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Summary. Let i: M'> M be an immersion of complex manifolds, and let
(&, v) be a complex of holomorphic Hermitian vector bundles on M which
provides a projective resolution of the sheaf of sections of a holomorphic
vector bundle # on M’. We study the convergence as u— + oo of a class
of superconnection currents w, introduced by Quillen, and we calculate the
limit. Microlocal estimates of the speed of convergence are also given.
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The purpose of this paper is to study various properties of superconnection
currents in relation with complex immersions.

Let us recall that Quillen [Q] introduced superconnections on Z, graded
vector bundles to produce non trivial representatives of the Chern character
of a difference bundle. In fact, let E=E, @ E_ be a Z, graded Hermitian vector
bundle on a manifold B and let L be a smooth section of Hom(E ,, E _) which
is invertible on an open set U of M. Quillen introduced in [Q] a family of
differential forms (w,),.x, Which are closed, represent in cohomology the Chern
character of E, — E _ and have the following properties:

— g is a usual Chern-Weil representative of ch(E, —E _).
— Asu— + o0, w, decays exponentially fast on U, and tends to exhibit Gaussian
like concentration near the closed set “U.

In [Q], Quillen raised tha question of describing precisely the limit — if
it exists — of the current w, as u — + 0.

In [MaQ], Mathai and Quillen applied Quillen’s formalism to the case of
a manifold M considered as the zero section of a Hermitian vector bundle
F. If yeF acts by Clifford multiplication on the spinors of F, then M is exactly
the set where this action is non invertible. In this case, Mathai and Quillen
[MaQ, Theorem 4.5] produced various Gaussian shaped differential forms on
the total space of F to represent canonically Thom forms on F.

In [B1], we used superconnections in an infinite dimensional context to
give a heat equation proof of the families Index Theorem of Atiyah-Singer
[AS].

In their proof of the families index Theorem, Berline and Vergne [BeV2]
considered the case where the linear map LeHom(E,, E_) has a kernel and
a cokernel which are vector bundles. They proved that as u — + oo, the Quillen
forms w, converge to Chern character forms in Chern-Weil theory for the differ-
ence of the kernel and the cokernel.

In this paper, we consider an immersion of complex manifolds i: M’ — M,
a complex vector bundle # on M’, and a projective resolution of the sheaf
i Oy () by complex vector bundles &, ..., £, on M, so that we have an exact
sequence of sheaves

O— Oy (Em) -+ Op(E0) — 1y Opg (1) —0.

We equip &, ..., &, with Hermitian metrics. We denote by v* the adjoint
of the chain map v, and we apply Quillen’s superconnection formalism to the

Z graded vector bundle ¢=@ ¢, equipped with the map V=v+v* We then
0

prove in Theorem 3.2 that as u — + oo, the Quillen’s superconnection currents
w, have a limit w,, which is a current concentrated on M’, and we calculate
the limit in terms of integrals of Gaussian shaped differential forms on the
normal bundle N to M’'. When the metrics on &, ..., &, verify an assumption
of compatibility with metrics on N and # — this is assumption (A) in Sect. 1c¢)
— the localized forms are exactly the forms of Mathai and Quillen [MaQ].
In this case, the limit current w,, can be explicitly calculated using Chern-Weil
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representatives of Td ™ '(N) ch(n). Part of the calculation is based on “extraordi-
nary cancellations”, which are a finite dimensional counterpart to the well
known infinite dimensional analogue in index theory.

We here make several comments:
— There is an obvious C* analogue of our result. Here, the local uniqueness
of resolutions (see Serre [S, IV, Appendix 1], Eilenberg [E, Theorem 8]) makes
that the complex (&, v) does not degenerate too fast near M’. In a C* context,
this should have to be introduced as a supplementary hypothesis.
— In earlier joint work with Gillet and Soulé¢ [BGS1], we studied in detail
Bott-Chern forms [BoC] associated with acyclic complexes of Hermitian vector
bundles. In this case M’ is empty, and w, vanishes. In [BGS1], we constructed
a form T'(&) which is a solution of the equation.

JOT (&)= —w, ©.1)

and we proved that T(&) was the “unique” solution of (0.1) in a restricted
class of objects.
The obvious analogue of (0.1) is in general

JoT(E)=w,, —w,. 0.2)

In later work with Gillet and Soulé [BGS4], we will construct a current
T(¢) which solves Eq.(0.2) by using the superconnection formalism. As in
[BGS1], this current is obtained by a zéta function construction. To do this
construction, we need to have a precise control of the speed of convergence
of w, to w,, (and we also study in this relation more general currents), the
norm of w, —w, (in the adequate Sobolev space) having to be dominated by

-‘;w. This is why the control of the speed of convergence plays such an important
u
role.

— For later applications to intersection theory in a related joint work with
Gillet and Soulé [BGS5], the wave front set of the considered currents plays
an important role. Currents with a given wave front set have a natural topology
(see Hormander [H, Chap. VIII]). In this work, we prove that w, converges
to w, in the class of currents whose wave front set is included in N¥%, and
we also study related currents in the same way.

Our paper is organized as follows. In Sect. 1, we introduce the complex
(&, v) on M, the vector bundle # on M’, and we identify the homology of the
complex (&, v)y with the Koszul complex AN* ®#. Assumption (A4) is also
described.

In Sect. 2, we give a unified approach to the double transgression formulas
of Bott-Chern [BoC], Donaldson [D] and [BGS1]. We essentially prove that
the formulas of Bott-Chern [BoC] have an analogue for superconnections. From
such formulas, we derive in particular the formulas of [BGS1], where Bott-Chern
forms associated with acyclic complexes were constructed.

In Sect. 3, we prove our main result concerning the convergence and the
speed of convergence of the currents w,. In Sect. 4, we establish similar results
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for other currents which were considered in Sect. 2. The results of Sect. 4 will
be of essential importance in [BGS4, 5] to construct Bott-Chern singular cur-
rents.

In Sect. 5, we restrict the complex (&, v) considered in the previous sections
to a submanifold M, which may have non transversal intersection with the
manifold M'. In this more general case, under adequate assumptions on the
various metrics, the explicit computation of the limit current uses a fundamental
property of the Berezinian in supergeometry [M, p. 166].

Part of this paper is quite technical since we need precise estimates to control
speeds of convergence, wave front sets, or more simply because we have to
use dominated convergence. Also rather complicate algebraic identities are
proved in the course of the proofs, which account for the simplicity of the
final answers.

The results contained in this paper were anounced in [B2].

Acknowledgements. 1 acknowledge helpful discussions with A. Beauville, H. Gillet and C. Soulé on
the content of this paper. Also I am indebted to a referee for very helpful comments.

I. Complex immersions and resolutions

In this Section, we introduce our basic datas which are:

® An immersion of complex manifolds M’ — M.

® A holomorphic vector bundle # on M".

@ A projective resolution of the sheaf of holomorphic sections of # by a chain
complex of holomorphic vector bundles (&, v) on M.

@ A submersion of complex manifolds n: M — B which restricts to a submersion
n: M'— B.

This last data is useful since we ultimately deal with integrals along the
fibers of 7. However the reader way well assume that B is reduced to a point.

Also in Sect. 1¢, we introduce assumption (A4), which is a compatibility
assumption for metrics on the vector bundles £, # and on the normal bundle
Nto M in M.

This Section is organized as follows. In (a) we introduce our main assump-
tions and notations. In (b), we relate the homology of (&, v) to the Koszul
complex of N. In (c), we introduce Hermitian metrics on our vector bundles.
Finally in (d), we describe the holomorphic Hermitian connection on the homol-
ogy of the complex (&, v),y-.

a. Assumptions and notations

Letl, I, 1,, ..., I, be nonnegative integers such that ;<I, j=1, ..., n.
Let M be a compact connected complex manifold of complex dimension

I+1. Let M'=( ) M be a finite union of compact connected complex submani-
1

folds of M such that if j*j, M;nM}=0. For 1<j<n, we assume that M;

has complex dimension [;+1'. Let i be the embedding M'— M.
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Let B be a compact connected complex manifold of complex dimension
I'. Let m: M — B be a holomorphic submersion from M on B, whose fibers Z
are compact connected complex submanifolds of M. The fibers Z have complex
dimension [.

We assume that for 1<j<n, the restriction of = to M) is a holomorphic
submersion from M) on B, whose fibers Y; are compact connected complex
submanifolds of M. For 1 <j<n, the fibers Y; have complex dimension /;.

Set Y=|) ;. Clearly
1

Y=ZnM;; Y=ZnM.

We still denote by i the embedding of fibers Y — Z.

In the sequel, Ty M denotes the real tangent bundle to M, and TM the
(1,0) part of the bundle T-M =Ty M ®z C. When necessary, we will also use
the notation T M instead of TM. We define Ty M’, TM', Tx B, TB in the
same way.

Trx Z denotes the real tangent bundle to the fiber Z, TZ the (1,0) part of
TZ =Ty Z ®x C. When necessary, we still also write T"'9Z instead of TZ.
We also define Tz Y, TY, T®? Y in the same way. Of course we will use the
notation Ty Y;, TY;, T"®Y; when necessary.

For 1<j<n, we denote by Ny ; the real normal bundle to M} in M, and
by N; the (1,0) part of Ng ;®xC. Then N; has complex dimension e;=1—1;.
We will often write Ng, N, e instead of Ng ;, N;, e;. Note that the restrictions
of Ng, N to one given fiber Y are exactly the real and complex normal bundles
to Yin Z.

We have the exact sequences of holomorphic vector bundles

0-TZ > TM ->7n*TB->0
0->TY > TM' ->n*TB—-0
0-TM' > TMj, - N -0
0->TY >TZy - N -0

(1.1)

Let n be a holomorphic vector bundle on the manifold M’, let #; be the
restriction of n to M. Of course the dimension of #n; depends in general on
J. Let

(& v): 08— lp-1—>...— {0 (1.2)

be a holomorphic chain complex of holomorphic vector bundles on M. Let
r be a holomorphic restriction map o p = 17.

For 0<k=<m, let 0\ (&) be the sheaf of holomorphic sections of &, on M.
Similarly let @,,.(n) be the sheaf of holomorphic sections of # on M’. In the
whole paper, we assume that the sequence of sheaves

0— Oy (Em) P Op(Em—1)—. L Opm(&o) -5 Iy @M'('?)_’O (1.3)

is exact. In particular the complex (¢, v) is acyclic on M\ M'.
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b. The Koszul complex of N and the homology of the complex (&, v), -

For 1<j<n, let N* be the vector bundle on M) dual to N;. We will often

write N* instead of N*. Let A(]\Ij*)=®JA‘1(Nj*) be the exterior algebra of N*.
1

If ye N, let i, be the interior multiplication operator acting on A (N¥).

Let p; be the projection N;— M. If E is a vector bundle on M}, we will
still denote by E the vector bundle p¥(E) on the total space of N;.

M can be embedded in N; as the zero section of N;. Then the Koszul complex
on N; (A(N*) ®n;, i,) provides a resolution of ;. Equivalently, if k; is the embed-
ding M;— N; then we have the exact sequence of sheaves on N;

0— Oy, (ASNF) @ 1) .. Ong )=k O (1) 0. (14)

Take xe M. There exists holomorphic coordinates (z, ..., z') on an open
neighborhood U of x in M such that M;n U is represented by (z' =0, ..., z% =0).
On M;nU, N is spanned by the forms d z!, ..., dz%, which extend to the whole
open set U. Therefore the vector bundle N* on M;n U extends into a holo-

morphic vector bundle on U, which we note N*. Then y:Zz"% is a holo-
1

morphic section of N; (which is now the dual of N on U) which exactly vanishes
on M;nU.

Also if U is small enough, the holomorphic vector bundle 7,y €xtends
into a holomorphic vector bundle on U, which we note 7;.

Let (A(N*)®1j;, i,) denote the corresponding Z graded Koszul complex on
U. By the local uniqueness of resolutions [S, Chap. IV, Appendix 1], [E, Theo-
rem 8], we know that if U is small enough, there exists a holomorphic acyclic
Z graded chain complex (4, a) on U such that on U, we have an isomorphism
of holomorphic Z graded chain complexes

(& V) =(ANF) ® 7, iy) D (4, a). (1.5)

In particular in the local description (1.5) of the complex (¢, v), the restriction
map r: {op, — 15 is given by

rih®agen;® Ay — hen;. (1.6)

As before, we will often omit the subscripts j.

Definition 1.1. For xeM’, let F, ,, Fy ., ..., F, » denote the homology groups
of the Z graded chain complex (&, v),. Set

F=@F,.. (1.7)
0

Take now xe M’ and choose a holomorphic trivialization of the chain com-
plex (&, v) on an open neighborhood U of x in M. If X e(Ty M),, we can define
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the derivative 0y v(x) of the map x — v(x) in the direction X. Since v?>=0, we
find that

axvv+vaxv=0. (18)

From (1.8), we deduce that d,v acts naturally on the vector space F,. If 0y v(x)
is the derivative of v in the direction X with respect to another holomorphic
trivialization of £, there exists 4,(X) acting linearly on &, , ..., &, . such that

x 0(x)=0x v(x) + [A:(X), v(x)]. (1.9)

From (1.9) we deduce that dy v(x) and 0% v(x) act in the same way on F,.

We now denote by dyv(x) the action of any of the dyv(x) on F,, which
is unambiguously defined by (1.9). In particular 0, v(x) decreases by one the
grading in F,. Also since v is a holomorphic section of End(¢), if Xe T{> V' M,
then 0y v(x)=0.

Theorem 1.2. The vector spaces F, ,, ..., F, . are the fibers of smooth vector bun-
dles F,, ..., F,, which inherit a canonical holomorphic structure from the holo-
morphic vector bundles &, ..., &,,.

For any xeM), Xe(TxM’),, 0xv(x)=0, so that the linear map yeN; ,
—0,v(x)eEnd F, is well defined, and depends smoothly on x,y. Also for any
xeM;, yeN; ,

(0, v(x))*=0. (1.10)

On the normal bundle N;, the complex

(F, (7yv): O_’FmﬁFm-'l Tv-‘) FO—)O

is a holomorphic Z graded chain complex, which is canonically isomorphic to
the holomorphic Z graded Koszul complex (A(N*) ® n;, i,).

Proof. Take xe M, and let U be an open neighborhood of x in M taken as
in (1.5). We also use the notations of (1.5). Since the complex (4, a) is acyclic,
for any x'e M;n U, we have the non canonical isomorphism

Foox(ANF®n); 0Sksm. (L11)

From (1.11), we deduce in particular that the vector spaces {F .}o<x<m have
constant dimension on M. Since the F’s are the homology groups of the holo-
morphic chain complex (&, v),y; and have constant dimension, they are the fibers
of smooth holomorphic vector bundles on M. Tautologically, on M;nU, the
identification (1.11) is an identification of smooth holomorphic vector bundles.

Using the coordinate system (z', ..., z') on the open set U, we find that
on M;nU, TM splits holomorphically into TM =TM;® N;. If XeTM, and
if X is the component of X in N;, we deduce from (1.5) that under the identifica-
tion (1.11), 0y v corresponds to iy.. Therefore if XeTM/, then 0xv=0. So the
map yeN; - d,ve End F is well defined. Moreover we have the identity (0, v)*>=0.
Also (0, v)(x) depends holomorphically on x, y.
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We then find that on M;n U, we have an identification of holomorphic
Z graded chain complexes

Since the description of (&, v) given in (1.5) is only local, the identification (1.12)
is a priori noncanonical. We now prove it is indeed canonical.

Clearly the holomorphic map r: £y »; —7; induces a holomorphic map F,
—1;, which we still note r. From (1.6), it follows that r: F, — #; is an isomorphism
of holomorphic vector bundles on M. We see from (1.5), (1.6) that in (1.12),
the isomorphism Fy~#n; on M;nU is obtained by the map r: F, —n;, ie. is
canonical.

Using (1.12) we find that if y,, ...y, is a base of N, if fen;~F,, there
is a unique weF,, such that

(ahjvayej_‘v...ay,v)wzf (1.13)

If y', ...,y is the base of N* dual to y,,...,y,,, we identify w with
(V' AY2A .. AY9)® f. So F, is now canonically identified with 4°(N*)®#; and
this identification is exactly the one in (1.12). Finally if y, ..., yxeN;, k=e;,
we identify (0,,v...0,, v) @ With (i ...i) (V' A ... AY)® feA¥(N¥) @ ;. Still
this identification is compatible with (1.12). We then find that the isomorphism
in (1.12) is canonical. For different open sets U, the corresponding isomorphisms
(1.12) patch together on M.

Our Theorem is proved. []

Remark 1.3. Observe that for every fiber Z the sequence of sheaves
05 0z(Em) = O2(Em-1)— ... = O2(E) > * Oy (1) >0 (1.14)

is still exact.

Remark 1.4. In previous work by Bismut-Gillet-Soulé [BGS1], the chain map
v was supposed to increase the degree by 1, while here it decreases the degree
in & by 1. We choose this convention to make the comparison with the Koszul
complex easier. However this new convention leads to unescapable conflicts
of signs with [BGS1].

c. A family of Hermitian metrics on (&, v) and the Koszul complex of N

Let k%, ..., h*~ be smooth Hermitian metrics on the vector bundles &, ..., &,.

We equip the vector bundle &= @ &, with the metric h®= @) h® which is the
k=0 k=0
orthogonal sum of the metrics h%, ..., hém.
Clearly v is a smooth section of End . Let v* be the adjoint of v with
respect to the metric h. For xe M’, we may develop the “Hodge theory” of
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the finite dimensional Hermitian complex (&, v),. Namely, for every xeM’,
0<k<m, set

F={f€&,x; v(x) f=0; v*(x) f=0}. (1.15)
We then have a canonical identification of vector spaces
B x~F . xeM'; 0<ksm. (1.16)

Now since the F , have constant dimension on each M’ (1<j<n), the F, ,
also have constant dimension on each M’ (1<j<n). Therefore F; , ..., F, .
are the fibers of smooth vector bundles F, ..., F, on M'. One then easily verifies
that the canonical identification (1.16) induces an identification of smooth vector
bundles on M.

As smooth vector subbundles of the vector bundles o -, ..., {jpr, the vector
bundles Fg, ..., F,, on M’ inherit smooth Hermitian metrics. Using Theorem
1.2 and (1.16), we then find that Fy, ..., F,, are now holomorphic Hermitian
vector bundles on M'. We denote by h', ..., hf~ the metrics on Fy, ..., F,.

At this stage, we will often use the notation F, ..., F,, instead of Fj, ..., F,,,

and so we will consider F, ..., F,, as vector subbundles of &, ..., &,. We equip
k

F= @ F, with the metric h* which is the orthogonal sum of the metrics of
k=0
the metrics hf, ..., hfn.

m m
Let V°= (P V* denote the holomorphic Hermitian connection on =P &,.
p k

0 0

Let V¢, V" be the holomorphic and antiholomorphic parts of V.

By proceeding as in Sect. 1b, we find that if xe M’, Xe(Tx M'),, and if 0y v*
is the derivative of v* in any given holomorphic trivialization of ¢ near x,
then 0 v*(x) acts naturally or F,. Of course dy v*(x) now depends on the metrics
h%, ..., h*=. Since V¢ v=0, then V¢ v*=0. We then find that if xeM’,
XeT''OM, then dyv*=0.

Let f, g be smooth sections of ¢ near xe M’ which are such that f,, g.€F,.
Since

of, g>=<fiv*g) (1.17)

and since at x, vf =0, vg=0, v* f=0, v* g=0, we deduce that if xe M’, X e(Tx M),
8

(Oxv) [, 8> =<1, (0xv*) g). (1.18)

So if X e(Tg M),, 0x v* is the adjoint of 04 v. In particular if X € Ty M’, we deduce
from (1.18) that 9, v*=0.

Let N be the vector bundle conjugate to N. If ye N, let y denote the conjugate
element in N. From the previous considerations and especially from (1.18), we
deduce that if ye N, 0;v*(x) acts naturally on F, as the adjoint of 9, v(x).
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Let now gV and g" be smooth Hermitian metrics on the vector bundles

N and 7. Then N*, and more generally the exterior algebra A(N*)= (P A7(N*)
0

are naturally equipped with smooth Hermitian metrics.
We equip 4(N*)®#n with the product of the metric on A(N*) and of the
metric g".

Definition 1.5. Given metrics g" and g" on N and 5, we will say that the metrics
ke, ..., h* on &,, ..., &, verify assumption (4) with respect to gV and g" if
the identification of holomorphic chain complexes on N

(F, 0,0)~(A(N*)®n, i,) (1.19)

also identifies the metrics.

Proposition 1.6. Given smooth Hermitian metrics gV and g" on N and v, there
exist smooth Hermitian metrics h%, ..., h*~ on &, ..., &, which verify assumption
(A) with respect to g" and g".

Proof. We first choose arbitrary smooth Hermitian metrics hgjpr, -.., Hpmjpe OD

Eormrs --os Empmr- We equip &y = @) &yu With the orthogonal sum of the metrics
0

hym-. Let v* denote the adjoint of v on M".
For 0=k <m, we define the vector bundle F;, on M’ by formula (1.15). For
0<k=<m, xe M’ we then have the Hodge decomposition

ék,x=v(5k+1)x®v*(fk—1)x@Fk’,x (1.20)

and the splitting in (1.20) is orthogonal with respect to the metric hy,y,.. Since
F, ..., F, are smooth vector bundles on M’, one deduces easily that for 0 <k <m,
0(Ck+ 1)y and v* (&, — 1) ;p are smooth vector subbundles of &y

We now modify the metric hy . on &y.. Namely let h). be the metric

on & Which is defined by the following three properties:

— The splitting (1.20) is still orthogonal for the metric hj ..

— The restrictions of k. and hyp to v(E 4 1) @ v* (&, - 1) coincide.

— When F is equipped with the metric induced by A, the canonical identifi-
cation F, ~ A*(N*) ® 7 also identifies the metrics.

If we equip & with the orthogonal sum of the metric hyy., we find that
on M’, v* is still the adjoint of v. In particular (1.20) is now the Hodge decomposi-
tion of &, with respect to the new metrics hop, -, Hoyu-

By partition of unity, we extend the metrics hg -, ..., fpjy into smooth
Hermitian metrics k%, ..., h*" on &, ..., ¢,. Tautologically, the metrics
hte, ..., h*~ verify assumption (4) with respect to g" and g". []

Remark 1.7. If N is equipped with a metric g", the metric g" induces an isomor-
phism of smooth vector bundles N*~ N. If ye N, the adjoint of the linear map
i, acting on A (N*) is given by

weA(N*) > yAweA(N*). (1.21)
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d. The holomorphic Hermitian connection on F

Let h%, ..., h*" be smooth Hermitian metrics on &, ..., &,. We equip &= P &,

with the metric h® which is the orthogonal sum of the metrics h, ..., hém *=°
By (1.15), (1.16), the holomorphic vector bundles F, F,, ..., F, are now
equipped with Hermitian metrics, and F, ..., F,, are mutually orthogonal in
F.
For xeM’, P, denotes the orthogonal projection operator from &, on F,.
Let V¢, V¥ be the holomorphic Hermitian connections on the vector bundles
EF.

Proposition 1.8. If f is a smooth section of F on M', then
VEf=Prf. (1.22)

Proof. We will prove that the connection PV¢ on F is holomorphic. Since this
connection preserves the metric of F, it will necessarily coincide with ¥,

Let f be a locally defined holomorphic section of the vector bundle F. Since
F=XKer(v)/Im(v), if j is the canonical map Ker(v) — F, there is a locally defined
holomorphic section k of Ker(v) such that f=jh. Since F is identified with
the vector bundle of “harmonic” elements for the Hodge theory of the complex
(&, v), we then find that f= Ph.

Remember that vh=0. Using the Hodge decomposition of h, we find that
there exists a locally defined smooth section ' of ¢ such that

h=vh +f. (1.23)
Since V¢ h=0, we deduce from (1.23) that

oV W +V f=0 (1.24)
and so

PV f=0. (1.25)

We have thus shown that the connection on F PV* is holomorphic. Our Proposi-
tion is proved. [

II. Double transgression formulas for superconnections

The purpose of this Section is to give a unified treatment of the double transgres-
sion formulas of Bismut-Gillet-Soulé [BGS1], which extended formulas obtained
earlier by Bott-Chern [BoC] and Donaldson [D].

Given a complex (¢, v) of holomorphic Hermitian vector bundles

(éa U): 0_>5m_v—’ém—l s T-) 50—>0
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we consider the corresponding Quillen’s superconnections forms [Q] as a func-
tion of the metrics ke, ..., h*m on &, ..., &,,, and we establish variation formulas
for these forms. These formulas include the formulas of Bott-Chern [BoC] and
Donaldson [D], and also the formulas of Bismut-Gillet-Soul’e [BGS1, Sect. 1¢]
(where the number operator of the complex (&, v) played a prominent role)
as special cases.

This Section is organized as follows. In (a), we briefly recall the superconnec-
tion formalism of Quillen [Q]. In (b), we extend results of [BoC] and [D]
to superconnections. In (c), we reobtain the double transgression formulas of
[BGSI, Sect. 1c] as a special case of the results of Section 2b.

a. The superconnection formalism

Our assumptions and notations are the same as in Sect. 1c. In particular we
assume that the vector bundles &, ..., &, are equipped with Hermitian metrics
h, ..., hm. v* still denotes the adjoint of v. Set

f+=@€k5 é#z@ék

keven kodd

so that {=¢, @ ¢_. Remember that &= @ &, 1s equipped with the orthogonal
k=0
sum of the metrics k%, ..., h*~. In particular ¢, and & _ are orthogonal in ¢&.

We now briefly describe the formalism of Quillen [Q] in this framework.
The vector bundle ¢=¢, @ ¢ is Z, graded. Let t be the involution in End &
which defines the grading, i.e. t=+1 on £.. The algebra End ¢ is naturally
Z, graded, the even (resp. odd) elements in End £ commuting (resp. anticommut-
ing) with 7. If Ae End &, we define its supertrace Tr [ A] by the formula

Tr,[A]=Tr[tA]. 2.1)

Tr, extends into a linear map from the Z, graded algebra A(T# M)& End &
into A(Tg M) with the convention that if we A(Tg M), AeEnd ¢&

Tr[wA]=w Tr,[A4].
If o, ' e A(TF M)® End ¢, let [a, a'] be the supercommutator of « and o,
ie.
[(1, a/J=aa1_(_1)degadega’ o o (2'2)

Then by [Q], the supertrace Tr, vanishes on supercommutators. Set

V=0+0v*. 2.3)



Superconnection currents and complex immersions 71

m

Then v, v*, V are odd sections of End ¢. Let Vé= (P V* be the holomorphic

m k=0
Hermitian connection on &= (—D &e- Set

k=0

A=V+V;, A=V +0*; A'=V"+o. (2.4)

Then A is a superconnection on £ in the sense of Quillen [Q]. Its curvature
A? is a smooth even section of A(Tg M)® End &. Also by [BGS1, Prop. 1.6]

Ar=4"2=0,
[4, A*]=[4", A?]=0, (2.5
A=A, A",

b. Double transgression formulas for superconnections

For 0<i<m, let .#; be the set of smooth Hermitian metrics on the vector

bundle ¢;. Set .#=]].#;. Now v*, V and V¢ depend explicitly on the metrics
0

hé=(h, ..., h*e /.

Let P¥ be the vector space of smooth sections of A (T M) which are sums
of differential forms of type (p, p) (O<p<I[+1). If 0, J are the standard exterior
differentiation operators acting on smooth forms on M, let P™:° be the vector
space of the weP™ which can be written in the forms w=2a#n+3dn’, where , n’
are smooth forms on M. We use the notation PM, pM.° pB pB0  for the
corresponding objects constructed on the manifolds M’, B....

If E is a vector bundle on M with connection ¥V and curvature V2, we
define the normalized Chern character ch(E) to be the cohomology class repre-
sented by the form Tr[exp(—V?)].

By Quillen [Q] and by [BGS1], Theorem 1.9], the smooth differential form
Tr,[exp(— A?%)] lies in PM, is closed and represents the normalized Chern charac-
ter ch(&g— &+ ... +(—=1)"E,).

The form Tr,[exp(—A?)] on M depends smoothly on h*=(h’, ..., h*")e. 4.
From now on, we consider Tr,[exp(— A?)] as a smooth form on M x .#, which
is of course of partial degree zero in the Grassmann variable on ..

If hjed;, xe M, let B% be the set of endomorphisms of ¢; , which are self-
adjoint with respect to the metric h;. As in [BGSI, Sect. 1¢], we identify the
tangent space T, .#; with the set of smooth sections of 2" on M. In fact if
k;eEnd(¢;, £¥) is an infinitesimal deformation of h; in .#;, then h; 'k; is the
corresponding element in %",

Let d* be the exterior differentiation operator on 4. If hé=(h’, ..., h’m)e 4,
if k=(k%,...,k*) is an infinitesimal deformation of h° in .#, then
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()~ k%o, ..., (h*")~ ' k) is a smooth section of B"=[]%". If d*h*=k*
0

(0 <i<m), we will note this element by (h®)~* d* h*. (h°)~ ' d* h® will be considered
as a one form on .# with values in 4.

For h°=(h*, ..., h*~)e ./, let w be the connection form associated with the
corresponding holomorphic Hermitian connection V. Then d*w is a two form
which is the equivariant representation of a two form y on M x .# with values
in End ¢ (where ¢ is now considered as a vector bundle on M x .#). Of course

y preserves the splitting ¢ =P &,. Note that y is of complex type (1, 0) in the
0

Grassmann variables in T M.

The operators d*, 3, d act naturally on smooth forms on M x .# as partial
exterior differentiation operators.

Note that in the sequel, we will use the superconnection formalism on M x 4.

We now generalize a result of Bott and Chern [BoC, 3.28], [BGS1, Theorem
1.24] concerning usual connections on a Hermitian vector bundle to supercon-
nections.

Theorem 2.1. The following identities hold
d* Tr,[exp(—A%)]=0 Tr,[(y— [v*, (h) "' d“ h*]) exp(— A%)]

Te [~ 0%, () ) exp(— A%] = —0 Tr ()" d* ) exp(— A7),
In particular,
d* Tr,[exp(—A*)] = — 30 Tr,[((h) ™" d* h¥) exp(—A?)]. 27

Proof. We proceed as in [BGS1, Theorem 1.24]. The Hermitian vector bundle
& on M x . is naturally equipped with a connection ¢ which restricts to the
holomorphic Hermitian connection V¢ associated with he.# on M x {h°}, and
is trivial on {0} x T# < T(M x .#). V*+V is now a superconnection on the
vector bundle & on M x .. One verifies easily that

(P V2=V + V)2 +y—[v*, (h%)~ 1 d*h¢] (2.8)

(note that the —sign in — [v*, (h°)~ ' d* h*] comes from the fact that (k%)™ ! d* h*
is odd).

By Quillen [Q], the form Tr,[exp(—(V°+ V)?] is closed on M x .#. Using
(2.8) and Duhamel’s formula, we get

Tr,[exp(—(F*+V)?]
=Tr,[exp(— A%)]—Tr,[(y—[v*, (h°) ' d* k) exp(—A})]+C (2.9)

where C is of degree =2 in the Grassmann variables in T*.#. Since the form
Tr,[exp(—(V°+V)?] is closed on M x .#, we deduce from (2.8) that if d is the
exterior differentiation operator on M, then

d* Try[exp(— A% ] =d Tr,[(y—[v*, (k%) ' d* h*]) exp(— A4?)]. (2.10)
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Remember that y is of type (1, 0) in the Grassmann variables in T M. Using
the fact that the left hand side of (2.10) is a one form on .# with values in
PM, and the degree counting argument of [BGS1, Prop. 1.8], we deduce from
(2.10) that

d* Tr,[exp(—A%)]=0 Tr,[(y—[v*, () "' d* h¢]) exp(— A%)] 2.11)
0 Tr[(y—[v*, (h%) ™" d* h¢]) exp(— A*)] =0.
Using (2.5), we find that
0 Tr,[(h%) ™' d* hé exp(— A2 =Tr,[[A, (h) "' d* h¥] exp(— A2)]. (2.12)
By [BGS1, Prop. 1.23], we get
[V, (%)~ d™* h¥]= —y. (2.13)
From (2.12), (2.13), we find that
OTr,[(h*) ' d* K exp(—A*)] = —Tr,[(y— [v*, (h*) "' d*h¥])exp(—4%)]  (2.14)

(2.6) follows from (2.11) and (2.14). (2.7) is a consequence of (2.6). []

We now extend to superconnections the result established in [BGS1, Theo-
rem 1.25] for usual connections. Let z be an odd Grassmann variable (so that
z2=0). Then z anticommutes with (A (T M) ® End &)°%,

Theorem 2.2. The following identity holds

d* Tr,[exp(— A% +z(h%) "1 d" h%)]
= 10T, [[A", (h)~ 1 d* hE] exp(— A +z(h)~ ' d* h¥)]
1 TTr[[A, (B d* B exp(— A2 +2(h) " d R (2.15)

Proof. We proceed as in [BGS1, Theorem 1.25]. Set = (h°)~ ' d* h*. Then
d* Tr[exp(— A2 +z0)]=Tr,[[d*, —A*+z0] exp(—A*+z0)]. (2.16)
By [BGS1, Prop. 1.23] and by (2.8)
[d*, A"]=0; [d* A]=—[4,0]; d"0=—0" (2.17)
From (2.5), (2.16), (2.17), we deduce that

A" Tr,[exp(— A2 +20)] =Tr,[(—[A", [4, 011+ 20 exp(— A2 +z6)].  (2.18)
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If o, fe A(TF M), set (e + z f)* =z . Using (2.5), (2.6), and Duhamel’s formula,
we have

0Tr,[[A", 0] exp(—A*+20)]=Tr,[[A4’, [4", 0]] exp(— A% +z0)]
+Tr,[[A", 0] exp(—A*—z[4', O])]
0Tr,[[A4, 0] exp(— A% +2z0)]=Tr,[[4", [4, 0]] exp(— A*+z6)]
+Tr [[4, 0] exp(—A*—z[A4", 6])]*. (2.19)
Using the fact that Tr, vanishes on supercommutators, we find easily that

the last terms in the right hand sides of both formulas in (2.19) coincide. More-
over by (2.5), we have

[4, [A", 0]]=[A% 0]—[A4",[4', 0]]. (2.20)
Also

3 Tr,[[A%, 0] exp(— A +20)]
=1Tr[[0, —A*+2z0] exp(—A>+20)] +z Tr,[6% exp(— A% +z0)]
=z Tr,[0? exp(— A% +z0)]. (2.21)

(2.15) follows from (2.18)+2.21). [

¢. Number operator and Bott-Chern classes

We now will show to derive the transgression formulas of [BGSI, Sect. 1b]
from Theorem 2.1.

Definition 2.3. Ny denotes the operator in End ¢ which maps fe¢, into kfeé,.
Let h, ..., h°» be smooth Hermitian metrics on &, ..., ¢,. We equip

&= & with the metric h® which is the orthogonal sum of the metrics A%, ...,
0

hem. Let v* be the adjoint of v.

m m

Let V*= (P V*< be the holomorphic Hermitian connection on &= ) &. Set
k=0 k=0
V=v+v* Foru=0, set
A, =Vi+) uv
A=V + ) uv* (2.22)

Al =V*"+/uv.
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Then A, is a superconnection. Moreover, as in (2.5), we have

A2=0; A?=0
Ai=[A,, A;] (2.23)
[A4,, A2]1=[4;, AZ]=0.

We now prove a slight modification of [BGS1, Theorem 1.15].

Theorem 2.4. For any u =0, the smooth forms Tr[exp(— A2)] and Tr,[N zexp(— A2)]
lie in P™. Moreover for any u>0, the following identities hold

9 R ]
—Trs[exp(_Au)] = _aTrs —CXP(“Au)

Ju _W

=—0Tr, l—exp(—A,f)

LV - (2.24)

N .
Tr, [U— exp(~A,f)]= —0Tr, (% exp(— Af)J

Va

v NE Ny 2
Trs[wﬁexp(—Au)]—5Trs[7exp( Au)].

In particular for u>0

—;; Tr,[exp(—A42)] =% 00 Tr [Ny exp(—A2)]. (2.25)

Proof. For u>0, we temporarily replace the metrics h°=(h%, ..., h°") by the
W e . . , -
metrics hﬁz(hé‘), —_— F) The adjoint of v with respect to this new family
u
of metrics h$ is now uv*,
Let T, be the linear map in End ¢ which is such that if fe¢,, then T, f=u*/? f.
One verifies that

- *
T, T, =) uv; n—lu*7;=li/-. (2.26)
u
Clearly
0 N
-t Y ope_ _H
() 5= =
(2.27)
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. . . . hé hém

Also if we equip ¢ with the orthogonal sum of the metrics h%, —, ..., —,
u u

V< is still the corresponding holomorphic Hermitian connection. By Theorem

2.1, and taking signs into account, we get

aiuTrs[exp(—(Vé+ v+uv*)?)] = — 0 Tr,[v* exp(—(V*+v+uv*)?)]

Tr,[v* exp(—(V +v+uv*)?)]= -0 Tr, [% exp(—(Vé+v+uv*)?)] (2.28)

5% Tr,[exp(—(V°+v+uv*)?)] =% 00 Tr,[ Ny exp(— (V¢ +v+uv*)?)].

Using (2.26) and (2.28), we find that half of the equations in (2.24) and also
Eq. (2.25) have been proved. Echanging the roles of & and d, and of V¢ and
V¢, it is easy to derive the second half of Egs. (2.24). Our Theorem is proved. []

Remark 2.5. We have thus shown that the various double transgression formulas
of [BGS1] can be derived from the double transgression formula for supercon-
nections given in Theorem 2.1.

II1. Convergence of the superconnection Chern character currents

The purpose of this Section is to prove that as u — + oo, the Chern character
forms Tr,[exp(— A2)] converge to a current concentrated on M’, which we
explicitly calculate. As was already pointed out in the introduction, for later
purposes, we need to obtain a precise control of the speed of convergence at
a microlocal level. This in part explains some of the technical difficulties which
appear in the proofs.

Our main result is stated in Theorem 3.2. Its proof essentially consists in
expressing Tr [exp(— A2)] as a contour integral, and in controlling the integrand
as u— +oo. The simple form of the limiting current follows from complicate
algebraic manipulations on connections.

This Section is organized as follows. In (a), we describe our main assumption
and notations. In (b), we establish a simple coercitivity result on the map (0y V)2
In (c), we briefly recall some technical results on wave front sets of currents,
and on the natural topology of the set of currents which have a given wave
front set. We refer to Hormander [H, Chap. VIII], for more details. In (d),
we state our main result, whose proof occupies Sect. 3e—j.

a. Assumptions and notations

We make the same assumptions as in Sect. 1, and we use the notations of
Sects. 1 and 2.



Superconnection currents and complex immersions 77

Let h, ..., h*~ be smooth Hermitian metrics on the vector bundles

oo vvvs Em- We equip E=@) &, with the metric h° which is the orthogonal sum
0

of the metrics h%, ..., h*~. Let v* be the adjoint of v.

n m

Let V= @ V* be the holomorphic Hermitian connection on &= (P &,. For
k=0 k=0
u=0, let 4, be the superconnection on ¢

A=Vt /uV. 3.1)
By the results of Sect. 1c), the vector bundles Fy, ..., F, are naturally
equipped with Hermitian metrics h™°, ..., h*= and are orthogonal in F= él—)Fk
Also if yeN, d;v* is the adjoint of 0, v. If Y=y + je Ny, set k=0
Oy V=0,v+0,0*. (3.2)
Then 0dy V is a self-adjoint operator acting on F.

Let VF= P V"« be the holomorphic Hermitian connection on F= P F,.
k=0 k=0

F lifts naturally to a vector bundle on N, which we still note F. In particular

VF still denotes the holomorphic Hermitian connection on the lifted bundle.

Set
F,= (‘BFk, F—:@Fk-

keven kodd

Note that the vector bundle F=F, ® F_ on N is Z, graded, and that we
can apply the superconnection formalism to F. If YeNg, dy V is odd in End F.
Let B be the superconnection on the vector bundle F on N

B=VF+0,V.

Let gV, g" be smooth Hermitian metrics on the vector bundles N, n, let PN, p"
be the associated holomorphic Hermitian connections.

b. Coercitivity of the map (dy V)?

We here establish a simple coercitivity result on the linear map (3y V).

Proposition 3.1. There exists a constant ¢>0 such that for any xeM', YeNg ,,
feF,
10y V(X) P Zcl YR | f 17 3.3)

Proof. Clearly we only need to prove the Proposition when | Y|y, =1.If X =y +,
|Y|=1, the complex (F, d,v)~(AN*®mn,i,) is acyclic. By finite dimensional
Hodge theory, we find that 0y V=0, v+(d, v)* is a self-adjoint invertible operator.
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Since the sphere bundle Sy, of N is compact, we deduce that there exists
¢>0 which is a lower bound for the smallest eigenvalues of (dy V),’;eSNR. The
proof of the Proposition is completed. []

In particular, we deduce from Prop. 3.1 that the form on N Tr,[exp(— B?)]
decays faster than exp(— C|y|?) (for one C>0) when |y|y — + o0.

c. Wave front sets

The wave front set of a distribution or of a current is defined in Hormander
[H, Chap. VIII]. Let us just recall that if y is a current on M, its wave front
set WF(y) is a closed conic subset of T M\ {0}. If p is the projection Tg M — M,
then the singular support of y is exactly p(WF(y)), i.e. y is smooth on the open
set M p(WF(y)).

Let 2'(M) be the set of currents on M. Let 24 (M) be the set of currents
on M whose wave front set is included in Ng. In particular currents in Py (M)
are smooth on M\ M".

Then by Hoérmander [H, p. 262], 2y (M) can be naturally equipped with
a family of semi-norms. Namely let U be an open set in M which is holomorphi-
cally equivalent to an open ball in C'*"'~R2!*1), Over U, we identify T¢ M
with U x R?2**1), Let I be a closed cone in R2¢*!) such that on UnM’, I' n N
={0}. Let ¢ be a smooth current with compact support in U, and let m be
an integer. A denotes Fourier transform on C'*V.

If we Dyy, (M), set

pu.r,¢,m(w>=s€gg|¢|'"|¢>Aw(é)|. (3.4)

We will say that a sequence of currents w,€ Zyy, (M) converges to we Dy, (M)
if:
® w,—-win Z'(M).
e If U, I, ¢, m are taken as in (3.4), then

llm pU,E¢‘m(wn—w)=0.
n—+ o

Let 0, be the current of integration on the oriented manifold M’, so that
if w is a smooth form on M
[ wép= | . (3.5)
v .

M

d. Convergence of superconnection currents on M

For keN, let C¥(M) be the set of sections of A(T;¥ M) which are k-times contin-
uously differentiable. Then for any ke N, C*(M) is a Banach space. Let | || cear
be a norm on C*(M). We define C¥(B), || ||cx(s in a similar way.
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In the sequel, [ or | denotes integration of differential forms along the
z Y

fibers of M— B or of M’ — B. Similarly | denotes integration along the
fiber of N - M. N

Let RY be the curvature of the holomorphic Hermitian connection V'V on
the vector bundle N. Let (V")? be the curvature of the holomorphic Hermitian
connection V" on the vector bundle #.

Let Td denote the ad-invariant Todd polynomial defined on (p, p) matrices
such that if the diagonal matrix C has diagonal entries x;, ..., x,, then

Let Td ™! be the inverse of Td, so that if C is taken as before

Td_l(C):fI(—tﬂ.
1

i

We now prove the main result of this paper.

Theorem 3.2. Let u be a smooth differential form on the manifold M. For u=0,
let 0,(1) be the smooth differential form on B

6u(w)=| pTr,[exp(— A2)]— [ i*u [ Tr,[exp(— BY)]. (3.6)
VA

Y N

Then for any ke N, there exists C,>0 such that for any smooth differential form
won M and any u=1

6, (1) ”Ck(B) V ||.U||Ck+l(M) (3.7
Also as u— + o

Tr,[exp(—A2)] - | Try[exp(—B)] 6y in Diy (M). (3.8)
N
If U, T, ¢, m are taken as in (3.4), there exists C' >0 such that for u=1
Pu, ¢, m(Trs[exp(— A5)] - f Tr,[exp(—B*)] oy) < ‘/ (3.9)

If the metrics h*, ..., h° on the vector bundles &, ..., &, verify assumption (A)
with respect to the metrics gV and g" on N and n, then we have the equality
of differential forms on M’

[ Tr,[exp(— BY)]=QRim*™¥ Td~!(— R Tr,[exp(—(F"?)].  (3.10)
N



80 J.-M. Bismut

Proof. Assume first that the compact support of p is included in M\ M’
Remember that the linear self-adjoint map VeEnd ¢ is invertible on M\ M.
Using Duhamel’s formula, one then finds easily that

| uTr,[exp(—A42)]1 -0 uniformly together with its derivatives. (3.11)
z

More precisely, if K is a compact subset of M\ M’, for any keN, there exists
C>0 such that if the support of u is included in K, for u=1, the C*(B) norm
of | uTr,[exp(—A2)] is dominated by exp(— Cu) || ullc, -

z

Take now xoeM’. Let z=(z', ..., z!*") be a holomorphic system of coordi-
nates on an open neighborhood of x, in M such that locally, M’ is the vector
subspace (z! =0, ..., z°=0).

By our assumptions on =, the holomorphic map z=(z!,...,z'*"")—
(rz, z', ..., 2 is a submersion near x,. Therefore there exists an open neighbor-
hood ¥ of x, in M’ and ¢>0 such that if %, is the open ball of center 0
and radius ¢ in €%, then U=7" x4, is an open neighborhood of x, in M,
and moreover if (x, y)e ¥ x %4,, n(x, y)=nx.

We now will prove Theorem 3.2 when p has compact support included
in U. By partition of unity, we will thus obtain our Theorem in full generality.
Of course in the course of the proof, we may take ¥~ and ¢>0 as small as
needed.

Let o, be the map (x, y)e¥" X &,z — 0,(x, y)=(x, _y_) Clearly since the
support of u is included in U 1/;

[uTrlexp(—4D]= [  (o¥p(od Tr,lexp(—4D]).  (3.12)
z

YNY)X Beyu

We now will evaluate the limit of the right hand side of (3.12) as u — + 0.
This will be done in five main steps.

— We prove in Prop. 3.3 that the self-adjoint operators V?(x, y) are coercive
enough near M'. This will be useful when using dominated convergence.

— We construct a trivialization of £ on " x 4%,. For well chosen 1eC*, we

. : P\
calculate in Prop. 3.4 an asymptotic formula for {11 ‘:——‘/;V 7-— .
u
— In Prop. 3.5, we calculate the non diagonal piece of the connection V¢ with

respect to a non trivial splitting é=¢* @ &~ of the vector bundle &, and in
Prop. 3.7 we calculate second covariant derivatives of V on M'.

— In a fourth step, we obtain a formula for the right hand side of (3.12) is
terms of certain contour integrals. Using the first three steps, the proof of the
first part of our Theorem will be completed.

— Finally, we obtain formula (3.10) as in Mathai-Quillen [MaQ].
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The proof of (3.7)+3.9) is technically complicated in particular because we
need to prove estimates related to dominated convergence. Still its principle
is quite simple.

The proof of Theorem 3.2 occupies Sect. 3¢) to 3j) of this paper. We suggest
the reader to look first at Sect. 3h) and Remark 3.9 to get acquainted with
the non technical aspects of the proof.

e. Coercitivity of the map V?*(x, y)

In the sequel, | | denotes an arbitrary norm on C%.

Proposition 3.3. If ¥~ and ¢>0 are small enough, there exists C>Q0 such that
if (x, y)E¥Y X AB,, then

V2(x, y)ZClyl% (3.13)

Proof. With the notations of (1.5), we know that if ¥~ and ¢ are small enough,
then

(& ) =(AN*®1, i,) D (4, a). (3.14)

We can equip the complex in the right-hand side of (3.14) with a metric i

which is such that

® The (4;)o <x <m are mutually orthogonal.

® The splitting (3.14) of the complex (¢, v) is orthogonal, ie. AN*®# and A4

are orthogonal in &.

® The metric on the complex (AN* ® 7, i,) comes from metrics g :g" on N, 7.
Let ©* be the adjoint of i, with respect to the metric gV If je N is identified

to an element of N* by the memc gV, then *=j A . Therefore

(i, + ) =|y|2. (3.15)

Let #* be the adjoint of v with respect to the metric & Set V'=v+*. From
(3.15), we find that there exists C >0 such that if (x, y)e ¥ x 4,, then

V2 (x, y) 2 Clyl*. (3.16)

We will deduce (3.13) from (3.16) by proceeding as in Bismut-Bost [BBos,
Prop. 8.1]. We fix (x, y)e¥ x #,, y£0. All our calculations will be done at
(x, y) and the notation (x, y) will be omitted. Clearly V2 and V2 preserve Ker ().
By Hodge theory, the lowest eigenvalues of V2 and 72 can be calculated by
restricting these operators to Ker(v). So take feKer(v)n¢&,. Set

g=*(Vy)~' /. (3.17)
Then f=vg. By Hodge theory, we can write g in the form

g=vo+v*p. (3.18)
From (3.18), we get
f=vv*p. (3.19)
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Since vf =0, we deduce from (3.19) that
vEB=v*(V2) LY. (3.20)

Let || |l || |5 denote the norms on & for the metrics h, h. From (3.18), it
is clear that

Iglli z lv* Bla =<(V2) ™" £, f O (3.21)

If ¥"and ¢>0 are small enough, there exists constants C>0, C’'>0 such that
on ¥ x %,

ClizsllzscCl iz (3.22)
From (3.17), we have
gl =<V~ £ /s (3.23)
From (3.21)—3.23), we conclude that
VAT LIS L e (324

From (3.22), (3.24), it is clear that if 4, 1 are the lowest eigenvalues of V2, V2,
there is ¢ >0, which is uniform on ¥~ x 4,, such that

izcl. (3.25)
(3.13) follows from (3.16), (3.25). [

f. A trivialization of &

By Theorem 1.2, since M’ is compact, there exists b>0 such that if xe M’,
the self-adjoint nonnegative operator V?(x) has no eigenvalue in the interval
10, 2b]. Therefore if >0 is small enough, if xe ¥ |y|<¢, b is not an eigenvalue
of the operator V2(x, y).

For 0<k=m, let & (.., (resp. & (.. ,) be the direct sum of the eigenspaces
of the restriction of V?*(x, y) to & ., corresponding to eigenvalues which are
strictly smaller (resp. larger) than b. Set

éf,(x.y)= @ é’;l:(x,}’)

keven

éé,(x,y)z @éfmy) (3.26)

kodd
éé,y)zéf,(x.y)@éf,(x.y)'
Then &F, €1, £* are smooth vector bundles on ¥~ x %,. Also on ¥~ x 4,
ék=€;@§;
fi=51@5;-

Moreover the various splittings in (3.26) and (3.27) are orthogonal splittings.

(3.27)
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Note that the restriction to ¥ of the Z graded vector bundle &~ coincides
with the Z graded vector bundle F. Therefore the restriction of ¢* to ¥ is
exactly the subbundle F* of &, orthogonal to F. Let P* be the orthogonal
projection operator from ¢ on ¢*. Note that on ¥ ~¥ x {0}, P~ coincides
with the orthogonal projection operator P from & on F considered in Prop. 1.8.

Let V%", V%™ be the connections on &¥, £~

Ve =PtV VS =P Ve

Let V=V @ V¢ be the direct sum of the connections V¢ and V¢ on
(=@,

For xe ¥, |y| < e, we identify the fiber &, ,, with the fiber £, o, =&, by parallel
transport along the line s€[0, 1] — x+ sy with respect to the unitary connection
7¢. In particular the linear map V(x, y) now acts as a self-adjoint operator
on the fiber £, and preserves the splitting &, =& @&,

Let | V| be the nonnegative square root of the self-adjoint nonnegative opera-
tor V2. By Prop. 3.3 it is clear that if ¥"and ¢>0 are small enough, there exists
Cy >0 such that if xe ¥ |y| ¢, we have the inequality of quadratic forms

V(x, »)I2Colyl (3.28)

Observe that if xe ¥, yeN,, Y=y+yeNg
Oy V(x)=PW V(x) P
=PPV(x)P.

As in (1.9), the key point is that if AeEnd &,, then P[4, V] P=0. Using
(3.3), we find that by modifying the positive constant C, if necessary, then if
xe?, yeN;, Y=y+y

(3.29)

[PV V(x) P12 Colyl. (3.30)

Let I, I be the identity maps on & and F. The orthogonal projection opera-
tor Q from & to F* is given by Q=1,—P. Of course since on 7., {* =F*,
¢~ =F, we have the identities P=P~, Q=P".

For ye@?, y=*0, let I, be the following oriented contour in C

yé
—_—am 9-1---- —_—
-Cq Iyl‘ Co lyl
» X
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Take now ye@? y+0, and u>0 such that |y|§s‘/&. Set Y=y+§j. From
(3.28), (3.30) we find that if Ae I} of if [Im A| =1, the linear maps

Ay~ uV (x, ﬁ) €End ¢,

(3.31)
Alp —PV¢V(x) PeEnd F,

are invertible.

For xeM’, let (V*)™'(x)eEnd ¢, be the linear map acting on &, which is
0 on F,, and coincides with the inverse of the restriction of V(x), on F-.

Proposition 34. For u>0, xe?, ye@® such that y=+0, lylgsl/;, if el or if
[ImA|=1,if Y=y+7, let A(u, x, u, A)eEnd &, be defined by the equation

(u,:—ﬁv (x, 1—}—»“ 1 =P(Al,—PVEV(x)P)"' P
u
+L {1 P(Al— PV V(x) P) ' PR V(x) P
[u
=PV V(x)P) ' P—Q(V*) '(x) Q)+ A, x, y, 4).  (3.32)

For £¢>0 small enough, there exists a constant C>0 such that if u, x, y, A are
taken as before, then

C
A, x, y, /1)“é;(lyl+lyl4+lil+lil3)- (3.33)
Proof. Let I.. be the 1dcnt1ty map of ¢*, and let V* be the restriction of
V to ¢*. Remember that since the connection ¥ preserves the splitting

E=EY@ET, for xe ] |y|<e, &L, is identified with £F.
Let A* (u, x, ¥, A) be defined by the equation

(e =/ v (s V%))= —%(V*)“ (504 A wxpd). (334

1 .
Then as u— + 00, 4, (4, x, y, )=0 (;) We now estimate ||A* (u, x, y, A| more

precisely. In what follows, the constants C>0 may vary from line to line. We

have
(V+)—l(x, —y—>
u

(,11¢+ —Vu V*(x, ﬁ))—l - ——‘/;—[—<1¢+ —%(V“”)“ (x,%))—l.

(3.35)
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By finite increments, we have the inequalities

|(1¢+ —%(V*)‘l (x, ~l/y-;))_l—1§+

1]]2
( y) sup (1¢+—ﬂ(v 1( y )) (3.36)
l/t; ce[0,1] V ‘/1;
If AeC*, one has the obvious
2
inf |1 d 2 =104 (3.37)
deR 4]
Therefore if |Im A|= 1, we deduce from (3.36), (3.37) that
-1 3
|(1¢+—-'1—(V+)—1 (x, L)) — 1. <cl (3.38)
Vi /i Vi
Also by finite increments, we get
-1
“(W (x, L)) _wr o)t < S (3.39)
Vu Vu
From (3.35)3.39), we find that if xe?] | y| gal/;, [ImA|=1
+ c 3
A" (u, x, y, i)llé*;(lylﬂll )- (3.40)

C
Similarly if A€}, |ImA|#1, then |Re/1l=—32m

have the inequality of quadratic forms

. Therefore if ce[0, 1], we

|—~Re () ( y)‘<c ) (3.41)

W= Y

For £>0 small enough, we deduce from (3.41) that since |y|<e W

- o)

From (3.35), (3.36), (3.39), (3.42), we find that if £>0 is small enough, if
xe?; |yl<e)/u, 2el, |Im | +1

<2. (3.42)

A7 (u, x, y, D é%(lllﬂyl)- (3.43)
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Remember that V™ (x)=0. Therefore if 47 (u, x, y, A) is defined by the equa-
tion

-1 _ 1 _
(ué- —Yuv- (x, %)) =l =PV () e (A — TV (x) !
u 21/;
RV (A =BV (x) "+ A (u,x, y,4) (3.44)

1
then as u—+ o0, 47 (u, x, y, )=0 (;) We now estimate 47 (u, x, y, A) more

precisely. If B(u, x, y) is defined by the equation

~ 1 <.~
Yuv- (x, L): TV () +—— BEPEV - (0)+B(u, x,y)  (3.45)
Vu 2)/u

then ifxe‘lf,ly|§s]/l;
3
|B(w, x, y)ll < 'uy | (3.46)

In particular if |y|<Ze¢ ]/z;, then

<Cely|. (3.47)

ZEV (%)

(s )
Let D(u, A, x, y) be defined by the equation
(“g——l/ﬁV" (x’ %))-;(Mg-—VfV‘(x))“+(AI<-—I7;V'(x»‘1
u
'(W V- (x, T}—)—V; V-(x)) (Al =V (x)" ' +D(u, 4, x, y).  (3.48)
u

By finite increments, we find that

3

Y

|D(u, 4, x, y)|| §Os§1i;=<)l {”(A.Ig- —cl¢ V"(x)—(I—C)‘/; V- (x, l—/;;))_l

If |[Im 4| =1, using (3.45), (3.46), (3.49) and the fact that { V" (x) and V~ (x, —)—L)
are self-adjoint in End &, we get W

2

(3.49)

Vuv- (x, %)—V; V()

1D (u, 4, x, y)||< [yl*. (3.50)
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From (3.46), (3.50), we deduce that if xe 7, | y| gel/z;, |[Im A|=1, then

47 (u, x, y, A .S_%(Iyl“+lyl3)- (3.51)

Ify+0,if Ael}, and if |Im |+ 1, then |Re 1| =
we get

Clearly P V*(x) maps £F into itself. Since & is identified with F,, %V ~(x)
acts on F, like dy V(x). From (3.29), (3.30), (3.52), we deduce that
|

(3.53)

. Using (3.47), if ce[0, 1],

Co
§(7+C8) Iyl

(3.52)

Colyl
2

(ReX) ;- —c V- (x)—(1—o))/uV~ (x, —y-)+ BV~ (x)
Vu

“(Rex)zé-—cva —(1=0))/uv- ( ‘/)+V5V (x))(ﬁyév—(x))—

Co
-2—+C8 CB

1
<\ iy =+t
Colyl /' 27 ¢,

Since ]/z; V- ( l/') and % V™ (x) are self-adjoint operators, we find that

N(u:- — BV () —(—0)uv™ (x, l—/y:-))ﬁl
§||((Rel)1¢_ — eV ()—(1 =) /uv- (x, “1}—;»_1“ . (3.54)

By taking ¢>0 small enough so that ;+%<1 we deduce from (3.53), (3.54)
that 0

(1= v-ca-u-ayur=(x %))”gc GV 6s9)

From, (3.29), (3.30), (3.46), (3.49), (3.55), we find that if xe?; y=+0, lylgal/;,
if Ael}, |[Im A|# 1, then

ID(, 2, x, )| £C % (3.56)
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From (3.29), (3.30), (3.45), (3.49) and (3.55), (3.56), we deduce that if xe#”

147w 5 xpisc 2 (3.57)
Clearly
A, x, y, =A%, x, y, )+ A" (u, x, y, 2). (3.58)

Then (3.33) follows from (3.40), (3.43), (3.51), (3.57). [

g. The non diagonal part of the connection V*
and the covariant derivatives of V

Remember that ¥ is the holomorphic Hermitian connection on the vector
bundle F. By Prop. 1.8, we know that on ¥; V¥ coincides with the restriction
of 7¢ to F. Also remember that our computations are done in the graded algebra
A(TEFM)® End &.

We now prove an extension of a result of Berline-Vergne [BeV2, Lem-
ma 1.17]. Set

S=Vs—Ve (3.59)
S is a one form on ¥ x 4, taking values in skew-adjoint elements in End &.
Of course S preserves the Z grading of ¢ and interchanges ¢* and £~

Proposition 3.5. If xe M', Xe(Tx M'),, then Vi V(x) maps F into F*. With respect
to the splitting &y =F @ F*, if xe¥, Ue(TxM),, the matrix of S,(U) is given
by

0 P(%S V)Q(V“‘)“). (3.60)

SO~y romne o
In particular the curvature (VF)? of the connection V¥ is given by the formula
(PFY2 = P(P92 P—P(VEV(V )2 VEV) P (3.61)

Proof. If f is a smooth section of F, then Vf=0, and so if Xe T, M’

(VEV) f+ Vi f=0. (3.62)
From (3.62), we deduce that (V¢ V) fe F*. Also on ¥ x &,, if Ue Ty M
Vs V= v+ S(U)V-VS(U). (3.63)

On ¥, V$ V preserves the splitting &, =F @ F*. Therefore
PVVQ=PS(U)VQ
QVsVP=—-QVSU)P. (3.64)

From (3.64), we deduce (3.60). Taking anticommutation rules into account, (3.61)
is a standard consequence of (3.60). []
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Remark 3.6. When Ue Ty M, (3.60) was already proved in Berline-Vergne [BeV2,
Lemma 1.17], as well as the identity (3.61).

One forms on ¥ x %, are sums of one forms on ¥" and of one forms on
%,. We denote by H the set of one forms of the first kind, and by H* the
set one forms of the second kind. Two forms on ¥ x %, are sums of forms
of type (H, H), (H, H*) or (H*, H*).

Let (x', ..., x*") be a holomorphic system of coordinates on ¥ By definition

Vi Vx, y)=2(dx* V% V(x,y)+dX* V% V(x,y)).

ax* ax*

Using the identification ¢ ,~¢,, we find that FgV(x,y) lies in
(A*(T¢ M) ® End ¢&),. We now identify Ye R?¢ with the vector field (x, Y) = (0, Y)

on ¥ x R%%. Then for any o, [Y, %]:0, [Y, 5%]=0. VE(PV¢ V(x)P)is a well-

defined one form on ¥~ taking values in End F.

Remember that V¢ and V¢ act as differential operators on smooth sections
of A(TFM)® End &

Proposition 3.7. For any xe¥, YeR?¢
P (Vg V)(x) P=VE(PVV(x)P). (3.65)
Proof. Clearly
7 (7 V) (x) =V (g V) ()= [S(Y), Vi V] (x). (3.66)

Also since (F°)? is the curvature of V¢, and since the vector field Y commutes

with the vector fields i, —ar
ox*’ 0x*

V(7 V)(x) =i BV (x)+[(F)*(Y, H), V](x). (3.67)
By Prop. 3.5, Vi V(x) interchanges F and F*. Using (3.66), (3.67), we find that
PREWEVIX)P=P{VEVEV(x)—S(Y)VgV(X)+VEV(x)S(Y)} P (3.68)
On the other hand, we know by (3.29) that
PV V(x)P=FV(x)P (3.69)
and so
PV V(x)P=(FV(x)+ V(x)S(Y)) P (3.70)
Therefore if f is a smooth section of F on ¥; using Prop. 1.8, we find that
(Vi (P V P) f=P{VF(% V+VS(Y) /)= (R V)i f—SH) f)}. (371

and so
VE(PV VP =PV Ve V+(V V) S(Y)+ (i V) S(H)) P. (3.72)
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Using Prop. 3.5, we find that since F;§ V(x) maps F, into FZ, then

P(S(Y) Vi V(x)P=PH V)(x) (V") (x)(V V (x)) P

v (3.73)
P(%V)(x) S(H) P=—P(HF V) (V)™ (x)( V(x) P

From (3.68), (3.72), (3.73), we deduce (3.65). [

h. Contour integrals and superconnection forms

Let 4 be the oriented contour in €

YA
+ A
e - <

>

0 X

> >
_‘l A
Fig. 2

Let A be a (n, n) matrix, and let Sp(4) be its spectrum. We assume that
if ueSp(A4), then [Imu|<1. Let I be the (n, n) identity matrix. We then have
the identity
L exp(=AY)

el A 4* (3.74)

exp(—A?)=

In particular if A is a self-adjoint (n, n) matrix, and if B is a (n, n) matrix
such that ||B| <1, then

1 — 2
exp(—(A4+BP)=5— | E’I‘E(A_; dJ. (3.75)

From (3.75), we deduce that the Taylor expansion of the function B—
exp(—(4+ B))* at B=0 is given by the series

—2—%jexp(—/lz)[(/ll——A)“+(/II—A)“1B(U——A)“+...]dl. (3.76)
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Remember thatA V¢ acts as a first order differential operator on smooth sec-
tions of A(TFM)® & on M, so that if 5, f are smooth sections of A(T¥ M),
£ respectively, then

Ve f)=dn f+(—1) = VEf. (3.77)

The curvature (V%)? of V¢ — which is a smooth section of A2(T# M)® End ¢
— is the square of the differential operator V<.
If e 4, we can write the formal expansion

W =L~/ uV) AL~ uV) VA~ uV) 4. (378)

Note that V¢ is of degree 1 in the Grassman variables in A(T¥ M), and

so the expansion (3.78) in contains only a finite number of terms. Since (V)2

is a differential operator of degree 0, (3.78) is a differential operator of degree

at most 1.

From now on, we consider (3.78) as an identity which defines the left-hand
side of (3.78). We then claim that

_(p¢ oy 1 exp(—4?) 3.79

exp(—(VE+)/uv)?) 27”.3" ué—Vé—l/{,VM' (3.79)

Of course (3.79) should be considered as an identity of formal power series
in A(TFM)®End¢. The fact that (3.79) holds is then a simple consequence
of (3.75)«3.78).

Still the left hand-side of (3.74) is a differential operator of degree 0, while
a priori the right hand side of (3.79) is a differential operator of degree 1. We

now briefly explain why the first order part of the operator (41— 175—-]/; V~!
is killed by integration in (3.79). Note that the supercommutator [V ¢, V7] lives
in A*(TgM)® End £. One has the easy formula

(L= /uV) " + (2 L —uV?) V(AL — Vi /uV)
—( L=V P+ ulV VD), (3.80)

Equivalently, we have the equality

ML=V =)/ uV) ' ={I,— (A2 L—u V) (VP + ) ulVE, VD)~ (A=) uV) !
F (2 —uV?) ') (3.81)

(3.81) expresses (41— 175—[/;V)“1 as the sum of two differential operators of
respective degree 0 and 1. Now observe that the function

o exp(— A2 {I— (A2 I, —u V)~ (P2 +)/ulVe VD) (2 Le—uV?) ™t (3.82)
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is even and so its integral on 4 vanishes. From (3.79), (3.81), we also obtain
exp(—(l7‘5+WV)2)=L [exp(—= A {I,— (A2 I;—uV?)~!
2mi ¢ ¢
PP+ ulVE VI A~ )/uV) Y dA (3.83)
Of course, if we expand {(I,—(4* Ié——qu)_‘((Vé)2+]/1;[l7‘5, V])} ™! as a
formal power series, (3.83) can be interpreted as the Taylor expansion of
exp(—(u V2+1/;[l75, V]+(7%)?). In particular exp(—uV?) is calculated by a

contour integral on the parabole 42 which is the image of 4 by the map 1 — A2.
Also remember that by (3.28), for |y|Ze ]/;, then

Vi

V(x, ﬁ)l >C, Iyl (3.84)

Therefore if y=+0, |y|<Ze¢ 1/1:, the spectrum of the self-adjoint operator
]/;c V(x, L) is contained in the interior of the contour I. So if xe ¥, |y|<e ]/;,
u

y=*0, at (x, y), in (3.79), (3.83), the contour 4 can be replaced by the contour I;.

i. Proof of the convergence

From now on, [V¢, V] (which is a smooth section of A'(T¥M)® End &) will
be denoted V¢V, We take ¥~ and £>0 small enough so that the inequalities
in (3.33) hold. We want to evaluate

im [ (orwo Tr,Lexp(— (75 +}/uV))].
u—+o0 VXBeNVu
The vector bundle o ¢ on ¥" x 4,5 is naturally equipped with the metric
o* h*, the connection ¢} V¢=V} and with the linear map o} V= V(x, %) $O
that for |yl§sl/; u

o* Tr[exp(—(V°+ ]/& V)?)]="Tr, [exp —(Vf + 1/; V(x, %))2] . (3.89)

Remember that if o, is the projection (x, y)e ¥ x &, — 6, (X, y)=Xx, we con-
structed in Sect. 3 €) an explicit identification of £,y , 4, with o% & (which identifies
the Z grading and the metrics). We then consider V° as a connection on ¢* &,

and V(x, L) as an element of End &,.

Vi
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1
Clearly for u= e

Lot )]
- g wmmfeo- {2
+ (o3 ) Tr, [exp<~< o+ u V(x, wyv)))z] (3.86)

¥ X (Be i\ B1)
Set

1(u, l)={(l§—</121§—u & (x, -l}%)))_l(m«:)zﬂ/; e V(x, 1—};))}—1

1

'(l L=}/ V(x’ ﬁ)) ' (387)
Clearly
i e o) o )

.(/1 I—)/u V(x, ﬁ))_l. (3.88)

Using (3.83), we know that

_ 2 1
exp(~(V¢+1/1;V(x,—l}—;)))—2— fep(=) 1w A di. (39)

The connection V° on ¢ obviously converges to the connection V5 which
is the pull-back by o, of the connection V5 on the vector bundle &,. This
means that in a given trivialization of &, the connection forms of the connections
V¢ converge uniformly to the connection form of the connection V¢ together
with their derivatives. In particular if E(u, x, ) is defined by the equation

(%2 (x, y)=(V3)*(x)+ E(u, x, y) (3.90)
then

1E(u, x, y)l = 1/(1+|yl) (3.91)
Clearly if F (u, x, y) is defined by the equation

Vs V(x, %) =VuVEV () +FEVE V() + W V) +Fu, x, ) (3.92)
u
then

1F (u, x, )l = (|y|+|ylz) (3.93)

<o



94 J.-M. Bismut

Remember that by Prop. 3.5, V§ V(x) maps F, into F}:. By Prop. 3.4, we
find that if Ae 4, or if 1eT}, as u— + ©

(,1 I+)/u V(x, ﬁ))_l Vu§ V(x) (ué—ﬁ V(x, ﬁ))_l
— (V) M) V() P(Tp—PVEV(x)P)' P

—PI—PVVX)P) ' P V() (V) 1 +0 (-1—) . (394)

Vo

Using Prop. 3.4 and (3.94), we find that if Ale4, orif e[}, as u— + o0

(/12 Ii—uV? (x, %))~1 VuV§v(x) (izlé—u y2 (x, %))_1 -0 (ﬁ)
-(/12 L—uV? (x, ﬁ))_l VuVs V(x)(,12 L—uV? (x, %))—1 Y V(x)

vl

=P Ir—(PWV(x)P)>) "' P- (G V) (V) 2 (x) (i V()

-P(AIF——PV,?V(x)P)“P—l—O(—l—). (3.95)

Vo
By Prop. 3.7, we know that
PR (Vg V)(x)=Vg (PW V(x) P). (3.96)
From Prop. 3.4, and from (3.95), we find that if Ae4 of if e[}, as u— + o

YN g _ < Ji.) o
(,11¢X+WV(x, W)) VY(VHV)(x)<AI§x ]/;Vx,l/;>
=PI, +PVEV(x)P) ' GE(PVEV(x)P)
(A1 —PVEV(X)P) ' P40 (i) . (3.97)

Va
Also by definition
PV§. V(X)P=PVi.(PV¢ V(x)P).

Using Prop. 3.4, we then find that if Ae4 of if AeI}, as u— 4 oo

(,1 Io.+)/u V<x, ﬁ))_l 7.V (%) (l I,.—)/u V(x, L))~1

u
=PI, +PVEV(x)P) ' VE(PVEV(X) P)
(A1, —PVEV(X)P) ' P+0 (i) .

Ve

(3.98)
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From (3.32), (3.90), (3.92), (3.94), we find that for Aed, as u— + oo, the forms
I(u, A) converge pointwise to a form I(oo, A) on ¥~ x R?%.

Moreover in view of (3.94), it is clear that the terms WV,}V survive in
the limit either when grouped by pair as in the second line of (3.94), or at
the very end of the sum by (3.93). By formula (3.61) for (V¥)?, and by (3.89),
(3.93)~(3.98) we get the explicit formula

I(oo, )=P[ Y {(A*Ir— (PR VP~ (V") +VF PV P)}"]

nz0

(AIg=PWVW VP ' P I:—(PW VPP PVEVI(VT)1Q).  (3.99)
Equivalently

I(0, )=P{Iz— (1 —(PW%VP?) (V') +V PR VP) !
ATy —PW VP ' —(A2 I, —(PW VP PVEV(V)~1Q). (3.100)
Set
J(A)=P{Iz—(221,— (PVEV P Y (VF)2+VF PRV P)} !

“Alg—PWVP)~ L (3.101)

Using the fact that the second term in the right hand side of (3.100) is an
even function of A, we find that

S fexp(—22) I(eo, D dA= 5 [ exp(~13) J(1)d (3.102)

Using (3.83), we also get

exp(— (VF+PV¢VP)2)——2~E [exp(—24%) J(A)dA. (3.103)

For Ae 4, note the estimate

(v u))

A1y, —PVEV(X)P) Y <1.

(3.104)

Using (3.33), (3.93), (3.104), we deduce easily that if xe?] |y|<1, Ae4, the

-1—-) in (3.94)+3.98), which of course are functions
u

of u, x, y, 4, can be dominated by

norms of the various O(

£(1+Iil3). (3.105)

Va
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If G(u, x, y) is the form defined by the relation

(a3 W(x, y)=(0% i* W(x, )+ G(x, y, u) (3.106)
then
[G(x, y, w)|< l/ lullcan (X +1yD). (3.107)
Also if Ae 4, then
lexp(—4%)|=exp(—|ReA[*+1) (3.108)

and so for any peN, |A|P exp(—4?)| is integrable on the contour 4. Using (3.89)
(3.103)«3.108) we find that as u— + oo

ol ) )

<ﬂ ”/‘LHCWM) (3.109)

<7

We now consider the second integral in the right hand side of (3.86). For

a given u>0, we only consider those yeC* such that 1 <|y]| gsﬂ. As pointed
our after Eq. (3.84), instead of Eq. (3.89), we now use the identity

= Ji*u [ Trlexp(-(7F+PHVPP)] <

v Ivls1

2 1
exp (—(Vfﬂ/ﬁz V(x, . )) )=—' [ exp(=2A%) I(u, )di.  (3.110)
1/; 2mi A
If ye#.,s\%,, A, using (3.28), (3.30), we get

v ) Jeon(2)

[ s~ PT V() P)'| Ssup (62— 1).
0

-1

(3.111)

Using (3.33), (3.90), (3.92), we now find that there exists pe N, which is fixed
once and for all, such that if xe?] ye%, ,:\%,, Ael}, the norms of the terms

0 (l—lf—) in (3.93)+3.98) are dominated by
u

C
— (lylP+14[7). 3.112
l/;(Iyl +417) (3.112)

Alsoif 1€,
lexp(—A%)| < eexp(—(Re A)?)

~(Re2)® C3} |J’|2)

geexp( > (3.113)
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Using (3.110), (3.99)+3.103) (with 4 replaced by I}) and (3.111)+3.113) we
find that as u— + o0

e 0o o (Vi< )

—fi*u | Tr[exp(—(7'+ PR VPP

1|yl seVu

C

S—= luller - (3.114)
Vu

On the other hand, by Prop. 3.1, it is clear that

e f Trlexp(—(7 +PRVPPIIS— e -
v eyushl<+w l/

From (3.12), (3.86), (3.109), (3.114), (3.115), we find that

(3.115)

|| uTroexp(—Ad)— | i*u | Try[exp(—=BI)] IS —= lulcian.  (3.116)
z Y N [/

Using the bound after (3.11), (3.112) and also partition of unity, we thus obtain
(3.7) for k=0.

We now briefly explain how to obtain (3.7) for arbitrary ke N. By using
the bound after (3.11) and partition of unity, we may and we will assume that
u verifies the same support condition as in (3.12).

Let x=(x,, x,) be a holomorphic system of coordinates on ¥V such that
n(xy, X,)=x,. Then by our choice of the coordinate y, we know that
n(x;, X5, y)=x,. Therefore any smooth real vector field X, on B lifts naturally
into the vector field (X, 0, 0) in the coordinate system (x,, x,, y). We still note
by X, this vector field. We then will study the behavior as u— + co of

(Ly ) | (a,’fu)Trs[exp(—(Vf+W V(xﬁ))z)] (3.117)

VX BeVu

Observe that if A is taken as in Prop. 3.4, then

- -1

frcvert )

(a1~ 2 ,L»_l. 3.118
(pre-/uv (s 1/)) Yufi 1/)(’5 WV(XW G419

Now V and V¢ preserve the splitting £ =¢" @é* and on M’, V vanishes
on ¢~ =F and maps ¢* =F* into itself. Therefore (F§, V)(x), ..., () V(x) ...
vanish on F and map F* into itself.

In particular, using Prop. 3.4, we find that as u— + o0, (3.118) has an asymp-
totic expansion similar to (3.32), which also starts with a constant term.

Similarly, since WV V(x) maps F into F*, this is also the case for
Vi VEV(x), ..., (7 )V V(x). Using (3.12), (3.86), (3.89), (3.110), (3.118) and by
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proceeding as before, we deduce easily that for any keN, the form
I, j uTri[exp(—A2)] has a limit as u— + oo, and that the norm in C°(B)

Cy
of the difference with the limit can be dominated by —= | pl|cx+1(ar). Since this
u

is true for any X, and any ke N, we obtain (3.7) in full generality. From (3.7),
it follows in particular that as u— + oo

Tr,[exp(—AN)]— | Tr[exp(—B?)] ). in 2'(M). (3.119)
N

Clearly on compact subsets of M\ M’, as u— + oo, the forms Tr[exp(— 42)]
converge uniformly to O together with their derivatives faster than exp(—Cu)
(with C>0). So to establish (3.8), (3.9), we may and we will assume that U
is a small open neighborhood of xoe M’ (1<j<n) of the form 7" x %, chosen
as before. Let u be a smooth differential form on U. We now use the notations
in (3.12).

Let |ull, 2—5‘ be the sup of the norms of x and of the partial derivative
U )
'a—y on U. Clearly 1f|y|§8]/1;
0
Jul +N%H
[(o ) —(a% w(x, y)l éT (I+1yD- (3.120)

Recall that dimM=1[;+1I'". Let &/ be a partial differential operator with
constant coefficients on €“*". In the sequel, ./ will be considered as acting
on the variable xe¥. We now will apply the previous results to the fibration
V" x B,— ¥ with fiber 4,.

From (3.105), (3.108), (3.112), (3.113), (3.118) and from the considerations
which follow (3.118), we find that if ¥~ are small enough, there exist C>0,

C’>0such that if xe?,u=1, yeC%, |y|§s]/1;, then
|/ ¥ Try[exp(— A2)]— o Tr,[exp(—B?)]|< ‘/ exp(—C'|y]»). (3.121)

From (3.120), (3.121) and from the fact that the form Try(— B?)) and its
derivatives decay as | y|— + oo faster that exp(—C” |y|?) (with C"">0), we get

| wot Tr[exp(—AD]— | i*psf Try[exp(—B?)]|
U vV xCej

<&l

Let xe@C*" and pe@* be the variable conjugate to x and y. Set

z=(x,y); &=, 9) (3.123)
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We will denote by (z, &) the real scalar product of z and &. Let ¢ be a smooth
current with support in U. Take «>0. Let I'* be the cone

rr={&=@ 9eC" " |p|sa| 2]} (3.124)

Take me N. We will prove that there exists C>0 such that if £eI™, u>1

=

[EP™1] | €59 ¢(2) Try[exp(— AD]— | &% i* [ Tr,[exp(—B?)]|<-
M M’ N

w
—

(3.125)

Let B, be the differential operator with constant coefficient in the variable
x such that

I)e |2mei<z,§> — Rn(ei<z~§>).
Integrating by parts, we get
|£I27| | €59 ¢ Tr,[exp(— A~ [ &= i* [ Tr,[exp(—B?)]|
M M’ N

=| | =% B (¢ Tr[exp(— 4]

M

~ | &P P* ¢ TryLexp(— B (3.126)

M’ xCe;

Using (3.122) and the fact that the first derivative of the function e'<*%
in the variable y is bounded by | 9|, we get

|22 | €% ¢ Tr,[exp(—AH] — [ e *®i* ¢ | Try[exp(—B?)]|
M M’ N

(3.127)

(1+[9D).
I/

If ¢£=(X, p)el™ then |p|<a|X|. From (3.127), we immediately deduce (3.125).
From (3.125), we obtain (3.8) and (3.9). [

Remark 3.8. In view of results in Hérmander [H, Theorems 8.2.12 and 8.2.13],
(3.7) is in part a consequence of (3.8), (3.9).

Remark 3.9. Note that by (3.78), (3.79), if u is taken as in (3.12), then,

=1

ZjuTrs[exp(—A ij— J xp(——lz)(o,’fu)Trs{(ilé—l/; V(x,lw}tz))
-Vf(ué—lf ( %)) 1..Z¢<AI¢—1/;V(x,~%))—I}d/I. (3.128)
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As explained after (3.79), the integrand in the integral f is considered as a

differential operator. Now by Prop. 3.4, 4

lim (llé—l/;V<x,—y~))_1=Px(/11Fx—PVY¢V(x)P)‘lPx. (3.129)

u—+ oo l/;

By Prop. 1.8, we know that on M’
VE=PV:P. (3.130)
Using (3.129), (3.130), if we take formally the limit in (3.129) without caring
about delicate matters of convergence, we find that as u— + oo
1
[ uTrlexp(=AD] - [ i*po— [ Z [ exp(—2?)
z Y 2miy
Tr{(Alr— P V(X)P) ' VF L VFAL—PVV(x)P)"'}dA. (3.131)
Equivalently, if we use (3.78), (3.79) again, we get
| 1 Tr[exp(— 2]~ | i* u | Tr,[exp(—B2)] (3.132)
VA Y N
which is the right answer stated in (3.7).

Our proof of (3.7) has precisely consisted in making sense of the arguments
in (3.128)+3.132).

Jj. Proof of the Mathai-Quillen identity

Under assumption (A4), we have the identity of holomorphic Hermitian chain
complexes on N(F, 0,0)=(AN*®n, i,). In particular J,v*=j A, and

| Tr,[exp(—B?)]
N

=Tr[exp(— (V"] | Tr,[exp(—(F*N +i,+jA)?)]. (3.133)
N

To prove (3.10) we then can assume that # is the trivial line bundle C,
so that (F, ,v)=(AN*%).(3.10) is then a result of Mathai-Quillen [MaQ, Theo-
rem 4.5], whose proof is reproduced here for later purposes.

Remember that we identify N with N* by the metric of N. The algebra
A(N*)is a Ny Clifford module. Namely if UeN, VeN, set

c(U)=—i)/2iy;  c(V)=—i})/2VA.
Thenif X, XeNON=N;®C
c(X) c(X)+c(X) e(X)=—2<X, X"D.
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If Y=y+ 7, then
ic(Y)

R

The connection PV splits the tangent bundle Ty N into a horizontal part
and a vertical part identified with Ng. If Ye Ng, X €T Ng, let Dy Y be the vertical
component of X. If (h,) is a base of Ty N, if (h*) is the dual base in TFN,
set

Oy,v+0;0*=

(3.134)

c(DY)=—Zh*c(D,, Y).

Then
ic(Y) _ic(DY)+lY]2

i) =

Under assumption (A4), (7¥)? is the action on A(N*) of the curvature tensor
(P™? of the connection VM on N. Let e, ..., e4ny be @ complex orthonormal
base of N, let &,, ..., é;my be the conjugate base of N. We find easily that
under assumption (A4)

(VF)ZZ%«VN)Z €, éj> c(éi)c(ej)~ (3.136)

. (3.135)

(VF+

We now temporarily replace (VV)? by any skew-adjoint endomorphism A4
of N. As in [MaQ, Theorem 4.5], we temporarily that A4 is invertible. The action
A’ induced by 4 on A(N*) is given by the analogue of (3.136)

A'=1{Ae;, ¢;) c(e)cle)). (3.137)

We now proceed as in Mathai-Quillen [MaQ, Lemma 2.12]. Observe that if
X eNg

[c(A™'DY), c(X)]=2{A™'DY, X )eT¥N. (3.138)

From (3.134), we deduce

[c(A~tDY), [c(A™'DY), c(X)]]1=0 (3.139)
and so
ic(A™'DY) _ic(A™'DY) 2i
e V2 cX)e 2 =c(X)+~ﬁ<A"DY,X>. (3.140)

From (3.137), (3.140), we get

ic(A"'DY) _ic(A"DY)
=e V2 Ae 7 —S<AT'DYDY).  (3141)

_ic(DY)

%

A/
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From (3.137) and from the fact that Tr, vanishes on supercommutators [Q],
we obtain

Tr, [exp (— A+ ic‘(;)iY))]= Tr,[exp(—A4')]exp{3<{(A~'DY,DY)}. (3.142)

Classically
Tr[exp(— A')]=det(I —exp A). (3.143)

Therefore from (3.138), (3.139), we get

J Tr, [exp (—A' + ic‘(%Y) ! );lz)]

2
=det(I—epr)_[exp{—D,2'——% (DY, A“‘DY)}. (3.144)
N

With the canonical orientation of Ng, the Pfaffian of (— A4 ~') is given by

L idimN
Pf(—A )_m. (3.145)

Using (3.144), (3.145), we get

[ Tr, [exp (—A’+ i Cl(%y)—lle)]=(2ni)d““”Td'1(—A). (3.146)
N

Then by (3.135), (3.146), if RY =(F™)?, we obtain
{ Tr,[exp(— B?)]=(2 7 )™NTd = (— RY. (3.147)
N

The proof of (3.10), and of Theorem 3.2 is completed. [

Remark 3.10. More generally, we could easily prove that for any keN, as u—
+ 00, 6,(1) has an asymptotic expansion

k g 1
0.00=% " 40 (—) (3.148)
1 u?

. . | . .
where the 6/(u) are forms in P® and O (—m) is uniform on B. Of course
3
u

the 6/(u) are obtained by pairing u with currents supported by M’

Also, if K is any smooth section of End(£), the analogue of (3.6)+3.9) would
still hold for the forms Tr,[K exp(—A2)], whose limit as u— + oo will then
be the current | Tr,[PK P exp(—B?)]dy.. In fact the arguments in the proof

N

of Theorem 3.2 can be reproduced verbatim to treat this more general result,
of which a special case will be needed in Theorem 4.3.
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IV. Number operator and superconnection currents

In Sect. 3, we studied the behavior as u— + oo of the current Tr,[exp(—A42)].
Here we study the corresponding behavior of the currents which appear in
the transgression formulas of [BGS1, Theorem 1.15]. These formulas were
proved again in Theorem 2.4.

This study is essential for the construction of singular Bott-Chern currents
which extend the smooth Bott-Chern forms of [BGS1, Sect. 1¢] to non acyclic
complexes. The construction of such currents is done in a joint work with Gillet
and Soulé [BGS4], and their main properties are studied in [BGS5]. In particu-
lar the microlocal properties of our currents will be constantly used in these
two works.

This Section is organized as follows. In (a), we study the behavior as u— + o0

of the currents Trs[]/;Vexp(—Af)] and in (b), we study the currents
Tr, [Ny exp(— A2)]-

a. The currents Tr, []/1; Vexp(—A2)]

In the sequel, our assumptions and notations are the same as in Sect. 3.

Theorem 4.1. For any ke N, there exists C, > 0 such that for any smooth differential
form uon M, for any u=1

C
I 1 Trg[)/uVexp(— AN llcxa S —7 | llcrs s any - 4.1)
2 Vu
Asu— + o0
Tr,[[/uVexp(—A2)] >0 in Dy (M). 4.2)

If U, I, ¢, m are taken as in (3.4), there exists C >0 such that

C
pu.r.em(Tts[)/uVexp(—A2)] é”ﬁ : 4.3)

Proof. For (x, a)e M x C*, set #(x, a)=(nx, a)e Bx C*. Then the holomorphic
map 7 has essentially the same properties as n (except that B x C* is not com-
pact). Let j be the embedding M’ x C* - M x C*. The vector bundles &, ..., &,
(resp. 1) extend naturally to M x C (resp. M’ x C). Then on M x C*, we have
the exact sequence of sheaves

0— @MXC*(ém)T OpmxexEm-1) - “an Oy xv('fo)"'r—“’f* Op xaes(m)— 0.

The natural holomorphic Hermitian connection on the vector bundle

T 0
E=@¢& on M x C* is given by V¢ +da %+d5_3'
0
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We now restrict aeC* to vary in the open set O={aeC* |a—1|<3}}. By
Theorem 3.2, we know that

. a
lim juTrs[exp( (V§+daé—+da—+]/—(av+av*) )]

u—+ oo z

2
=[i*u | Tr, [exp(—(VF+dai+dd i_+a6yv+day-v*) >] (4.4)
y N da da

More precisely we know that on B x O, for any ke N, u>1, the norm in C*(B x O)
of the difference between the expressions appearing in both sides of (4.4) is

dominated by H Ullcx+1an- The right hand side of (4.4) is a differential form

on B x C*. Usmg Duhamel’s formula, we find that for u=0, there exists a form
7, on B such that on B x {1}

2
| uTr, [exp (——(V<+da -j—a+dé %+l/1;(av+dv*)) )]

z

= [ nTr.lexp(—4N]— | pdaTr.[)/uv exp(—43)]
z z

— [ ndaTr,[)/uv* exp(—A2)]+daday, 4.5)
VA

Similarly there exists a form y on B such that on Bx {1}

2
[exp(—(VF+da§5+da aa_+a6 v+adsv ))]

U f Tr,[exp(—B?)]— jl*uda j Tr,[0,vexp(— B?)]

*pfTr

Y N

=[

Y

— [ i*pda | Tr,[0;0* exp(—B*]+daday. (4.6)
Y N

Now if yeN is considered as a vector field on the total space of N, clearly
i,(PF)2=0. Also
B*=(V"?+VE(PV{v P)— +(PVV P)? 4.7
and so
i,(B)=0,v. (4.8)

The operator i, is a derivation of the Z, graded algebra A(T* Ng) ® End F.
Using Duhamel’s formula, and the fact that the supertrace Tr, vanishes on

supercommutators, we deduce that

i, Try[exp(— B?*)]= —Tr,[d,vexp(—B?)]. 4.9)
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From (4.9), we find that the form Tr,[d,vexp(—B?)] has no component of
maximal degree in the direction of the vector fibers N, and so

| Tr,[d,vexp(—B?*]=0. (4.10)
N
Similarly
i, Tr,[exp(— B2)] = — Tr, [0, v* exp(— B?)] @.11)
and so
| Tr,[0;v* exp(—B*)]=0. 4.12)
N

(4.1) now follows from the statement after (4.4) and from (4.5), (4.12). (4.2)
and (4.3) follow from Theorem 3.2. []

b. The currents Tr,[ Ny exp(— A2)]

Remember that the operator NyeEnd ¢ was defined in Definition 2.3. It maps
fe&, into kfeé,. We still note by Ny the corresponding operator acting on

the Z graded vector bundle F =@F,.
0

The definition of the Todd polynomial Td and of its inverse Td™! was
recalled in Sect. 3c). We now define two other polynomials Td" and (Td ')

Definition 4.2. Let Td’' and (Td ') be the ad-invariant polynomials defined on
(p, p) matrices such that if the diagonal matrix C has diagonal elements

X1, ..., Xp, then
, 0 (& x;+b
o= (2

1

0 P /11— =(x,+b)
e fi(

Td'(C)  (Td™!Y(C)
Td(C)  Td '(C) °

Note that

Observe that the polynomial Td" appears explicitly in Bismut-Gillet-Soulé
[BGS2, Theorem 2.16] in the context of Bott-Chern forms associated with direct
images.

Theorem 4.3. Let p be a smooth differential form on the manifold M. For u=0,
let n,(n) be the smooth differential form on B

nu(w)= | wTr,[Ny exp(—AD]— [ i*p | Tr,[Nyexp(—B*].  (4.14)
z Y N
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Then for any ke N, there exists C,>0 such that for any smooth differential for
pwonM,and any uz1

C
”ﬂu(/v‘)“c'c(s)éﬁ 2l v s gy - (4.15)
Also as u— + o0,

Tr,[Ngexp(—A2)] - | Tr,[Ngexp(—B?)]dy  in Dy (M).  (4.16)
N

If U, I, ¢, m are taken as in (3.4), there exists C' >0 such that
C
Pu.r.¢.m(Tt; [Ny exp(—A2)]— | Tr,[Ngexp(—=B*)]opy)S—. (4.17)
~ Vi
The smooth differential form on M’ | Tr,[ Ny exp(—B?)] is closed. If the met-
N

rics h%, ..., h*m on the vector bundles &, ..., &, verify assumption (A) with respect
to the metrics gV, g" on N, n, then we have the equality of differential forms
on M’

| Tr, [Ny exp(—B)]= —(2in)*™N(Td ') (= R") Tr[exp(—(V"?)]. (4.18)
N
Proof. As was pointed out in Remark 3.10, the proof of (4.14)(4.17) is strictly

similar to the proof of (3.7}+3.9) in Theorem 3.2.
By Theorem 2.4, we know that on the total space of the manifold N

OTr [Ny exp(—B?)]= —Tr,[0,v* exp(— B?)]

0Tr,[ Ny exp(—B*)]=Tr,[0,vexp(—B?]. (*.19)
On the other hand, we also have
3 [ Tr, [Ny exp(—B*)] = [ 0Tr,[Ny exp(—B)]
) ) (4.20)

0 | Tr,[Nyexp(—B*)]= | 0Tr,[ Ny exp(— B?)].
N N

~

From (4.10), (4.12), (4.19), we deduce that the form [ Tr,[ Ny exp(— B?)] is closed.
N

We now prove (4.18). We take ey, ..., egimy as in (3.136) and we use the
notations of Sect. 3j). One finds easily that

Ny=—31Iye; &) c(&)cle). (4.21)
Also using (3.135), we find that

Tr,[ Ny exp(—BZ)]=% Tr, [exp<-((VF)2~bNH— icDY) +'—ﬁi))]b . (422

T/
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From (3.146), (4.21), (4.22), we get

gl -0 )

%

=(2im)%mN¥ Td~ (= RN —b Iy) Tr[exp(—(V"?)]. (4.23)

(4.18) follows from (4.22), (4.23). [
Remark 4.4. Let Y be the real vector field on N

=)/ ~1(y—.

Y generates the group of transformations ye N — ¢'* ye N. Then one verifies easily
that for any beR

(d+big) Tr,[exp(—B*+b]/ —1 Ny)]=0. (4.24)

Using (4.9), (4.11) and (4.24), (4. 019) follows. In fact —]/ —1 Ny is the moment
map associated to the action of Y on A(N*) in the sense of [ABo], [BeV1].
(4.24) can then be viewed as a special case of a result of Berline-Vergne [BeV1].

V. Convergence of superconnection currents on submanifolds:
the non transversal case

We here study the convergence of superconnection currents associated with
a complex of vectors bundles which is still acyclic out of a submanifold, but
which does not provide a resolution of the sheaf of sections of a vector bundle
on the submanifolds. To do this, we essentially restrict the currents considered
in Sects. 3 and 4 to a submanifold which does not intersect M’ transversally.

Although the general strategy of the computations is the same as in Sect. 3,
the explicit formulas which extend the formula of Mathai-Quillen [MaQ, Theo-
rem 4.5] are very interesting. Their calculation makes explicit use of basic proper-
ties of the Berezinian [M, p. 166] in supergeometry.

This section is organized as follows. In (a), we introduce our assumptions.
In (b) we study the convergence of superconnection currents.

a. Assumptions and notations

We make the same assumptions as in Sect. 1a), and we use the same notations.
Let M, be a complex submanifold of the manifold M. We assume that
1=M'nM, is a complex manifold and that TM|=TM'nTM,. We also
assume that the restriction of © to M, (resp. to M) is a holomorphic submersion
from M, (resp. M}) to B. Let Z, (resp. Y;) be the fibers of the submersion
n: M, — B (resp. n: M| — B).
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Let N, be the normal bundle to M) in M,. Let N, be the holomorphic
vector bundle on M
- ™™

Ny=———" . .
" TM +TM (5-1)

Then we have the exact sequence of holomorphic vector bundles on M)
0-»N,->N-N, -0. (5.2)

If the vector bundle N is equipped with a smooth Hermitian metric g",
we equip N; with the induced metric. We also identify N, to the orthogonal
Ni to N, in N, and so we equip N, with the metric g"' induced by the metric
g". Let RV, R, R" be the curvatures of the corresponding holomorphic Hermi-
tian connections ¥, PN, PNt on N;, N, N;.

Recall that M, is transversal to M’ if TM=TM,+ TM’, or equivalently
if N;={0}, so that N~N,. Here we will be essentially interested in the case
where M is not transversal to M'.

Let i, be the embedding M| - M. Let j be the embedding M, — M. Consider
the complex of sheaves

0= Oty )= Ony (Emm 1) = o = O (Eo)—— 12 Opgy (1) — 0. (5.3)

Using the local description (1.5) of the complex (&, v) near M’ in terms of
the Koszul complex of N, we deduce easily that the complex of sheaves (5.3)
is exact if and only if M, is transversal to M.

b. Convergence of superconnection currents on submanifolds

We now will prove a generalization of Theorem 3.2.

|, [ denotes integral along the fiber of differential forms along n=M, — B,
Zy Yy

n: M- B.

Theorem 5.1. Let u be a smooth differential form on the manifold M. For uz=0,
let 0, ,(u) be the smooth differential form on B

01.u(W= | pj* Tr,Lexp(—A4D]— [ itp | Tr[exp(—B?)]. (5.4)
Zy Yy

Ny

Then for any ke N, there exists C, >0 such that for u=1

C
Ilel,u(ﬂ)”Ck(B)éﬁ ”ﬂ”C’”‘(Ml)' (5-5)
Also as u— + oo

Jj* Tr,[exp(=AD] > [ Tr,[exp(=B*)]6y;  in Dy, (M,). (5.6)

N,
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The obvious analogue of (3.9) still holds. If the metrics h°, ..., h*= on the
vector bundles &, ..., &, verify assumption (A) with respect to the metrics gV
and g" on N and n, then we have the identity of differential forms on M

| Try[exp(—BY)]=(2in)*™" (Tr,[exp(—(F")?)] Td ™' (— RY) det(— R™).
" (5.7)

Proof. The first part of Theorem 5.1 can be proved by the same method as
the first part of Theorem 32, simply replacing | uTr,[exp(—AZ2)] by
| uTr,[exp(—AZ)] at every stage. z

VA

In particular the coercitivity conditions (3.3) and (3.13) still hold under over
new assumptions. So we now concentrate on the proof of the identity (5.4).

We use the same notations as in Sect. 3j, where the identity (3.10) of Mathai-
Quillen [MaQ] was proved.

Our starting point is the identity (3.144). In particular we recall that in
(3.144), DY is calculated with respect to the connection VY. If 4 is a skew-adjoint
endomorphism of N, which we temporarily assume to be invertible, we deduce
from (3.144) that if A" is given by (3.137), then

N{ Trs[exp(—A’ﬁLic‘(;)EY)—ll;lz)]

|Y|?

=det(I—exp A4) | exp{ —% (DY, A"‘DY>}. (5.8)

We now evaluate the Gaussian integral in the right hand side of (5.8) by
the method of Berezin integration.

Let P be the orthogonal projection operator from N on N;. Clearly we
have the identity of connections on N;

pNi=pPPVP. (5.9)

Then Q=1— P is the orthogonal projection operator from N on Nj*. Remember
that we identify N;* and N, as C® vector bundles on M. Also N, is exactly
the unique homology group of the chain complex 0 — N, - N — 0. By Prop. 1.8,
we get the identity of connection on N,

M=V Q. (5.10)

Let V'=VN1@ V¥ be the orthogonal sum of the connections V¥ and V™
on N~N, ® Ni. Set

S=V_vy. (5.11)

Then S is a one form on M’ with values in skew-adjoint elements of End N
which interchange N; and Nj-.
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We now perform a reduction of squares in the two form (DY, A"'DY).
If YeNg, XeT Ny, let DY be the vertical component of X in Ni with respect
to the connection V. Clearly if Ye N, p, if we restrict the two form (DY, A"'DY)
to vectors in T N, g — which is the case in (5.8) —, we obtain
(DY, A"'DY)>={(D'Y+SY, A" (D'Y+SY))
=(D'Y,AT'D'Y>+2{(D'Y,PA"1QSY)

—<KY,SQA"1QSY). (5.12)
Set
B=PA"'P.

Assume temporily that B is also invertible. From (5.11), (5.12) we obtain
(DY,A"'DY)>=<(D'Y+B 'PA 'QSY,B(D'Y+B 'PA~'QSY)>
+{(PA 'QSY,B"1PA1QSY)—<Y,SQA'1QSY)
={(D'Y+B 'PA 'QSY,B(D'Y+B 'PA 'QSY))
—(Y,PSQ(A"'—A"'PB 'PAY)QSPY). (5.13)

Let ¢ be the two form on M| with values in End N,

U, VeTyM|; > ¢(U,V)=—PS(U)Q(A ' —A"'PB 'PA Y QS(V)P
+PS(V)Q(A '—~A"'PB 'PA"YQS(U)P.
Observe that
o*(U,V)=9(U, V).
Therefore if End*(M,) is the set of self-adjoint operators in End (N,), then
¢ A*(T¢ M) ® End*(M,).

Using (5.13), and noting that integration along N, saturates all the Grassmann
variables D' Y, we obtain

—|YP? 1
det(I—exp A) | exp{*|—|~—<DY, A“DY}}
Ny 2 2
=(2im)4imN: det(I —exp A) det(— B) det !
-(Iy,—PSQ(A~'—A'PB~'PA"")QSP). (5.14)
We may express A~ ' in matrix form with respect to the splitting
N=N, ® N{. We get
B E;

A= . 5.15
o (5.15

Then
QA '—-A"'PB 'PA"YQ=B—-E,B'E|] (5.16)



Superconnection currents and complex immersions 111

and so if Q AQ is invertible
QA '—A'PBT'PATY)Q=(QAQ)" . (5.17)
On the other hand, one has the trivial relation
(det A)(det By=det(Q A Q). (5.18)
So from (5.14), (5.17), we get

—YP?

det(I—exp A) | exp{
Ny

=Q2im)m M Td™!(—A)det(—QAQ)det ' (Iy,—PS(QAQ)"'SP). (5.19)
Set

—%(DY,A“DY)}

C=[ Ix, PS(‘)Q]. (5.20)

98P QAQ

The algebra End N is naturally Z, graded, the even (resp. odd) elements
preserving (resp. exchanging) N; and Ni. C is then even A(TF M,)®End N.

Let Ber Ce A(Tg M) be the Berezinian of C [M, p 166]. By definition, we have
Ber C=det(Iy,—PSQ(QAQ) ' QSP)det(QAQ)™1). (5.22)

On the other hand using a formula in [M, p 167] — which expresses in an
essential way the fact the Berezinian is a homomorphism — we also know that

Ber C=det((Q4AQ—QSPSQ)™ ). (5.22)
From (5.18)—(5.22), we obtain

2
det(I—exp 4) | exp{ Y
Ny 2

=2in)dim N Td~1(— A) det(—QAQ+0S2 Q). (5.23)

——12-<DY,A“DY>}

Note that in (5.22), all the invertibility conditions can be released. From
(5.6), (5.22), we find that

[ Tr,[exp(— B?)]=(2imf™™ Td~'(— RV det(— Q(R*~52) Q) (5.29)
Ny

Now one verifies easily that
R¥M=Q(R"-5%Q. (5.25)
(5.4) follows from (5.23)+5.25). [

Remark 5.2: Equation (5.7) can be rewritten in the form

[ Tr,[exp(—B?)]
N

— Qim)mh [%‘5%%] det(I—exp(RM) Tr[exp(—(7)?)]. (5.26)
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Equation (5.26) is especially interesting in view of the fact that by [SGAG6, p 431]
Tor(Op(8), On,) =0, (ANT®J* n). (5.27)

The obvious extension of Theorem 4.1 still holds here, simply replacing in

formula (4.1) { by [ . The proof is of course exactly the same.
z Z

We now will prove an extension of Theorem 4.3.
Definition 5.3. Let det’ be the ad-invariant polnomial on (p, p) matrices such
that if C is a (p, p) matrix
0
det’(C) =2 {det(C+bI)}. (5.28)

Theorem 5. Let p be a smooth differential form on the manifold M. For u=0,
let 1y ,(u) be the smooth differential form on B

Niw(@= | wj* Tr,[Nyexp(—AD]— [ it p | Tr,[Ngexp(—B*]. (5.29)
Zy Yy

Ny

Then for any ke N, there exists C,>0 such that

C
||'71,u(#)“€k(3)§7:l [l 1/l g+ 1(My) - (5.30)
Asu—+ oo

J* Try[Nyexp(—AD)] - | Tr,[Ngexp(—B*)]dy, in Dy (M,). (531)
Ny

Also the obvious analogue of (4.17) still holds in this case.
The smooth differential form on My [ Tr,[Nyexp(—B?)] is closed. If the

N,
metrics h%, ..., h°~ on the vector bundles &, ..., &, verify assumption (A) with
respect to the metrics g¥ and g" on N and n, then we have the equality of differential
forms on M

| Tr,[Nyexp(—B»)]=—Q2in)%™N {(Td~'y(—R")det(— RM1)

+Td ™ !(—RM) det'(— R™)} Tr[exp(—(V")?)]. (5.32)

Proof. The proof of the first two parts of Theorem 5.3 is identical to the proof
of Theorem 4.3. Using (4.21), (4.22), and also (5.23), (5.25) instead of (3.146),
we obtain (5.32). The Theorem is proved. []
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