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Abstract. The purpose of this paper is to review the construction of the

hypoelliptic Laplacian, in the context of de Rham theory for smooth manifolds,

and also the construction of the hypoelliptic Dirac operator in the context of
complex Kähler manifolds.
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Introduction

The purpose of this survey is to review certain aspects of the construction of
the hypoelliptic Laplacian, in de Rham and in Dolbeault theory. The hypoelliptic
Laplacian was introduced in [B05] in de Rham theory, and in [B07] for Dirac op-
erators. The crucial analytic foundations for the theory were developed by Lebeau
and ourselves in [BL08].

One motivation given in [B05] is to interpret the hypoelliptic Laplacian in de
Rham theory as a semiclassical limit of the Witten deformation of the Hodge the-
ory of the loop space of a Riemannian manifold, which is associated with the energy
functional. This point of view remains formal, since the Hodge theory of the loop
space of a manifold is not analytically well defined. The motivation for the con-
struction of the hypoelliptic Dirac operator of [B07] is to understand the effect of
replacing the standard L2 metric on the loop space of a manifold by a H1 met-
ric. Again these considerations remain formal, although ultimately the hypoelliptic
Dirac operator is well defined.

Whatever the motivations, and there are many others, some of which are ex-
plained in [B06, B08], the conclusion is that a geometric Laplacian can be deformed
into a family of hypoelliptic second order differential operators acting on the total
space of the tangent or the cotangent bundle of the given manifold, which interpo-
lates in the proper sense between the Laplacian and the generator of the geodesic
flow. The existence of this deformation is counter-intuitive, since ellipticity is a
stable property. However, the fact that the hypoelliptic Laplacian acts on a bigger
space than the original elliptic Laplacian explains why ultimately it can be made
to ‘collapse’ on the elliptic Laplacian.

Let us finally mention that up to lower order terms, the hypoelliptic Laplacian
is the sum of a harmonic oscillator acting in the directions of the fibre, and of the
vector field which generates the geodesic flow, these two operators being adequately
scaled.

In this paper, first, we fully develop the theory in the case where the base mani-
fold is the circle. The main point is that while in this case, the geometry is trivial,
a complete understanding of the hypoelliptic Laplacian and of the interpolation
property can be easily obtained via Fourier analysis on the circle and the spectral
theory of the harmonic oscillator. The case of the circle is also useful, because the
objects which appear there turn out to be at the same time the principal symbols of
the geometric hypoelliptic operators, and because the circle is the model of a closed
geodesic. The fact that the hypoelliptic Laplacian is self-adjoint with respect to a
symmetric form of signature (∞,∞) appears also naturally in that context.

The basic difference between the case of the circle and the geometric case is
that the analysis of the hypoelliptic Laplacian is no longer explicit, and also that
the convergence arguments, which are easy for the circle, are built on a functional
analytic machinery described in detail in our work with Lebeau [BL08].

Also we describe the construction of the hypoelliptic Laplacian, in the de Rham
case, and also for Kähler manifolds. We emphasize the role of the symmetric bilinear
forms, at least in the de Rham case, because of the important spectral theoretic
consequences which are derived in [BL08].

This paper is organized as follows. In section 1, we consider the case of the circle.
Since the hypoelliptic Laplacian is ultimately obtained as a Hodge Laplacian with
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respect to an exotic bilinear form on the de Rham or the Dolbeault complex, this
point of view is systematically emphasized in this simple case too.

In section 2, we recall classical results on the Hodge theory of a compact manifold,
and on the Witten deformation of classical Hodge theory which is associated with
a smooth function. Also we show that if (M,ω) is a symplectic manifold, there is
a symplectic Witten Laplacian, which turns out to be the Lie derivative operator
associated with the corresponding Hamiltonian vector field. This point of view is
further developed in [B05], where the hypoelliptic Laplacian in de Rham theory
is obtained by linearly interpolating between the Riemannian metric of the base
manifold, and the symplectic form of its cotangent bundle.

In section 3, we explain the construction of the hypoelliptic Laplacian in de Rham
theory. We also give the main arguments of [B05] in favour of the fact that the
hypoelliptic Laplacian interpolates between the Hodge Laplacian and the geodesic
flow.

In section 4, we give the construction of the hypoelliptic Dirac operator of [B07]
in the context of Kähler manifolds, and we give the arguments showing that this
operator should indeed be a deformation of the classical elliptic Dirac operator.

As we already said, the analytic justifications which make that the whole con-
struction ultimately exists as a mathematical theory are developed in detail in
our work with Lebeau [BL08]. Also applications to Ray-Singer torsion [RS71] and
Quillen metrics [Q85b] are given in [BL08] and [B07].

1. The case of the circle

The purpose of this section is to construct the hypoelliptic Laplacian in the case
where the base manifold X is just S1. In this case, all the objects are simple and
natural. Besides, the operators which are obtained in this case can be viewed as
the symbols of the operators which are obtained later in the geometric case.

This section is organized as follows. In subsection 1.1, we recall elementary
properties of elliptic and hypoelliptic operators.

In subsection 1.2, we introduce the Kolmogorov operator on S1 × R, which is
a simple case of an operator verifying Hörmander’s hypoellipticity theorem [Hö67],
and at the same time, coincides, up to important lower order terms, with the hypoel-
liptic Laplacian. Formal conjugation arguments are used to relate the hypoelliptic
Laplacian to the elliptic Laplacian on S1. The fact that the hypoelliptic Laplacian
interpolates in the proper sense between the Laplacian and the generator of the
geodesic flow can be exhibited by hand. One obtains this way a proof of Poisson’s
formula by interpolation.

In subsection 1.3, we show that our hypoelliptic Laplacian is a Hodge Laplacian
with respect to an exotic bilinear form on the space of compactly supported dif-
ferential forms on S1 × R. This result will be used in section 3 to construct the
geometric hypoelliptic Laplacian in the context of de Rham theory.

1.1. Elliptic and hypoelliptic operators. Let X be a compact manifold. Let
X ∗ be the total space of T ∗X. Then X embeds in X ∗ as the zero section of T ∗X.

Let E and F be two complex vector bundles on X. If P is a pseudodifferen-
tial operator of order m mapping C∞ (X,E) into C∞ (X,F ), its principal symbol
σP (x, ξ) is a smooth map on X ∗ \X with values in Hom (E,F ), which is homoge-
neous of order m in the variable ξ. The operator P is said to be elliptic if σP (x, ξ)
is invertible on X ∗ \X.
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If X is equipped with a Riemannian metric, if ∆X is the Laplace-Beltrami op-
erator acting on C∞ (X,R), then −∆X is an elliptic operator of order 2, and its
principal symbol is |ξ|2. The standard example is the operator − ∂2

∂x2 acting on S1.
Ellipticity is a stable property. Indeed a small deformation of an elliptic operator

is still elliptic. This should make all the more surprising the fact that certain elliptic
operators can be deformed into hypoelliptic operators. This is only possible because
the deformed operators act on a different space than the original operator. Besides
elliptic operators of order m act on Sobolev spaces, and decrease the Sobolev index
by m. As an example, the operator −∆X decreases the Sobolev index by 2, and
any pseudoinverse of −∆X (an inverse up to regularizing operators) increases the
Sobolev index by 2. In particular if u is a scalar distribution on X such that
−∆Xu ∈ Hs, then u ∈ Hs+2.

Hypoellipticity is a weaker property. A pseudodifferential operator P is said to
be hypoelliptic if when u is a distribution such that Pu is C∞ on some open set,
then u is also C∞ on this open set. For example the parabolic operator ∂

∂t −
1
2∆X

on R×X is hypoelliptic.

1.2. The Kolmogorov operator and Hörmander’s theorem. Consider the
operator A on R×R2 introduced by Kolmogorov [K34],

(1.1) A =
∂

∂t
− 1

2
∂2

∂y2
− y ∂

∂x
.

In [K34], Kolmogorov computed the fundamental solution of (1.1), as a time de-
pendent Gaussian kernel in the variables (x, y), from which the hypoellipticity of
A follows.

The hypoellipticity of A prompted Hörmander [Hö67] to develop his theory of hy-
poelliptic second order differential operators which we now briefly describe. Indeed
if X0, . . . , Xm are smooth vector fields on Rn, consider the differential operator

(1.2) M = −1
2

m∑
i=1

X2
i +X0.

Let E (x) ⊂ Rn be the vector space spanned at x by X0, . . . , Xm and their Lie
brackets. Hörmander’s theorem asserts that if at each x, E (x) = Rn, then M is a
hypoelliptic operator.

The fact that A is hypoelliptic is a consequence of Hörmander’s theorem since the
Lie bracket

[
∂
∂y ,

∂
∂t − y

∂
∂x

]
= − ∂

∂x is enough to make the Hörmander distribution

associated with ∂
∂y ,

∂
∂t − y

∂
∂x span R3.

More generally, consider the operator An on R2n+1 which is given by

(1.3) An =
∂

∂t
− 1

2
∆V −∇y.

In (1.3), ∆V denotes the Laplacian in the variables y1, . . . , yn, and ∇y denotes
differentiation on the variables x1, . . . , xn in the direction y, i.e., ∇y =

∑n
1 y

i ∂
∂xi . In

this case, the n Lie brackets
[
∂
∂yi ,∇y

]
= ∂

∂xi are necessary to make the Hörmander

distribution span R2n+1.
The parabolic operator ∂

∂t−
1
2
∂2

∂x2 is the model of the geometric parabolic operator
∂
∂t −

1
2∆X . Let us now describe the model of its hypoelliptic deformation.
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Let L be the operator on R3,

(1.4) L =
∂

∂t
+

1
2

(
− ∂2

∂y2
+ y2 − 1

)
− y ∂

∂x
.

Clearly,

(1.5) L = A+
1
2
(
y2 − 1

)
.

The term which is added to A in the right-hand side of (1.5) has no effect on
hypoellipticity, which is by definition a local property. On the other hand, the
operator H given by

(1.6) H =
1
2

(
− ∂2

∂y2
+ y2 − 1

)
is the harmonic oscillator, which has discrete spectrum and compact resolvent.
From this point of view, the operator L is significantly different from the operator
A in (1.1).

As in (1.3), we may as well define the operator Ln on R2n+1, which is given by

(1.7) Ln =
∂

∂t
+

1
2

(
−∆ + |y|2 − n

)
−∇y.

To make the notation simpler, we now proceed with the case n = 1. Also we
disregard for the moment the variable t, which can be included in everything which
follows. For b > 0, set

(1.8) Lb =
1

2b2

(
− ∂2

∂y2
+ y2 − 1

)
− 1
b
y
∂

∂x
.

Clearly,

(1.9) Lb =
1

2b2

(
− ∂2

∂y2
+
(
y − b ∂

∂x

)2

− 1

)
− 1

2
∂2

∂x2
.

In the sequel, it will be convenient to assume that x ∈ S1 = R/Z, and that
y ∈ R lies in TS1 or T ∗S1.

Let us formally make the translation y → y + b ∂∂x . Equivalently let Ub be the
formal operator,

(1.10) Ub = exp
(
b
∂2

∂x∂y

)
.

Set

(1.11) Mb = UbLbU−1
b .

Then Mb is given by the operator,

(1.12) Mb =
1

2b2

(
− ∂2

∂y2
+ y2 − 1

)
− 1

2
∂2

∂x2
.

We can write the operator Mb in the form,

(1.13) Mb =
H

b2
− 1

2
∂2

∂x2
.

Before we proceed, let us observe that conjugation by Ub has transformed the
hypoelliptic operator Lb into the elliptic operator Mb, in which the variables x, y
have been uncoupled.
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Since the spectrum of H is equal to N, the spectrum of Mb is given by

(1.14) Sp (Mb) =
N
b2

+
{

2π2k2, k ∈ Z
}
.

Therefore when b → 0, the finite part of the spectrum of Mb converges to the
spectrum of − 1

2
∂2

∂x2 , and as b→ +∞, Sp (Mb) while staying real, accumulates near
0. Also 0 is a simple eigenvalue of Mb.

Before we explain how the spectrum of Mb relates to the spectrum of Lb, let
us first explain how to eliminate the nonzero eigenvalues of H. Let Λ· (R∗) be the
exterior algebra of R, which is spanned by 1, dy. Let N be the number operator
on Λ· (R∗), which acts like 0 on 0-forms, and 1 on 1-forms. Set

(1.15) O = H +N.

Let Trs be our notation for the supertrace. Indeed let V = V+ ⊕ V− be a Z2-
graded Hilbert space, and let τ = ±1 be the endomorphism of V which defines the
Z2-grading. If A ∈ L (V ) is trace class, then

(1.16) Trs [A] = Tr [τA] .

Here we use the Z2-grading associated with the grading of Λ· (R∗). Then one
has the easy identity,

(1.17) Trs [exp (−tO)] = 1.

Put

(1.18) M′b =Mb +
N

b2
.

Of course (1.14) remains valid for M′b, and 0 is still a simple eigenvalue of M′b.
From (1.17), (1.18), we get

(1.19) Trs [exp (−tM′b)] = Tr
[
exp

(
t

2
∂2

∂x2

)]
.

The remarkable fact in (1.19) is that it does not depend on b > 0. We already
saw that as b→ 0, the spectrum of M′b converges to the spectrum of − 1

2
∂2

∂x2 . The
question is now to know how to use (1.19) with b→ +∞.

Using hypoellipticity, it is not difficult to show that Lb has a smooth heat kernel,
and that for t > 0, exp (−tLb) is trace class.

We claim that

(1.20) Tr [exp (−tLb)] = Tr [exp (−tMb)] .

One could try using the conjugation by the operator Ub which was described above
to get (1.20). However, the operator Ub is poorly defined, and does not act on any
natural function space.

However, we can use Fourier series to diagonalize the operator ∂
∂x , and try ob-

taining an analogue of (1.20) for each eigenvalue 2iπk, k ∈ Z, from which (1.20)
would follow by summation. This can indeed be done. In fact the eigenvectors of
the harmonic oscillator H are given by Pn (y) exp

(
−y2/2

)
, n ∈ N, where the Pn

are the Hermite polynomials. Now the complex translations y → y + 2iπbk, k ∈ Z
maps these eigenvectors into well defined elements of L2. It is not difficult to con-
clude that the consequences of the above conjugation by Ub are correct, and that
(1.20) holds.
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Set

(1.21) L′b = Lb +
N

b2
.

By (1.8) and (1.21), we get

(1.22) L′b =
1

2b2

(
− ∂2

∂y2
+ y2 − 1

)
+
N

b2
− 1
b
y
∂

∂x
.

Using (1.18)-(1.21), we obtain,

(1.23) Trs [exp (−tL′b)] = Tr
[
exp

(
t

2
∂2

∂x2

)]
.

Instead of (1.23), one can replace (1.23) by a pointwise equality in the x variable
of the integral of the corresponding kernels in the y variable, simply by using the
Fourier series argument we just gave. However, this will not be used in the sequel.

Now we will make b→ +∞ in equation (1.23). For b > 0, let Kb be the map

(1.24) Kbs (x, y) = s (x, by) .

Set

(1.25) Lb = KbL′bK−1
b .

By (1.22), we get

(1.26) Lb =
y2

2
− y ∂

∂x
− 1

2b4
∂2

∂y2
+

1
b2

(
−1

2
+N

)
.

By (1.26), we find that as b→ +∞,

(1.27) Lb =
y2

2
− y ∂

∂x
+O

(
1/b2

)
.

Equation (1.27) indicates that up to the translation by y2

2 , the leading term in the
asymptotics of Lb is the generator of the geodesic flow.

We briefly show how the above can be used to give a proof of the Poisson formula.
Indeed (1.26), (1.27) already indicates that Trs [exp (−tLb)] concentrates along the
closed geodesics in S1 parametrized by [0, t], which start and end at x and have
speed y. This means that y = k/t, k ∈ Z. Let Rk,b be the map

(1.28) Rk,bs (x, y) = s
(
x, k/t+ y/b2

)
.

Set

(1.29) L′k,b = Rk,bLbR
−1
k,b.

By (1.26), we get

(1.30) L′k,b =
1
2
(
k/t+ y/b2

)2 − (k/t+ y/b2
) ∂

∂x
− 1

2
∂2

∂y2
+

1
b2

(
−1

2
+N

)
.

Now observe that the term k/t ∂∂x can be disregarded, because, once it is multiplied
by t, it exponentiates to the identity. We still use the notation L′k,b for the operator
in which this term has been deleted. Let Sb be the map s (x, y)→ s

(
b2x, y

)
. Note

that this map is only defined for x ∈ R. Put

(1.31) L′′k,b = S−1
b L′k,bSb.
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By (1.30), we obtain,

(1.32) L′′k,b =
1
2
(
k/t+ y/b2

)2 − y ∂
∂x
− 1

2
∂2

∂y2
+

1
b2

(
−1

2
+N

)
.

The effect of the above change of variables is that for every k ∈ Z, we should
evaluate the asymptotics as b→ +∞ of Ik,b,t given by

(1.33) Ik,b,t = b2
∫
R

Trs

[
exp

(
−tL′′k,b

)
((0, y) , (0, y))

]
dy.

In (1.33), exp
(
−tL′′k,b

)
((x, y) , (x′, y′)) denotes the smooth kernel on R2 which is

associated with the operator exp
(
−tL′′k,b

)
. As to the factor b2, it appears because

of Sb.
Clearly,

(1.34) b2Trs

[
exp

(
−tN/b2

)]
= b2

(
1− e−t/b

2
)
,

so that as b→ +∞,

(1.35) b2Trs

[
exp

(
−tN/b2

)]
→ t.

Put

(1.36) N = −y ∂
∂x
− 1

2
∂2

∂y2
.

By (1.33)-(1.36), we find that as b→ +∞,

(1.37) Ik,b,t → Ik,+∞,t = t exp
(
−k2/2t

) ∫
R

Tr [exp (−tN) ((0, y) , (0, y))] dy.

Now one verifies easily that

(1.38)
∫
R

Tr [exp (−tN) ((0, y) , (0, y))] dy =
t−3/2

√
2π

.

By (1.37), (1.38), we obtain,

(1.39) Ik,+∞,t =
exp

(
−k2/2t

)
√

2πt
,

which is exactly the contribution of k ∈ Z to Tr
[
exp

(
t
2
∂2

∂x2

)]
.

The same sort of argument can also be used to evaluate the full heat kernel for
exp

(
t
2
∂2

∂x2

)
on S1.

The operator L′b is the prototype of a hypoelliptic Laplacian. We have shown by
elementary arguments how and in what sense it interpolates between the standard
Laplacian and the generator of the geodesic flow. The remarkable fact is that the
full spectrum of the Laplacian can be recovered from the spectrum of its hypoelliptic
deformation, and the heat kernel on S1 can also be obtained by this procedure.

Later, we will describe the deformation of the Laplacian of a manifold to a
hypoelliptic Laplacian, that is in a geometric context. However, when taking the
obvious n-dimensional extension of what we just did, the above exactly describes
the deformation of the associated principal symbols. Needless to say, the proper
geometric context cannot be described just via the principal symbol, the full symbol
is obviously needed. This ultimately means that there is not only one hypoelliptic
Laplacian, there are as many as possible geometric deformations which one can
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possibly envision. This will be illustrated in the sequel in the two main classes
of examples, which correspond to deformations of de Rham Hodge theory, and of
Dolbeault Hodge theory. Moreover it will not be possible to make geometric sense
of a conjugation like the one in (1.11), because the considered vector fields will not
commute.

Finally, it is instructive to observe that we made two kinds of translations on
the variable y. One type of translations has been to replace y by y + 2iπbk for
k ∈ Z, or equivalently to change y into y + b ∂∂x . This imaginary translation has
allowed us to relate the hypoelliptic operator L′b to the elliptic operator Mb. The
other kind of translation has been the real translation y → y+ bk/t, to connect the
operator L′b with the geodesic flow. It should then be clear that the possibility to
make at the same time translations on y in the imaginary and in the real directions
is critical in explaining the fact that L′b interpolates between the Laplacian of S1

and the geodesic flow of S1.

1.3. The hypoelliptic Laplacian as a Hodge Laplacian. Now we will explain
in what sense the operator L′b is a Laplacian of Hodge type.

Let dS
1×R be the de Rham operator on S1 ×R. Then

(1.40) dS
1×R = dx

∂

∂x
+ dy

∂

∂y
.

The standard adjoint dS
1×R∗ of dS

1×R is given by

(1.41) dS
1×R∗ = −i ∂

∂x

∂

∂x
− i ∂

∂y

∂

∂y
.

Set

(1.42) H (y) =
y2

2
.

Let dS
1×R

T be the Witten twist of dS
1×R, i.e.

(1.43) dS
1×R

T = e−THdS
1×ReTH.

Then

(1.44) dS
1×R

T = dS
1×R + Tydy ∧ .

Let dS
1×R∗

T be the usual adjoint of dS
1×R

T , i.e.,

(1.45) dS
1×R∗

T = eTHdS
1×R∗e−TH.

Equivalently,

(1.46) dS
1×R∗

T = dS
1×R∗ + Tyi ∂

∂y
.

Let �S1×R
T be the corresponding Witten Laplacian [W82], i.e.,

(1.47) �S1×R
T =

[
dS

1×R
T , dS

1×R∗
T

]
.

In (1.47), [ ] is our notation for a supercommutator, which, in this case, is an
anticommutator. Then

(1.48)
1
2
�S1×R
T =

1
2

(
− ∂2

∂y2
+ T 2y2 − T

)
+ TN − 1

2
∂2

∂x2
.
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By (1.48), we get

(1.49) K√
T
−1

1
2
�S1×R
T K√T =

T

2

(
− ∂2

∂y2
+ y2 − 1

)
+ TN − 1

2
∂2

∂x2
.

If T = 1/b2, by comparing (1.12), (1.18) and (1.49), we get

(1.50) K−1√
T

1
2
�S1×R
T K√T =M′b.

Equation (1.50) suggests what should be done to write L′b as a Hodge like Lapla-
cian. Set

(1.51) L′′b = K−1
b L

′
bKb.

By (1.22), we obtain,

(1.52) L′′b =
1
2

(
− ∂2

∂y2
+
y2

b4
− 1
b2

)
+
N

b2
− y

b2
∂

∂x
.

Recall that Ub has been defined in (1.10). Set

dS
1×R

b = U−1
b2 d

S1×R
1/b2 Ub2 , dS

1×R∗
b = U−1

b2 d
S1×R∗
1/b2 Ub2 .(1.53)

By (1.40), (1.41), (1.44), (1.45), we get

dS
1×R

b = (dx− dy)
∂

∂x
+ dy

∂

∂y
+

1
b2
ydy,(1.54)

dS
1×R∗

b = −i ∂
∂x + ∂

∂y

∂

∂x
− i ∂

∂y

∂

∂y
+

1
b2
yi ∂

∂y
.

Then (1.11), (1.18), (1.21), (1.47), (1.50) or an easy direct computation show
that

(1.55)
1
2

[
dS

1×R
b , dS

1×R∗
b

]
= L′′b .

Let Ω·c
(
S1 ×R

)
be the vector space of smooth forms on S1 ×R with compact

support. Let r be the map (x, y)→ (x,−y). Let h be the symmetric bilinear form
on Ω·c

(
S1 ×R

)
,

(1.56) h (s, s′) =
∫
S1×R

〈r∗s, s′〉 dxdy.

In (1.56), 〈 〉 is the obvious scalar product on Λ·
(
T ∗
(
S1 ×R

))
. Then (1.54) shows

that dS
1×R∗

b is the formal adjoint of dS
1×R

b with respect to h.
Still dS

1×R
b has no obvious relation to the de Rham operator. However, observe

that

(1.57) exp
(
dyi ∂

∂x

)
dS

1×R
b exp

(
−dyi ∂

∂x

)
= dx

∂

∂x
+ dy

∂

∂y
+

1
b2
ydy,

which we can rewrite in the form,

(1.58) exp
(
dyi ∂

∂x

)
dS

1×R
b exp

(
−dyi ∂

∂x

)
= dS

1×R
1/b2 .

Set

(1.59) d
S1×R∗
b = exp

(
dyi ∂

∂x

)
dS

1×R∗
b exp

(
−dyi ∂

∂x

)
.
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By (1.54),

(1.60) d
S1×R∗
b = −i ∂

∂y

∂

∂x
− i ∂

∂y−
∂

∂x

∂

∂y
+
y

b2
i ∂

∂y−
∂

∂x
.

By (1.52), (1.55), and (1.58)-(1.60), we get

(1.61)
1
2

[
dS

1×R
1/b2 , d

S1×R∗
b

]
=

1
2

(
− ∂2

∂y2
+
y2

b4
− 1
b2

)
+

1
b2

(
N − dyi ∂

∂x

)
− y

b2
∂

∂x
.

Equations (1.54) and (1.61) should give ample matter to think about. First we
consider (1.54). Observe that(

dx− i ∂
∂x

)2

= −1,
(
dy + i ∂

∂y

)2

= 1,(1.62)

which shows that

(1.63)
(
dx− dy − i ∂

∂x + ∂
∂y

)2

= 0.

Equation (1.63) exactly says the operator dx − dy − i ∂
∂x + ∂

∂y
is nilpotent. This in

turn explains why there is no term ∂2

∂x2 in the right-hand side of (1.55).

Now we concentrate on the pair
(
dS

1×R
1/b2 , d

S1×R∗
b

)
. From (1.57), (1.58), we will

obtain an analogue of the bilinear form h. Indeed let hT(S1×R) be the bilinear form
on T

(
S1 ×R

)
= R⊕R which is given by the matrix,

(1.64) hT(S1×R) =
(

1 1
1 0

)
.

The corresponding bilinear form on T ∗
(
S1 ×R

)
, which we denote by hT

∗(S1×R),
is given by

(1.65) hT
∗(S1×R) =

(
0 1
1 −1

)
.

Then hT
∗(S1×R) induces a corresponding symmetric bilinear form hΛ·(T∗(S1×R))

on Λ·
(
T ∗
(
S1 ×R

))
.

Let h be the symmetric bilinear form on Ω
·c
(
S1 ×R

)
which is given by

(1.66) h (s, s′) =
∫
S1×R

hΛ·(T∗(S1×R)) (s (x,−y) , s′ (x, y)) dxdy.

Observe that in (1.66), the map r is made only to act on the function s (x, y)

without acting on the form part of s. Then d
S1×R∗
b is the formal adjoint of dS

1×R
1/b2

with respect to h.
The bilinear forms h and h are symmetric, but they are non local, in the sense

their construction involves the antipodal map r. Consider instead the matrix φ
acting on T

(
S1 ×R

)
,

(1.67) φ =
(

1 −1
1 0

)
,

and the corresponding bilinear form η on T
(
S1 ×R

)
,

(1.68) η (U, V ) = 〈U, φV 〉 .
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Then

(1.69) φ−1 =
(

0 1
−1 1

)
.

If we identify T
(
S1 ×R

)
and T ∗

(
S1 ×R

)
by φ, the corresponding bilinear form

η∗ on T ∗
(
S1 ×R

)
is given by

(1.70) η∗ (s, s′) =
〈
φ−1s, s′

〉
.

Then η∗ induces a nondegenerate bilinear form on Λ·
(
T ∗
(
S1 ×R

))
. If s, s′ ∈

Ω·c
(
S1 ×R

)
, set

(1.71) η (s, s′) =
∫
S1×R

η∗ (s, s′) dxdy.

Then one verifies that

(1.72) η
(
s, dS

1×R
1/b2 s′

)
= η

(
d
S1×R∗
b s, s′

)
.

Let ω be the symplectic form on S1 ×R,

(1.73) ω = dy ∧ dx.
Then observe that if U, V ∈ T

(
S1 ×R

)
,

(1.74) η (U, V ) = 〈π∗U, π∗V 〉+ ω (U, V ) .

2. Hodge theory and the Witten Laplacian

In this section, we briefly recall elementary results in Hodge theory. Also we
describe the Witten deformation of the classical Hodge Laplacian. Finally, we show
that on a symplectic manifold, up to a constant, the symplectic Witten Laplacian
is the Lie derivative operator associated with the corresponding Hamiltonian vector
field.

This section is organized as follows. In subsection 2.1, we recall known results
on Hodge theory and on the Witten Laplacian.

In subsection 2.2, we give a formula for the symplectic Witten Laplacian.

2.1. Classical Hodge theory and the Witten Laplacian. Let X be a compact
Riemannian manifold of dimension n, let gTX be the metric on TX, and let dvX
be the associated volume form. The metric gTX induces a corresponding scalar
product 〈 〉Λ·(T∗X) on Λ· (T ∗X).

Let
(
Ω· (X) , dX

)
be the de Rham complex on X. Let 〈 〉Ω·(X) be the scalar

product on Ω· (X) associated with gTX , i.e.,

(2.1) 〈s, s′〉Ω·(X) =
∫
X

〈s, s′〉Λ·(T∗X) dvX .

Let dX∗ be the formal adjoint of dX with respect to 〈 〉Ω·(X).
The Hodge Laplacian �X is given by

(2.2) �X =
[
dX , dX∗

]
.

The Hodge Laplacian �X is a second order elliptic self-adjoint nonnegative oper-
ator, whose principal symbol is |ξ|2. If ∆X is the Laplace-Beltrami operator, the
restriction of �X to smooth functions coincides with −∆X .



A SURVEY OF THE HYPOELLIPTIC LAPLACIAN 13

Let H = ker �X be the finite dimensional vector space of the harmonic forms.
The basic result of Hodge theory asserts that

(2.3) H ' H · (X,R) .

Now we briefly describe the Witten deformation [W82] of the above Hodge Lapla-
cian. Its purpose is to provide an interpolation between classical Hodge theory and
Morse theory. Let f : X → R be a smooth function. For T ≥ 0, as in (1.43), set

(2.4) dXT = e−TfdXeTf .

The complex
(
Ω· (X) , dXT

)
is canonically isomorphic to the complex

(
Ω· (X) , dX

)
.

Let dX∗T be the formal adjoint of dXT with respect to 〈 〉Ω·(X), so that

(2.5) dX∗T = eTfdX∗e−Tf .

The corresponding Witten Laplacian �X
T is given by

(2.6) �X
T =

[
dXT , d

X∗
T

]
.

The Laplacian �X
T has exactly the same properties as �X . In particular if

(2.7) HT = ker �X
T ,

then

(2.8) HT ' H · (X,R) .

Of course, for T = 0, �X
T coincides with �X , so that �X

T is a deformation of �X .
Clearly,

dXT = dX + Tdf∧, dX∗T = dX∗ + Ti∇f .(2.9)

Let e1, . . . , en be an orthonormal basis of TX, let e1, . . . , en be the corresponding
dual basis of T ∗X. From (2.9) we deduce that

(2.10) �X
T = �X + T 2 |df |2 + T

(
2
〈
∇TXei

∇f, ej
〉
eiiej

−∆TXf
)
.

An essentially equivalent construction is to keep dX fixed, and instead to consider
the adjoint of dX with respect to the L2 scalar product in (2.1), in which the volume
form dvX has been replaced by e−2TfdvX . The adjoint of dX is just dX∗2T and the
associated Laplacian is given by eTf�X

T e
−Tf .

Assume f to be a Morse function. Using (2.10), Witten showed in [W82] that
as T → +∞, most of the spectrum of �X

T tends to +∞, and the remaining finite
eigenvalues tend to 0. Some of these are exactly 0, and correspond to the harmonic
forms, and others are asymptotically small, decaying to 0 like e−cT , c > 0. Let F ·T
be the direct sum of eigenforms of �X

T for eigenvalues ≤ 1. Witten showed that as
T → +∞, F ·T localizes near the critical points of f . More precisely, F iT localizes
near the critical points of index i. Also Witten conjectured that as T → +∞, the
complex

(
F ·T , d

X
T

)
approximates in the proper sense a complex constructed from the

‘instantons’ which connect the critical points. These instantons are integral curves
of the gradient field ∇f . When ∇f is Morse-Smale, this complex was identified to
be the Morse-Smale complex associated with ∇f . In [HS85], Helffer and Sjöstrand
proved the conjecture of Witten. For another proof we refer to [BZ94].

The Witten deformation was used in Bismut-Zhang [BZ92, BZ94] to give a new
proof of the Cheeger-Müller theorem [C79, M78].

One of the main motivations given in [B05] for the introduction of the hypoel-
liptic Laplacian has been an attempt to extend the construction of the Witten
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Laplacian to the loop space LX of X. On LX there are many natural function-
als like the energy. If the Witten Laplacian associated with the energy existed, it
would interpolate between the Hodge Laplacian �LX of LX and the Morse theory
of the energy functional, whose critical points are precisely the closed geodesics.
The hypoelliptic Laplacian provides a semiclassical version of this interpolation.
For a review of these aspects of the hypoelliptic Laplacian, we refer the reader to
[B06, B08].

2.2. The symplectic Witten Laplacian. Let (M,ω) be a symplectic manifold
of dimension n. The nondegenerate bilinear form ω on TM induces an isomorphism
φ : TM → T ∗M , so that

(2.11) ω (U, V ) = 〈U, φV 〉 .

Let ω∗ be the nondegenerate bilinear form on T ∗M which corresponds to ω via the
canonical isomorphism φ. We still denote by ω∗ the associated bilinear form on
Λ· (T ∗M). The form ω determines a volume form dvM on M .

If α ∈ Λ· (T ∗M), set

(2.12) Lα = ω ∧ α.

Let Λ be the adjoint of L with respect to ω∗, so that

(2.13) ω∗ (Λs, s′) = ω∗ (s, Ls′) .

The operators L,Λ are the well-known Lefschetz operators. Let N be the num-
ber operator of Λ· (T ∗M), i.e. the operator which acts by multiplication by k on
Λk (T ∗M). Set

(2.14) H =
1
2

(N − n/2)

Then we have the well-known commutation relations

[H,L] = L, [H,Λ] = −Λ, [L,Λ] = 2H.(2.15)

Let d
M

be the formal adjoint of dM with respect to the bilinear form associated
with the symplectic form ω as in (1.71), (1.72), with η∗ replaced by ω∗ in (1.71).

Now we state the simple result in [B05, Theorem 2.2].

Proposition 2.1. The following identities hold:

d
M

= −
[
dM ,Λ

]
, dM = −

[
d
M
, L
]
,

[
dM , d

M
]

= 0.(2.16)

Proof. Using Darboux’s theorem, we may as well assume that locally, the form ω
has constant coefficients. Then (2.16) is elementary linear algebra. In particular
the last identity is just a reflection of the fact that ω vanishes on the diagonal. �

Let H : M → R be a smooth function. Let dMH be the twisted de Rham operator

(2.17) dMH = e−HdMe−H,

and let d
M

H be its symplectic adjoint, i.e.,

(2.18) d
M

H = eHd
M
e−H.

Then
[
dMH , d

M

H

]
is the symplectic Witten Laplacian associated with H.
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Let Y H be the Hamiltonian vector field associated with H, so that

(2.19) dH+ iYHω = 0.

Let LYH be the Lie derivative operator associated with Y H.
Now we state a simple formula established in [B08, eq. (2.34)].

Proposition 2.2. The following identity holds:

(2.20)
[
dMH , d

M

H

]
= −2LYH .

Proof. One verifies easily that

(2.21) d
M

2H = d
M − 2iYH ,

so that using (2.16), we get

(2.22)
[
dM , d

M

2H

]
= −2LYH .

By conjugating (2.22) by e−H and using the fact that Y H preserves H, we get
(2.22). �

Proposition 2.2 is quite interesting. Indeed remember that our ultimate goal is
to interpolate between the Hodge Laplacian �X of the Riemannian manifold X
and the generator LYH of the geodesic flow on the total space X ∗ of the cotangent
bundle of X. However, (2.20) indicates that LYH is itself a symplectic Witten
Laplacian. One possible construction of the hypoelliptic Laplacian consists in lin-
early interpolating between the scalar product of TX and the symplectic form of
X ∗. This point of view is explained in detail in [B05, section 2.12].We also refer to
equations (1.74) and (3.5) for a hint on how to do this.

3. The hypoelliptic Laplacian in de Rham theory

The purpose of this section is to construct the hypoelliptic Laplacian in de Rham
theory. This operator, which acts on the total space X ∗ of the cotangent bundle of
a Riemannian manifold X, depends on a parameter b > 0. Also we give arguments
showing that it should interpolate between the standard Hodge Laplacian of X and
the generator of the geodesic flow on X ∗.

This section is organized as follows. In subsection 3.1, we give a formula for the
operator dX

∗
.

In subsection 3.2, we introduce a symmetric bilinear form on Ω·c (X ∗), and we
obtain the formal adjoint d

X∗
of dX

∗
with respect to this form.

In subsection 3.3, given a Hamiltonian function H on X ∗, we obtain correspond-
ing symmetric bilinear forms, and we construct the adjoint of the Witten twist
dX
∗

H .
In subsection 3.4, we discuss the self-adjointness of our first order differential

operators.
In subsection 3.5, we given Weitzenböck formulas for our new Hodge like Lapla-

cians.
In subsection 3.6, when the function H is proportional to |p|2 /2, we show that

our new Laplacians are hypoelliptic.
In subsection 3.7, we show that b→ 0, the hypoelliptic Laplacian should converge

in the proper sense to the classical Hodge Laplacian of X.
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Finally, in subsection 3.8, we give arguments showing that as b → +∞, the
hypoelliptic Laplacian converges to the generator of the geodesic flow.

3.1. The de Rham operator on X ∗. Let X be a compact Riemannian manifold
of dimension n, let X ,X ∗ be the total spaces of the vector bundles TX, T ∗X over
X, and let π denote the projection from X or X ∗ on X. The metric gTX induces
an identification of the fibres TX and T ∗X, and a corresponding isomorphism of
X and X ∗.

Let ∇TX be the Levi-Civita connection on TX, and let RTX be its curvature.
Let ∇T∗X be the corresponding connection on T ∗X, and let RT

∗X be its curvature.
Let

(3.1) TX ∗ = π∗ (TX ⊕ T ∗X)

be the splitting of X ∗ which is associated with the connection ∇T∗X . In (3.1), TX
corresponds to the horizontal part of TX ∗, and T ∗X to the tangent bundle to the
fibres T ∗X.

From (3.1), we get the isomorphism,

(3.2) Λ· (T ∗X ∗) = π∗
(

Λ· (T ∗X) ⊗̂Λ̂· (TX)
)
.

In (3.2), Λ̂· (TX) is our notation for the exterior algebra of the fibre, the hat
permitting us to distinguish Λ̂· (TX) from the exterior algebra Λ· (TX). Of course
Λ· (TX) and Λ̂· (TX) are canonically isomorphic. Let ∇Λ·(T∗X∗) be the connection
on Λ· (T ∗X ∗) induced by ∇TX .

Let
(
Ω· (X ∗) , dX∗

)
be the de Rham complex of X ∗. Let I be the vector bundle

on X of smooth sections of Λ· (TX) along the fibre T ∗X. By (3.2), we get

(3.3) Ω· (X ∗) = Ω· (X, I) .

Let p be the tautological section of the fibre π∗T ∗X over X ∗. Using (3.2), we
may write dX

∗
in the form,

(3.4) dX
∗

= dV +∇I + i
R̂T∗Xp

.

In (3.4), dV is the de Rham operator along the fibre T ∗X, ∇I is the obvious
connection on I, and i

R̂T∗Xp
is the interior multiplication by the vertical vector

R̂T∗Xp. Of course RT
∗X is viewed as a 2-form on X, so that ultimately i

R̂T∗Xp

increases the total degree by 1.

3.2. A bilinear form on Ω·c (X ∗). Now we inspire ourselves from the arguments
which were given in subsection 1.3. Let Ω·c (X ∗) be the vector space of smooth
forms on X ∗ which have compact support. Let ω be the symplectic form of X ∗.
On TX ∗, let η be the nondegenerate bilinear form,

(3.5) η (U, V ) = 〈π∗U, π∗V 〉+ ω (U, V ) .

The isomorphism φ : TX ∗ → T ∗X ∗ associated to η is given by

(3.6) φ =
(
gTX −1|T∗X
1|TX 0

)
.

Equation (3.5) should be compared with equation (1.74), and equation (3.6) should
be compared with equation (1.67).
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The volume form on X ∗ associated to η is exactly the symplectic volume form
dvX∗ . Let d

X∗
be the formal adjoint of dX

∗
with respect to the bilinear form η on

Ω·c (X ∗), which one obtains as in (1.71) from (3.5), (3.6). Of course, we use the
same conventions as in subsection 1.3 to define the formal adjoint, and we use in
particular equation (1.72).

Let e1, . . . , en be an orthonormal basis of TX, let e1, . . . , en be the corresponding
dual basis of T ∗X. Recall that TX ∗ = π∗ (TX ⊕ T ∗X). We denote by ê1, . . . , ên

the basis of the vertical fibre T ∗X in TX ∗, and by ê1, . . . , ên the corresponding
dual basis.

Set

(3.7) RT
∗Xp∧ =

1
2
ibeiibejRT

∗X (ei, ej) p ∧ .

In (3.7), RT
∗X (ei, ej) p is viewed as a section of T ∗X, which lifts to a 1-form on

X ∗. Therefore RT
∗Xp decreases the total degree by 1.

We now have the result established in [B05, Proposition 2.10].

Proposition 3.1. The following identity holds:

(3.8) d
X∗

= −ibei∇TX
∗

ei
+ iei∇bei +RT

∗Xp ∧ −ibei∇bei .

3.3. A Hamiltonian function. Let H : X ∗ → R be a smooth function. Let Y H

be the associated Hamiltonian vector field, so that dH + iYHω = 0.We denote by
∇̂VH the fibrewise gradient field of H.

Definition 3.2. Set

dX
∗

H = e−HdX
∗
eH, d

X∗

H = eHd
X∗
e−H.(3.9)

Observe that d
X∗

H is the adjoint of dX
∗

H with respect to η. Also, if s, s′ ∈ Ω·c (X ∗),
put

(3.10) ηH (s, s′) =
∫
X∗

η∗ (s, s′) e−2HdvX∗ .

Then d
X∗

2H is the adjoint of dX
∗

with respect to ηH.

Definition 3.3. Set

AH =
1
2

(
d
X∗

2H + dX
∗
)
, AH =

1
2

(
d
X∗

H + dX
∗

H

)
.(3.11)

Then

(3.12) AH = e−HAHe
H.

Moreover,

(3.13) A2
H =

1
4

[
dX
∗
, d
X∗

2H

]
.

We have the result established in [B05, Proposition 2.18].
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Proposition 3.4. The following identities hold:

AH =
1
2
(
ei − ibei

)
∇Λ·(T∗X∗)
ei

+
1
2

(êi + iei−bei)∇bei +
1
2

(
RT
∗Xp ∧+i

R̂T∗Xp

)
+ ibei∇eiH+ ibei−ei

∇beiH,
(3.14)

AH =
1
2
(
ei − ibei

)
∇Λ·(T∗X∗)
ei

+
1
2

(êi + iei−bei)∇bei +
1
2

(
RT
∗Xp ∧+i

R̂T∗Xp

)
+

1
2
(
ei + ibei

)
∇eiH+

1
2

(êi + ibei−ei
)∇beiH.

Set

(3.15) µ0 = êi ∧ iei
.

Put

(3.16) A′H = e−µ0AHe
µ0 .

The proper interpretation for (3.16) can be guessed from (1.57)-(1.59). The operator
A′H will also be considered in the sequel.

3.4. A self-adjointness property. The bilinear form ηH on Ω· (X ∗) is in general
not symmetric. However, we will here follow the arguments in (1.64)-(1.67).

Let hTX
∗

be the bilinear form on TX ∗ = π∗ (TX ⊕ T ∗X) which is given by

(3.17) hTX
∗

=
(
gTX 1|T∗X
1|TX 0

)
.

Let p : TX ∗ → T ∗X be the projection with respect to the above splitting of TX ∗.
If U ∈ TX ∗, then

(3.18) hTX
∗

(U,U) = 〈π∗U, π∗U〉+ 2 〈π∗U, pU〉 .
Then the volume form on X ∗ which is attached to hTX

∗
is the symplectic volume

form dvX∗ . Let hΛ·(T∗X ) be the corresponding symmetric form on Λ· (T ∗X ∗).
Let r : (x, p)→ (x,−p) be the obvious involution of X ∗.

Definition 3.5. Let h be the symmetric form on Ω·c (X ∗),

(3.19) h (s, s′) =
∫
X∗

hΛ·(T∗X∗) (s ◦ r, s′) dvX∗ .

As in (1.66), in (3.19), the change of variable p → −p is not made on the form
part of s. Set

(3.20) hH (s, s′) = h
(
e−2Hs, s′

)
.

If H is r-invariant, then hH is a symmetric form.
Let gTT

∗X be the natural metric on TX ∗ which is associated with the splitting
of TX ∗, and let g be the scalar product on Ω·c (X ∗) associated to gTT

∗X . Let h be
the symmetric form on Ω·c (X ∗),
(3.21) h (s, s′) = g (r∗s, s′) .

The symmetric forms in (3.19) and (3.21) have signature (∞,∞). IfH is r-invariant,
the same property holds for the symmetric form in (3.20) .

We state a result established in [B05, Theorems 2.21 and 2.30].

Theorem 3.6. If H is r-invariant, AH is hH-symmetric, AH is h-symmetric, and
A′H is h-symmetric.
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3.5. The Weitzenböck formula. We give the Weitzenböck formula established
in [B05, Theorem 3.3].

Theorem 3.7. The following identities hold:

A2
H =

1
4

(
−∆V − 1

2
〈
RTX (ei, ej) ek, el

〉
eiejibek ibe` + 2Ld∇VH

)
− 1

2
LYH ,(3.22)

A2
H =

1
4

(
−∆V − 1

2
〈
RTX (ei, ej) ek, el

〉
eiejibek ibe` +

∣∣∇VH∣∣2
−∆VH+ 2 (∇bei∇bejH) êiibej + 2

(
∇bei∇ejH

)
ejibei

)
− 1

2
LYH .

3.6. The hypoelliptic Laplacian. Let N the operator counting the degree in
Λ̂· (TX). For c ∈ R, set

(3.23) Hc = c
|p|2

2
.

Let u ∈ R be an extra variable. The following result was established in [B05,
Theorems 3.4 and 3.6].

Theorem 3.8. The following identities hold:

A2
Hc =

1
4

(
−∆V + 2cLbp − 1

2
〈
RTX (ei, ej) ek, el

〉
eiejibek ibe`

)
− 1

2
LYHc ,

A2
Hc =

1
4

(
−∆V + c2 |p|2 + c (2N − n)− 1

2
〈
RTX (ei, ej) ek, el

〉
eiejibek ibe`

)
(3.24)

− 1
2
LYHc .

For c 6= 0, the operators ∂
∂u −A

2
Hc , ∂∂u − A2

Hc are hypoelliptic.

Remark 3.9. Of course (3.24) follows from theorem 3.7. Hypoellipticity follows
from Hörmander [Hö67]. Any of the operators in theorem 3.8 is called a hypoelliptic
Laplacian.

3.7. An interpolation property: the limit b→ 0 and classical Hodge the-
ory. In the sequel, we take b > 0, and we set H = |p|2 /2, c = 1/b2.

For b > 0, let Kb be the map s (x, p)→ s (x, bp). By [B05, Theorem 3.8], we get

(3.25) Kb2A′2HcK−1
b =

α

b2
+
β

b
+ γ,

with α, β given by

α =
1
2

(
−∆V + |p|2 − n

)
+N, β = −∇Λ·(T∗X∗)

YH
.(3.26)

Observe that α is a standard self-adjoint harmonic oscillator. Also kerα is spanned
by the function exp

(
− |p|2 /2

)
.

We identify Ω· (X) to kerα by the map s→ π∗s exp
(
− |p|2 /2

)
/πn/4. Let P be

the standard L2 -projector from Ω· (X ∗) on kerα. Note that β maps kerα into its
L2 orthogonal.
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Assume for the moment that α, β are endomorphisms of a finite dimensional
vector space E, that α is semisimple, so that

(3.27) E = ker α⊕ Imα.

Let Q be the projector from E on ker α with respect to the splitting (3.27). We
also assume that β maps ker α into Imα.

Let u ∈ End (E). We write u as a matrix with respect to the splitting (3.27).

(3.28) u =
[
A B
C D

]
.

Suppose u to be invertible. Now we give a matrix expression for the inverse u−1 of
u under the assumption that D is invertible. We will assume implicitly that other
matrix expressions are invertible as well. We have the formula,
(3.29)

u−1 =

[ (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 +D−1C

(
A−BD−1C

)−1
BD−1

]
.

Let α−1 be the inverse of α restricted to Imα. By (3.29), when λ ∈ C, we get

(3.30)
(
λ− α

b2
− β

b
− γ
)−1

=
[(
λ−QγQ+Qβα−1βQ

)−1 +O (b) O (b)
O (b) O

(
b2
)] .

By (3.30) we find that as b→ 0,

(3.31)
(
λ− α

b2
− β

b
− γ
)−1

= Q
(
λ−Q

(
γ − βα−1β

)
Q
)−1

Q+O (b) .

The operator appearing in the limit b→ 0 is Q
(
γ − βα−1β

)
Q acting on ker α.

Passing from the above finite dimensional argument to an infinite dimensional
considered in (3.25) is a wild jump. However, this is the sort of situation one
encounters typically in adiabatic limit problems in the theory of Quillen metrics
[BL91, BeB]. The major difference is that the operators considered in these refer-
ences are elliptic and self-adjoint, which is not the case here.

We have given enough motivation for studying the operator P
(
γ − βα−1β

)
P in

the context of (3.25).
In [B05, Theorem 3.14], the following result is established.

Theorem 3.10. The following identity holds:

(3.32) P
(
γ − βα−1β

)
P =

1
2
�X .

Remark 3.11. Theorem 3.10 gives an argument in favour of the fact that A2
Hc is a

deformation of �X/4.
In joint work with Lebeau [BL08], the hard analysis involved in the convergence

as b → 0 of the resolvent of 2A′2Hc to the resolvent of 1
2�X is carried out in detail.

The convergence is also valid for the traces of the corresponding heat kernels, as
well as for the spectrum of these operators.
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3.8. An interpolation property: the limit b→ +∞ and the geodesic flow.
We still take H = |p|2 /2, c = 1/b2. Let rb be the map (x, p) → (x, bp). Using
(3.22), we get

(3.33) r∗b22A2
Hcr∗1/b2 =

1
2
|p|2 − LYH +O (1/b) .

The dynamics associated to the right-hand side of (3.33) is the geodesic flow.
From (3.33), we deduce that when b → +∞, the trace of an operator like

exp
(
−A2
Hc

)
should localize around closed geodesics.

4. The hypoelliptic Dirac operator

The purpose of this section is to briefly develop the construction of the hy-
poelliptic Dirac operator obtained in [B07] in the case of Kähler manifolds. This
deformation of the classical elliptic Dirac operator is not a generalization of what
was done in section 3.

This section is organized as follows. In subsection 4.1, we discuss another method
to obtain a Laplacian which looks like the hypoelliptic Laplacian of section 3.

In subsection 4.2, we construct the hypoelliptic Dirac operator, which depends
again on a parameter b > 0.

In subsection 4.3, by squaring our Dirac operator, we get our new hypoelliptic
Laplacian.

In subsection 4.4, we give arguments in favour of the fact that as b → 0, our
hypoelliptic Laplacian converges in the proper sense to the classical elliptic Hodge
Dolbeault Laplacian of X.

4.1. Another approach to hypoellipticity. Let
(
X, gTX

)
be a compact Rie-

mannian manifold, let X be the total space of TX. The generic element of X will
be denoted (x, Y ). We will now try to give another approach to the construction
of a second order hypoelliptic operator on X .

Let Y H be the generator of the geodesic flow over X , and let LYH be the corre-
sponding Lie derivative operator. Then

(4.1) LYH =
[
dX , iYH

]
.

On the other hand, one would would like to obtain as a square of a Dirac operator
an operator L looking like the sum of a harmonic oscillator in the variable Y and
of ∇YH , i.e.,

(4.2) L =
1
2

(
−∆V + |Y |2 − n

)
+∇YH .

We still write dX as in (3.4), i.e.,

(4.3) dX = dV +∇I + i
R̂T XY

.

Equation (4.3) expresses dX as a superconnection on I in the sense of Quillen [Q85a].
For ∇YH to appear in (4.2), one should think of replacing dX by dX +iYH . How-

ever, how to obtain the full operator L is not clear, not to speak of the possibility
of producing a deformation of the classical elliptic Dirac operator or of its square.
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4.2. The hypoelliptic Dirac operator. To explain the construction of the hy-
poelliptic deformation of the Dirac operator which is carried out in [B07], we will
work in the context of complex Kähler manifolds.

Let
(
X, gTX

)
be a compact complex Kähler manifold of real dimension n. Let

TX be the holomorphic tangent bundle to X, and let TRX be the corresponding
real tangent bundle. Let

(
E, gE

)
be a holomorphic Hermitian vector bundle on X.

We denote by ∇TX ,∇E the holomorphic Hermitian connections on TX,E, and by
RTX , RE their curvatures. Let ∇Λ·(T∗X⊗E) be the corresponding connection on
Λ·
(
T ∗X

)
⊗ E.

Let
(

Ω(0,·) (X,E) , ∂
X
)

be the Dolbeault complex of smooth antiholomorphic
forms on X with coefficients in E. The cohomology of this complex is denoted
H(0,·) (X,E).

Let 〈 〉 be the L2 Hermitian product on Ω(0,·) (X,E) which is associated with
gTX , gE . Let ∂

X∗
be the formal adjoint of ∂

X
with respect to 〈 〉. Set

(4.4) DX = ∂
X

+ ∂
X∗
.

If u ∈ TX, let u∗ ∈ T ∗X corresponding to u by gTX . Recall that Λ·
(
T ∗X

)
is a(

TRX, g
TRX

)
Clifford algebra. Namely if u ∈ TX, set

c (u) =
√

2u∗∧, c (u) = −
√

2iu.(4.5)

We extend the definition of c to TRX ⊗R C by linearity. If U, V ∈ TRX, then

(4.6) c (U) c (V ) + c (V ) c (U) = −2 〈U, V 〉 .

By [Hi74],
√

2DX is a Dirac operator. Namely, if e1, . . . , en is an orthonormal
basis of TRX, then

(4.7)
√

2DX = c (ei)∇
Λ·(T∗X)⊗E
ei .

Let π : X → X be the total space of TX, with fibre T̂X. The hat on T̂X will
allow us to distinguish the fibre T̂X from the tangent bundle to X. Then X is a
also a complex manifold. Let i : X → X be the embedding of X into X as the zero
section of T̂X. Using the connection ∇TX , we have the identification of smooth
vector bundles,

(4.8) TX ' π∗
(
TX ⊕ T̂X

)
.

From (4.8), we get the smooth identification,

(4.9) Λ·
(
T ∗X

)
= π∗

(
Λ·
(
T ∗X

)
⊗̂Λ·

(
T̂ ∗X

))
.

Set

(4.10) F = π∗ (Λ· (T ∗X)⊗ E) .

In (4.10), Λ· (T ∗X) is the holomorphic exterior algebra of the base X. However,
since TX and T̂X are isomorphic, Λ· (T ∗X) will also be considered as the holo-
morphic exterior algebra of the fibre T̂X.

Let
(

Ω(0,·) (X , F ) , ∂
X)

be the Dolbeault complex of smooth antiholomorphic
forms on X with coefficients in F .
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Let I be the vector bundle on X of the smooth sections of π∗
(

Λ·
(
T̂ ∗X

)
⊗ E

)
along the fibre T̂X. By proceeding as in (3.4) and using (4.9), we get

(4.11) ∂
X

= ∇I′′ + ∂
V
.

In (4.11), ∂
V

is the Dolbeault operator along the fibre T̂X, and∇I′′ is the horizontal
part of ∂

X
. Note that contrary to what happens in (3.4), there is no extra term

in (4.11). Writing ∂
X

in the form (4.11) emphasizes the fact that ∂
X

can also be
viewed as a holomorphic superconnection on I.

Let y be the tautological holomorphic section of π∗T̂X over X , and let Y = y+y
be the corresponding section of π∗T̂RX. Of course T̂X and TX are canonically
isomorphic. In particular the operator iy acts on π∗Λ· (T ∗X). The Koszul complex
(OXπ∗Λ· (T ∗X) , iy) provides a resolution of the sheaf i∗OX . More generally the
Koszul complex (OX (F ) , iy) provides a resolution of i∗OX (E).

Observe that

(4.12)
(
∂
X

+ iy

)2

= 0.

Equation (4.12) reflects the fact that
(

Ω· (X ) , ∂
X

+ iy

)
is the Dolbeault resolution

of the Koszul complex we just considered.
For b > 0, set

(4.13) A′′b = ∂
X

+ iy/b
2.

By (4.11), (4.13), we get

(4.14) A′′b = ∇I′′ + ∂
V

+ iy/b
2.

Then A′′b can be viewed as an operator acting on Ω(0,·) (X , F ). By (4.12),

(4.15) A′′2b = 0.

Let ∂
V ∗

be the fibrewise formal adjoint of ∂
V

. Now we will take the ‘adjoint’ of
A′′b partly in the sense of superconnections. Namely set

(4.16) A′b = ∇I′ + ∂
V ∗

+ iy/b
2.

Then A′b also acts on Ω(0,·) (X , F ). Indeed ∇I′ increases the degree in Λ· (T ∗X) by
1, and iy decreases the degree in Λ·

(
T ∗X

)
by 1. Moreover,

(4.17) A′2b = 0.

Set

(4.18) Ab = A′′b +A′b.

When making instead y = 0, we will denote by A′′, A′, A the corresponding oper-
ators. In particular, when identifying Y ∈ T̂RX to the corresponding section of
TRX, we get

(4.19) Ab = A+ iY /b
2.

Also A is a superconnection on I.
Observe that the principal symbol of A or of Ab is exactly iξH ∧+ic

(
ξV
)
/
√

2,
where ξH , ξV are the horizontal and vertical components of ξ ∈ T ∗RX . In particular
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the principal symbol of A2
b is just

∣∣ξV ∣∣2 /2. Adding iY has no effect on the principle
symbol of A2

b . However,

(4.20) A2
b = A2 +

[
A, iY /b

2
]
.

Now in [A, iY ] appears the critical operator ∇I
Y , which makes the operator A2

b

hypoelliptic.
The operator A2

b is still not the right one, since it does not contain a positive
multiple of |Y |2 /2, which is needed to produce a harmonic oscillator in the fibre
direction.

So we slightly modify the above construction. Let ωX be the Kähler form asso-
ciated with the metric gTX . If J is the complex structure of TRX, if U, V ∈ TRX,
then

(4.21) ωX (U, V ) = 〈U, JV 〉 .

We will view ωX as a section of Λ· (T ∗X) ⊗̂Λ·
(
T ∗X

)
.

Put

B′′b = A′′b , B′b = eiω
X

A′be
−iωX

, Bb = B′′b +B′b.(4.22)

Since ωX is closed, we get the formula,

(4.23) B′b = A′b + y∗ ∧ /b2.

Of course, we still have

B′′2b = 0, B′2b = 0.(4.24)

However, the effect of the addition of y∗ ∧ /b2 in (4.23) is precisely to produce the
desired |Y |2 /2b4 in B2

b . We will give a formula for a conjugate of the operator B2
b .

4.3. The hypoelliptic Laplacian in Dolbeault theory. If Û ∈ T̂RX, we define

c
(
Û
)

as in (4.5). Then c
(
Û
)

acts on Λ·
(
T̂ ∗X

)
. If u ∈ TX, set

ĉ′ (u) =
√

2iu, ĉ′ (u) =
√

2 (u∗ ∧+iu) .(4.25)

We extend ĉ′ by linearity into a linear map from TRX⊗RC into End (Λ· (T ∗RX))⊗R

C, which is such that if U, V ∈ TRX,

(4.26) ĉ′ (U) ĉ′ (V ) + ĉ′ (V ) ĉ′ (U) = 2 〈U, V 〉 .

Of course, if Û ∈ T̂RX,V ∈ TRX,

(4.27)
[
c
(
Û
)
, ĉ′ (V )

]
= 0.

The curvature RE is a section of Λ2 (T ∗RX) ⊗ End (E), and RTX a section of
Λ2 (T ∗RX)⊗End (TX). The following result was established in [B07, Theorem 3.8].

Theorem 4.1. The following identity holds:

(4.28)

A2
b =

1
2

(
−∆V +

|Y |2

b4
+

1
b2
c (êi) ĉ′ (ei)

)
−∇

R̂T XY
+

1
4
〈
RTXei, ej

〉
c (êi) c (êj)

+
1
2

Tr
[
RTX

]
+

1
b2
∇FY +RE .
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Let L be the operator α→ ωX ∧α, and let Λ be its adjoint as in subsection 2.2.
Set

(4.29) Cb = exp (iΛ)Bb exp (−iΛ) .

The operators ∇I′′,∇I′ increase the horizontal degree by 1. Let ∇I′′∗,∇I′∗ be their
formal adjoints in the classical L2 sense. These operators decrease the horizontal
degree by 1.

Now we have the result of [B07, Theorem 3.6].

Theorem 4.2. The following identity holds:

(4.30) Cb = ∇I′′ +∇I′ +∇I′′∗ −∇I′∗ + ∂
V

+ iy/b
2 + ∂

V ∗
+ y∗ ∧ /b2.

Remark 4.3. Using (4.30), the fact that the horizontal part of the principal symbol
of C2

b is nilpotent follows from well-known identities in Kähler geometry.

4.4. The limit as b→ 0. Let Kb be the map s (x, Y )→ s (x, bY ). Set

(4.31) Db = KbCbK
−1
b .

By (4.30), we get

(4.32) Db = ∇I′′ +∇I′ +∇I′′∗ −∇I′∗ +
1
b

(
∂
V

+ iy + ∂
V ∗

+ y∗∧
)
.

Let ω̂X ,V be the Kähler form of the fibre T̂X. Since Λ·
(
T̂ ∗X

)
has been identified

to Λ· (T ∗X), ω̂X ,V will be viewed as a section of Λ· (T ∗X) ⊗̂Λ·
(
T̂ ∗X

)
.

By [B90, Proposition 1.5 and Theorem 1.6], the fibrewise kernel of the operator
∂
V

+ iy + ∂
V ∗

+ y∗∧ is 1-dimensional and spanned by β = exp
(
iω̂X ,V − |Y |2 /2

)
.

We will embed Ω(0,·) (X,E) into Ω(0,·) (X , F ) by the embedding α → π∗α ∧ β.
Let P be the orthogonal projection operator from Ω(0,·) (X , F ) on Ω(0,·) (X,E).

Set

(4.33) E = ∇I′′ +∇I′ +∇I′′∗ −∇I′∗.

Let us pretend for the moment Ω(0,·) (X , F ) to be finite dimensional. Elementary
linear algebra shows that under the proper conditions, as b→ 0,

(4.34)
(
λ−D−1

b

)−1 → P (λ− PEP )−1
P.

The critical result which was established in [B07, Theorem 3.12] is as follows.

Theorem 4.4. The following identity holds:

(4.35) PEP = ∂
X

+ ∂
X∗
.

Proof. Let NΛ·(T∗X), N
Λ·
„
T̂∗X

«
be the number operators of Λ· (T ∗X) ,Λ·

(
T̂ ∗X

)
.

Set

(4.36) N = NΛ·(T∗X) −N
Λ·
„
T̂∗X

«
.

Then Ω(0,·) (X,E) is of degree 0 with respect to N . The operators ∇I′,∇I′∗ are of
degree +1 and −1 with respect to N , so that they disappear under the compression
by P . The proof of our theorem is completed. �
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Remark 4.5. Theorem 4.4 is the main algebraic argument which justifies that when
b → 0, the operator Db is indeed a deformation of the Dirac operator DX . This
result is intimately related with theorem 3.10. Indeed as explained in [B05, Propo-
sition 2.41] there is a corresponding version of theorem 4.4 in the context of de
Rham theory. Conversely, by squaring (4.32), we see that the operator D2

b can be
written in the form (3.25). In [B07, Theorem 1.14], an analogue of Theorem 3.10
is proved. One of the proofs consists simply into squaring (4.32) and identifying
properly the various terms.
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Études Sci. Publ. Math., (74):ii+298 pp. (1992), 1991.
[BL08] J.-M. Bismut and G. Lebeau. The hypoelliptic Laplacian and Ray-Singer metrics, volume

AM-167 of Annals of Mathematics Studies. Princeton University Press, Princeton, 2008.
[BZ92] J.-M. Bismut and W. Zhang. An extension of a theorem by Cheeger and Müller.
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[Hö67] L. Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147–171,

1967.

[K34] A. Kolmogoroff. Zufällige Bewegungen (zur Theorie der Brownschen Bewegung). Ann. of
Math. (2), 35(1):116–117, 1934.

[M78] W. Müller. Analytic torsion and R-torsion of Riemannian manifolds. Adv. in Math.,
28(3):233–305, 1978.

[Q85a] D. Quillen. Superconnections and the Chern character. Topology, 24(1):89–95, 1985.

[Q85b] D. Quillen. Determinants of Cauchy-Riemann operators on Riemann surfaces. Functional
Anal. Appl., 19(1):31–34, 1985.

[RS71] D. B. Ray and I. M. Singer. R-torsion and the Laplacian on Riemannian manifolds. Adv.

Math., 7:145–210, 1971.
[W82] E. Witten. Supersymmetry and Morse theory. J. Differential Geom., 17(4):661–692

(1983), 1982.
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