now act on
Ω· (T ∗X,π∗F ). In the sequel, we will deal with this more general situation.

2. The Weitzenböck formula for the hypoelliptic Laplacian

Let e1, . . . , en be an orthonormal basis of TX, let e1, . . . , en be the corre-
sponding dual basis of T ∗X. Let ê1, . . . , ên and ê1, . . . , ên be other copies of
these bases.

Then e1, . . . , en, ê
1, . . . , ên is a basis of TT ∗X, and e1, . . . , en, ê1, . . . , ên is

the dual basis of T ∗T ∗X. Set

(2.1) ∇̂VH = ∇beiHêi.
We give the Weitzenböck formula established in [Bis05, Theorem 3.3].
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Theorem 2.1. The following identities hold,

A2
φ,H =

1
4

(
−∆V − 1

2
〈
RTX (ei, ej) ek, el

〉
eiejibekibel + 2L

∇̂VH

)
− 1

2

(
LYH +

1
2
eiibej∇Feiω (∇F , gF ) (ej) +

1
2
ω
(
∇F , gF

)
(ei)∇bei

)
,(2.2)

A2
φ,H =

1
4

(
−∆V − 1

2
〈
RTX (ei, ej) ek, el

〉
eiejibekibel +

∣∣∇VH∣∣2
−∆VH+ 2∇bei∇bejHêiibej + 2∇bei∇ejHejibei

)

− 1
2

(
LYH +

1
2
ω
(
∇F , gF

) (
Y H
)

+
1
2
eiibej∇Feiω (∇F , gF ) (ej)

+
1
2
ω
(
∇F , gF

)
(ei)∇bei

)
.

Given c ∈ R, set

H =
|p|2

2
, Hc = c

|p|2

2
.(2.3)

When c ∈ R∗, put c = ±1/b2, b > 0. We state a result which was established
in [Bis05, Theorem 3.4].

Theorem 2.2. The following identity holds,

(2.4) LYHc = ∇Λ·(T ∗T ∗X)⊗F
YHc

+ cêiiei + c
〈
RTX (p, ei) p, ej

〉
eiibej .

Moreover,

A2
φ,Hc =

1
4

(
−∆V + 2cLbp − 1

2
〈
RTX (ei, ej) ek, el

〉
eiejibekibel

)

− 1
2

(
LYHc +

1
2
eiibej∇Feiω (∇F , gF ) (ej) +

1
2
ω
(
∇F , gF

)
(ei)∇bei

)
,

(2.5)

A2
φ,Hc =

1
4

(
−∆V + c2 |p|2 + c (2êiibei − n)− 1

2
〈
RTX (ei, ej) ek, el

〉
eiejibekibel

)
− 1

2

(
LYHc +

1
2
ω
(
∇F , gF

) (
Y H

c)
+

1
2
eiibej∇Feiω (∇F , gF ) (ej)

+
1
2
ω
(
∇F , gF

)
(ei)∇bei

)
.

For c ∈ R∗, the operators ∂
∂u −A

2
φ,Hc ,

∂
∂u − A2

φ,Hc are hypoelliptic.

Proof. Observe here that the result of hypoellipticity follows from a well-
known result by Hörmander [Hör67]. �
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Observe that the operators A2
φ,Hc ,A

2
φ,Hc are not elliptic and not self-

adjoint.

3. An interpolation property

Let r : T ∗X → T ∗X be the map (x, p)→ (x,−p). Set

a± =
1
2

(
−∆V ± 2Lbp − 1

2
〈
RTX (ei, ej) ek, el

〉
eiejibekibel

)
,

(3.1)

b± = −
(
±LYH +

1
2
eiibej∇Feiω (∇F , gF ) (ej) +

1
2
ω
(
∇F , gF

)
(ei)∇bei

)
.

Then a± commutes with r∗, and that b± anticommutes with r∗.
For a ∈ R, let ra : T ∗X → T ∗X be the dilation (x, p) → (x, ap), so that

r = r−1. For c = ±1/b2, set

(3.2) Aφb,±H = r∗bAφ,Hcr
∗−1
b .

By (2.5), we get

(3.3) 2A2
φb,±H =

1
b2

a± +
1
b
b±.

Let o (TX) be the orientation bundle of TX. Let ΦT ∗X be the Thom
form on T ∗X of Mathai-Quillen [MQ86] which is associated to the metric
gTX and to the connection ∇TX . The form ΦT ∗X is a closed form of degree
n with coefficients in o (TX), such that π∗ΦT ∗X = 1. It is normalized in
such a way that

(3.4) ΦT ∗X = exp
(
− |p|2 + . . .

)
.

In (3.4), . . . designates an explicit complicate expression involving curvature.
As is suggested by (3.4), the form ΦT ∗X restricts to a Gaussian form along
the fibre.

One verifies easily that the operators a± are semisimple. The kernel of
a+ is generated by the function 1, and the corresponding projector QT

∗X
+ on

this kernel is given by α→ π∗
(
α ∧ ΦT ∗X

)
. The kernel of a− is generated by

ΦT ∗X , and the corresponding projector QT
∗X
− is given by α→ (π∗α)∧ΦT ∗X .

Let dX be the de Rham operator acting on Ω· (X,F ) in the + case or
on Ω· (X,F ⊗ o (TX)) in the − case, and let dX∗ be its formal adjoint with
respect to the standard L2 Hermitian product. Let �X =

[
dX , dX∗

]
denote

the corresponding Hodge Laplacian.
The following result is established in [Bis05, Theorem 3.13]

Theorem 3.1. The following identity holds,

(3.5) −QT ∗X± b±a−1
± b±Q

T ∗X
± =

1
2
�X .
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Observe that a formula similar to (3.5) plays a key role in the paper by
Bismut et Lebeau [BL91], where the Hodge theory of a compact complex
manifold is deformed into the Hodge theory of a submanifold. Identities
(3.3) and (3.5) indicate that the matrix structure of the operator in (3.3) is
essentially similar to the one in [BL91].

Also observe that in degree 0, equation (3.5) is equivalent to

(3.6)
∫
T ∗X
∇p∇pe−|p|

2 dp

πn/2
=

1
2

∆X ,

which itself is equivalent to

(3.7)
n∑
1

∇2
ei = ∆X .

The contribution of a−1
± to equation (3.6) is in fact equal to 1.

In [BL06], equation (3.5) provides one of the key algebraic results from
which one shows that in the proper sense, when c→ ±∞, the resolvent of a
suitably conjugate version of the operator 2A2

φ,Hc converges to the resolvent
of 1

2�X . The relevant conjugation is described in [Bis05] and in [BL06].
Suppose again that F = R. Let NV =

∑n
1 êiibei be the vertical number

operator, i.e. the operator which counts the vertical degree of forms in
Ω· (T ∗X,π∗F ). We have the identity of [Bis05, eq. (3.79)],

(3.8) r∗b22A2
φ,Hcr

∗−1
b2

=
1
2

(
−c2∆V + |p|2 − cn

)
+ cNV

− c2

4
〈
RTX (ei, ej) ek, el

〉
eiejibekibel ∓ LYH ,

so that as b→ +∞,

(3.9) r∗b22A2
φ,Hcr

∗−1
b2
' 1

2
|p|2 ∓ LYH .

In the right-hand side of (3.9), there is essentially the Lie derivative operator
∓LYH .

This should convince the reader that as when b → +∞, the trace of the
heat kernel exp

(
−tA2

φ,Hc
)

should localize near the closed geodesics in X.

From the above, we find that up to scaling, 2A2
φ,Hc interpolates in a proper

sense between the Hodge Laplacian and the geodesic flow.

4. A self-adjointness property

The operator A2
φ,Hc is certainly not self-adjoint in the classical sense.

However it is shown in [Bis05] that it is self-adjoint with respect to a non-
degenerate Hermitian form of signature (∞,∞), which we now describe.

Let gT
∗X be the metric on the fibres of T ∗X which is dual to gTX . Let

gTT
∗X be the Riemannian metric on T ∗X whose matrix with respect to the
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splitting TT ∗X = π∗ (TX ⊕ T ∗X) is given by

(4.1) gTT
∗X =

(
gTX 1|T ∗X
1|TX 2gT

∗X

)
.

The volume form attached to gTT
∗X is the symplectic volume form dvT ∗X .

Let F be the gTT
∗X isometric involution of TT ∗X whose matrix with

respect to the above splitting is given by

(4.2) F =
(

1|TX 2gT
∗X

0 −1|T ∗X

)
.

Then F acts like F̃−1 on Λ· (T ∗T ∗X).
Let 〈 〉gΩ·(T∗X,π∗F ) be the Hermitian product on Ω· (T ∗X,π∗F ) associated

to the metrics gTT
∗X , gF .

Let u be the isometric involution of Ω· (T ∗X,π∗F ),

(4.3) us (x, p) = Fs (x,−p) .

Let hΩ·(T ∗X,π∗F ) be the Hermitian form on Ω· (T ∗X,π∗F ),

(4.4)
〈
s, s′

〉
hΩ·(T∗X,π∗F ) =

〈
us, s′

〉
gΩ·(T∗X,π∗F ) .

Note here that a Hermitian form has the same properties as a Hermitian
product, except for positivity.

If H is a r-invariant smooth function on T ∗X, if s, s′ ∈ Ω· (T ∗X,π∗F ),
set

(4.5)
〈
s, s′

〉
h

Ω·(T∗X,π∗F )
H

=
〈
e−2Hs, s′

〉
hΩ·(T∗X,π∗F ) .

Note that since H is r-invariant, h
Ω·(T ∗X,π∗F )
H is still a Hermitian form. The

Hermitian forms in (4.4), (4.5) have signature (∞,∞).
Now we state a result established in [Bis05, Theorem 2.21].

Theorem 4.1. If H is r-invariant, then Aφ,H is h
Ω·(T ∗X,π∗F )
H self-adjoint,

and Aφ,H is hΩ·(T ∗X,π∗F ) self-adjoint.

Of course, Theorem 2.1 applies to the operators associated to H = Hc
which were considered in section 2. Its implications are discussed in [Bis05,
section 1] and [BL06].

5. The analysis of the hypoelliptic Laplacian

Now we briefly describe some results on the analysis of the operator A2
φ,Hc

which are established in [BL06]. One of the key results is that A2
φ,Hc has

compact resolvent, that its spectrum is discrete, and that the corresponding
characteristic subspaces are finite dimensional and included in the Schwartz
space S · (T ∗X,π∗F ).

Of special interest from the point of view of Hodge theory is the charac-
teristic subspace S · (T ∗X,π∗F )0 attached to the eigenvalue 0. The spectral
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projection provides a natural supplementary subspace S · (T ∗X,π∗F )∗ to
S · (T ∗X,π∗F )0.

Let H· (X,F ) denote the ordinary cohomology of T ∗X when c > 0,
and the compactly supported cohomology of T ∗X for c < 0. For c > 0,
H· (X,F ) = H · (X,F ), and for c < 0, H· (X,F ) = H ·−n (X,F ⊗ o (TX)),
this last identification being the Thom isomorphism.

In [BL06], it is shown that the complex
(
S · (T ∗X,π∗F )∗ , d

T ∗X
Hc

)
is acyclic,

and that the cohomology of
(
S · (T ∗X,π∗F )0 , d

T ∗X
Hc

)
is just H· (X,F ).

We will say that b > 0 is of Hodge type if all the classical consequences
of Hodge theory hold for the hypoelliptic Laplacian A2

φ,Hc , which means in
particular that dT

∗X
Hc vanishes on S · (T ∗X,π∗F )0.

In [BL06], it is shown that for b > 0 small enough, b is of Hodge type, and
also that the set of b > 0 which are not of Hodge type is discrete. The proof
relies in particular on the fact that classical Hodge theory is. . . of Hodge
type, and moreover that being of Hodge type is an open property.

Finally it is shown in [BL06] that, as explained in section 3, the resolvent
of a suitably conjugate version of A2

φ,Hc converges in the strongest possible
sense to the resolvent of �X/4, and also that the corresponding heat kernels
converge in a very strong sense.

6. The hypoelliptic Laplacian and analytic torsion

Set

(6.1) λ (F ) = detH · (X,F ) .

Put

λ =λ (F ) if c > 0,(6.2)

(λ (F ⊗ o (TX)))(−1)n if c < 0.

The line λ can be equipped with the classical Ray-Singer metric ‖ ‖2λ,0,
which one obtains via the Ray-Singer analytic torsion for the Hodge Lapla-
cian �X .

On the other hand, for b > 0, one can define a generalized metric ‖λ‖2λ,b
on λ, which is obtained via the analytic torsion or A2

φ,Hc . Its construction

also involves the Hermitian form h
Ω·(T ∗X,π∗F )
Hc . Contrary to an usual metric,

this generalized metric has a sign. When the sign is positive, it is a usual
metric.

The main result established in [BL06] is as follows.

Theorem 6.1. For b > 0, we have the identity,

(6.3) ‖ ‖2λ,b = ‖ ‖2λ,0 .

The proof of Theorem 6.1 is difficult. Besides the functional analytic
machine which is needed to handle the hypoelliptic Laplacian properly, one
also needs to develop a local index theory for this operator. It is rather
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easy to show that the generalized metric ‖ ‖2λ,b does not depend on b > 0.
Showing equality in (6.3) is much harder. One has to take full advantage of
the convergence of resolvents which was described in sections 3 and 5.

In fact equality in (6.3) should not be taken for granted. Indeed the small
time asymptotics of the heat kernels associated to elliptic or hypoelliptic
operators are very different. On a priori grounds, one could expect a term
measuring the transition from the hypoelliptic regime to the elliptic one. In
fact such a term appears when one considers the equivariant version of the
above metrics.

7. The hypoelliptic Laplacian and Chern-Gauss-Bonnet

Let
(
E, gE ,∇E

)
be a real Euclidean vector bundle of dimension n on a

manifold M , which is equipped with a metric preserving connection. Let
ΦE be the Mathai-Quillen Thom form [MQ86] associated to

(
gE ,∇E

)
. The

Mathai-Quillen Thom form, which is a form of degree n, will be normalized
in such a way that if p is the generic element of E,

(7.1) ΦE = exp
(
− |p|2 /2 + . . .

)
.

Note that the normalization in (7.1) is different from the one which is used
in (3.4).

Let s be a smooth section of E on M . Then s∗ΦE is a closed n-form on
M , whose cohomology class does not depend on s. For T > 0, set

(7.2) aT = (Ts)∗ΦE .

Then aT is a family of closed n-forms, which lie in the same cohomology
class. The form a0 is just the Chern form e

(
E,∇E

)
= Pf

[
RE/2π

]
which

appears in Chern’s version of Chern-Gauss-Bonnet [Che44]. By (7.1), we
get

(7.3) aT = exp
(
−T 2 |s|2 /2 + . . .

)
.

Equation (7.3) indicates that when T → +∞, the current aT localizes near
the vanishing locus Y of s. If the section s is generic, then Y is a submanifold
of M . One can establish that when T → +∞, aT converges as a current to
an explicit current localized on Y .

The strategy used by Chern [Che44] to prove Chern-Gauss-Bonnet is
closely related to the above argument. Indeed he constructs directly a trans-
gressed version of the Thom form, from which the Gauss-Bonnet theorem
follows by an argument essentially similar to the one outlined above.

Physicists have taught us that some version of the Chern-Gauss-Bonnet
theorem still holds in infinite dimensions, thereby establishing a connection
between an often mathematically ill-defined functional integral and its lo-
calisation on the zero set of the section of some infinite dimensional vector
bundle, which is directly accessible to mathematical understanding.
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We will illustrate this point in the context of the Witten deformation of
classical Hodge theory, and later explain the relevance of Chern’s point of
view to the hypoelliptic Laplacian.

Indeed let X be a Riemannian manifold as above. We take here F to be
just R equipped with its canonical metric. Let f : X → R be a smooth
function. In [Wit82], Witten proposed a deformation of Hodge theory as-
sociated to the function f . Given T ∈ R, the idea is to replace the de
Rham operator dX by the twisted version dXT = e−TfdXeTf , and to form
the corresponding Laplacian �X

T .
Observe the following simple three points:

• For T = 0, �X
T = �X .

• The operator �X
T is still a second order elliptic self-adjoint nonneg-

ative operator.
• The Hodge theorem still holds for �X

T , i.e. ker �X
T still represents

H · (X,R).

Assume that f is a Morse function. In [Wit82], Witten showed that when
T → +∞, most of the eigenvalues of �X

T tend to +∞, except a finite family
of them which are either 0 or are exponentially small. Moreover the finite
dimensional complex

(
F ·T , d

X
T

)
of eigenforms associated to small eigenvalues

localizes near the critical points of f , the forms of degree i localizing near
the critical points of index i, from which the Morse inequalities immediately
follow.

We will not focus here on the refinements suggested by Witten concerning
the explicit description of the complex

(
F ·T , d

X
T

)
in terms of the Morse-Smale

complex associated to the gradient field −∇f . The main point we want to
make is that �X

T provides an interpolation between Hodge theory and Morse
theory.

When f is Morse, the gradient field ∇f is a generic section of TX. The
corresponding forms aT as in (7.2) interpolate between the Chern form
Pf
[
RX

2π

]
and a signed sum of Dirac masses concentrated at the critical points

of f .
We will briefly explain how the fact that �X

T interpolates between classical
Hodge theory and Morse theory can be interpreted as a consequence of the
same localization principle on the loop space LX of X, which is the set of
smooth maps s ∈ S1 → xs ∈ X.

We start from observations of Atiyah and Witten [Ati85]. Note that LX
is a Riemannian manifold, which inherits its Riemannian metric gTLX from
the metric gTX . Also S1 acts isometrically on LX , so that if t ∈ S1, x ∈ LX,
ktx· = x·+t. The generator of this action is the Killing vector field K (x) = ẋ.
The manifold X sits inside LX as the zero set of K.

The function f lifts to the S1-invariant function F on LX,

(7.4) F (x) =
∫
S1

f (xs) ds.
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By the McKean-Singer formula [MS67], we find that if χ (X) is the Euler
characteristic of X, then

(7.5) χ (X) = Trs

[
exp

(
−�X

T /2
)]
.

Using functional integration, and more specifically the theory of Brownian
motion, we can rewrite the right-hand side of (7.5) in the form,

(7.6) Trs

[
exp

(
−�X

T /2
)]

=
∫
L0X

dµT .

In (7.6), µT is a signed measure on L0X, the set of continuous loops in X,
which is S1-invariant. The fact that µT is carried by L0X and not by LX
is a well-known pathology associate with functional integration.

By using arguments developed first by Atiyah and Witten in [Ati85] and
later pursued in [Bis85, Bis86], one can transform the well defined integral
in the right-hand side of (7.6) into an ill defined integral of a current on LX.
More specifically, we rewrite (7.6) in the form,

(7.7) Trs

[
exp

(
−�X

T /2
)]

=
∫
LX

α ∧ (T∇F )∗ΦTLX .

Note that we have replaced L0X by LX for notational expediency. Let us
briefly describe the two forms which appear in the right-hand side of (7.7).
First they are both closed with respect to the operator d + iK , which is
the equivariant version of the de Rham operator. Since LK = (d+ iK)2,
these forms are also S1-invariant. The vanishing under d + iK is called
supersymmetry in the physics literature.

Let E (x) = 1
2

∫
S1 |ẋ|2 ds be the energy functional on LX. The form α

takes the form

(7.8) α = exp (−E + ω) .

The form ω is a closed 2-form which we will not describe more precisely.
The form ΦTLX is the equivariant Thom form for TLX equipped with

the metric gTLX , the Levi-Civita connection ∇TLX and the action of K. In
view of (7.1), (7.7), (7.8), we get
(7.9)

Trs

[
exp

(
−�X

T /2
)]

=
∫
LX

exp
(
−1

2

∫
S1

|ẋ|2 ds− T 2

2

∫
S1

|∇f (xs)|2 ds+ . . .

)
.

The point about (7.9) is that for T = 0, we get a classical Brownian
integral which is known to be connected with the Hodge Laplacian �X/2.
For T → +∞, the integral (7.9) should localize on ∇f = 0.

The above picture gives us a geometric understanding of the localization
of the heat kernels on the diagonal near the critical points of f , of which
the standard localization of the form aT associated with ∇f appears as a
semiclassical limit, when scaling the metric gTX by a factor 1/t and making
t→ 0.
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Now LX carries many natural S1 functionals like the energy E or more
generally any functional

(7.10) I (x) =
∫
S1

L (x, ẋ) ds,

where L is a classical Lagrangian. Of course when L (x, ẋ) = 1
2 |ẋ|

2, then
I = E. The idea is then to replace F by E in (7.7). More precisely consider
a path integral of the type

(7.11)
∫
LX

α ∧ (T∇E)∗ΦTLX .

One can ask whether there is a new Hodge theory which would extend (7.7)
to an expression of the type (7.11).

This is exactly what the the hypoelliptic Laplacian 2A2
φ,Hc does, with

c = ±1/b2, T = b2. Indeed in this case equation (7.9) is replaced by
(7.12)

Trs

[
exp

(
−2A2

φ,Hc
)]

=
∫
LX

exp
(
−1

2

∫
S1

|ẋ|2 ds− T 2

2

∫
S1

|ẍ|2 ds+ . . .

)
.

For T = 0, we should recover the classical Hodge theory for �X/2, and for
T → +∞, the integral in (7.12) should localize on closed geodesics.

The results which were described in the previous sections come as close
as possible to fulfil this dream.
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