Quadric surfaces fibrations over the real projective line joint work with Alena Pirutka

Jean-Louis Colliot-Thélène CNRS et Université Paris-Saclay

Workshop on algebraic cycles 30. September – 2. Oktober 2024 Leibniz Universität Hanover

1 / 27

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Basic rational varieties over an algebraically closed field : quadrics ; total space of a family of positive dimensional quadrics over the projective line.

A basic birational invariant of smooth, projective, geometrically connected varieties X over the field $\mathbb R$: the number of connected components of the topological space $X(\mathbb{R})$.

Beniamino Segre (1951) : a smooth real cubic surface $X \subset \mathbb{P}^3_\mathbb{R}$ is R-unirational, is C-rational, but if $X(\mathbb{R})$ has two connected components, it is not $\mathbb R$ -rational.

A smooth, projective, geometrically rational surface X over $\mathbb R$ is R-rational if and only if $X(\mathbb{R})$ is nonempty and connected (Comessatti 1913, Silhol 1989). Proof uses birational classification. Suppose $X(\mathbb{R})$ nonempty and connected and X is rational over \mathbb{C} .

Is $X \mathbb{R}$ -rational?

(Weaker) Is X stably $\mathbb R$ -rational?

(Weaker)

Is X universally Chow-trivial : for any overfield F/R , is the degree map $deg_F : CH_0(X_F) \to \mathbb{Z}$ an isomorphism? (Equivalently, there is a decomposition of the diagonal for X/\mathbb{R}) Enough to prove it for $F = \mathbb{R}(X)$.

Over any field k , the question of rationality over k of geometrically rational threefolds X/k has been the topic of works of Hassett-Tschinkel and Benoist-Wittenberg. The IJT (intermediate Jacobian torsor) method is an extension to arbitrary ground fields of the method used by Clemens-Griffiths to disprove rationaliy of cubic threefolds over C.

Let us consider $X = X_{2,2} \subset \mathbb{P}^5_\mathbb{R}$ a smooth complete intersection of two quadrics. Over $\mathbb C$, rational. Over $\mathbb R$, the IJT method gives non- $\mathbb R$ -rationality of X when X contains no real line (may happen with $X(\mathbb{R})$ connected). It does not give information on stable rationality or universal $CH₀$ -triviality.

Let $X \to \mathbb{P}^1_\mathbb{R}$ be a family of quadrics of relative dimension $d \geq 1$. with smooth total space X/\mathbb{R} .

 $X_{\mathbb{C}}$ is rational. If $X(\mathbb{R})$ is nonempty, X is \mathbb{R} -unirational (exercise).

If $X(\mathbb{R})$ is connected, is X rational over \mathbb{R} ? Is it at least stably rational ? Is it universally $CH₀$ -trivial ?

For $d = 1$, yes for all questions. We shall consider the case $d = 2$, quadric surface fibrations.

First negative answer, $d = 2$

Let X be a smooth projective model of the variety given by the equation

$$
x^2 + (1 + u^2)y^2 - u(z^2 + t^2) = 0
$$

in $\mathbb{P}^3\times \mathbb{A}^1$, coordinates $(x,y,z,t;u)$.

Real points cover exactly $u \geq 0$, real fibres are connected. This gives connectedness of the real locus. Over $u = 0$ and over $u = \infty$ the family degenerates to two conjugate planes. One computes $Br(X)/Br(\mathbb{R}) \neq 0$. The class $(-1, u) \in Br(\mathbb{R}(X))$ is not in the image of $Br(\mathbb{R})$ and is unramified.

This implies that X is not universally CH_0 -trivial, hence not R-rational and not even stably R-rational.

Definition (for this talk).

Let k be a field of char. 0. Let $X \to \mathbb{P}^1_k$ be a quadric surface fibration. We call it a **good fibration** if X/k is smooth projective and all the geometric fibres of $X \to \mathbb{P}^1_k$ are geometrically integral.

In other words, the fibres are smooth or cones over a smooth conic.

The previous example is not a good fibration.

For good fibrations, $Br(k) \to Br(X)$ is onto.

A reminder on quadric surface fibrations

Given a field k, say of char. zero, and a quadric surface fibration $X \to \mathbb{P}^1_k$ the generic fibre is a smooth quadric $Y \subset \mathbb{P}^3_K$ where $K = k(\mathbb{P}^1)$. Let q/K be a 4-dimensional quadratic form defining Y. Let L/K be the quadratic extension defined by the discriminant of q.

Thus $L = k(\Delta)$ for Δ a smooth projective curve over k. For any smooth plane (conic) section Z/K of $Y\subset \mathbb{P}^3_K$, the associated quaternion class in $Br(K)$ has image a class $\beta \in Br(L)$ uniquely defined by X/\mathbb{P}^1_k . We have $Y \simeq R_{L/K}(Z_L)$. If X/\mathbb{P}^1_k is a good fibration, we have $\beta \in \mathrm{Br}(\Delta)$.

Back to the problem : Second negative answer, $d = 2$

What about good fibrations ?

In the 2021 paper by Hassett and Tschinkel, one finds examples of smooth $Y_{2,2}\subset \mathbb{P}^5_\mathbb{R}$ with $Y(\mathbb{R})$ connected and Y not \mathbb{R} -rational because of IJT obstruction.

One may birationally transform this into a good quadric surface fibration $X \to \mathbb{P}^1_{\mathbb{R}}$ with 6 geometric singular fibres. Here the quotient $Br(X)/Br(\mathbb{R}) = 0$, $X(\mathbb{R})$ is connected and X is not rational over R.

Under the additional assumption :

The class of $\beta \in \text{Br}(\Delta) \subset \text{Br}(k(\Delta))$ is not in the image of $Br(k) \rightarrow Br(k(\Delta))$

Wittenberg (2023) applies the IJT method to quadric surface fibrations X/\mathbb{P}^1_k with at least 6 geometric singular fibres, with application to the problem over the reals. For instance $X/\mathbb{P}^1_{\mathbb{R}}$ given by the affine equation

$$
(u2 - 1)x2 + (u2 - 2)y2 + (u2 - 3)z2 = 1
$$

is not rational over $\mathbb R$ but $X(\mathbb R)$ is connected.

The IJT method does not work without the additional assumption.

The following problems remain :

Suppose $\rho:X\to\mathbb{P}^1_\mathbb{R}$ is a *good fibration* Suppose $X(\mathbb{R})$ is connected.

(1) Is X/\mathbb{R} stably rational? Is it universally CH_0 -trivial?

(2) If the *additional assumption* fails, is X rational over \mathbb{R} ?

In this talk, we shall concentrate on a very concrete case. Let $p(u) \in \mathbb{R}[u]$ a monic, nonconstant, even degree, separable, polynomial, strictly positive on $\mathbb R$. One easily constructs a good family of quadric surfaces $X/\mathbb{P}^1_{\mathbb{R}}$ which is a birational model of the affine variety with equation

$$
x^2 + y^2 + z^2 = u.p(u),
$$

with the projection given by the u coordinate. For the purpose of this talk, we shall call such a fibration a special quadric fibration. The space $X(\mathbb{R})$ is connected. The curve Δ is given by $w^2 = v.p(-v)$. The additional assumption fails. Indeed β is given by $(-1, -1)$. So the IJT method may not be used.

Is X rational over \mathbb{R} ? is X stably rational over \mathbb{R} ? Is it universally $CH₀$ -trivial?

Theorem Let $X/\mathbb{P}^1_\mathbb{R}$ be a special quadric fibration with affine equation

$$
x^2 + y^2 + z^2 = u.p(u).
$$

Let Δ/\mathbb{R} be the smooth projective curve with affine equation

$$
w^2 = v.p(-v).
$$

Let W/ $\mathbb R$ the fourfold given by $W := X \times_{\mathbb R} \Delta$. (1) The cup-product $(u + v, -1, -1) \in H^3(\mathbb{R}(W), \mathbb{Z}/2)$ is unramified over $\mathbb R$. It vanishes if and only if the rational function $u + v \in \mathbb{R}(W)$ (a sum of 6 squares) is a sum of 4 squares in $\mathbb{R}(W)$. (2) The following conditions are equivalent : (2a) The variety X is universally CH_0 -trivial. (2b) For $F = \mathbb{R}(\Delta)$, the map $H^3(F, \mathbb{Z}/2) \to H^3_{nr}(F(X)/F, \mathbb{Z}/2)$ is an isomorphism.

(2c) The rational function $u + v \in \mathbb{R}(W)$ is a sum of 4 squares.

Ingredients of the proof.

Results in algebraic K-theory and quadratic forms (Arason, Merkurjev, Suslin, Kahn-Rost-Sujatha).

Study of Chow groups of zero-cycles for threefolds fibred into quadric surfaces over the projective line [CTSk] CT-Skorobogatov, J. K-Theory 7 (1993).

Let $A_0(X) \subset CH_0(X)$ the group of degree zero cycle classes. Let X/\mathbb{P}^1_k be a good nonconstant quadric surface fibration X/\mathbb{P}^1_k . Let the double cover Δ/\mathbb{P}^1_k and $\beta\in\mathrm{Br}(\Delta)[2]\subset H^2({k(\Delta)},\mathbb{Z}/2)$ as above. .

[CTSk] gives an **injection** $\Phi: A_0(X) \hookrightarrow H^3_{nr}(k(\Delta)/k, \mathbb{Z}/2)/[H^1(k, \mathbb{Z}/2) \cup (\beta)].$

Let $X \to \mathbb{P}^1_\mathbb{R}$ be a special quadric fibration. Here $\Delta(\mathbb{R}) \neq \emptyset$ and $\beta = (-1,-1)_{\mathbb{R}}$ (the additional assumption fails). Let $W = X \times_{\mathbb{R}} \Delta$ Using precisely this, taking $k = \mathbb{R}(X)$, using [CTSk], we prove : the image under Φ of the difference between the generic point of X and an R-rational point above $u = \infty$ vanishes (that is, X/\mathbb{R} is universally CH_0 -trivial, that is, there is a decomposition of the diagonal for X/\mathbb{R}) if and only if $(u + v, -1, -1) = 0 \in H^3(\mathbb{R}(W), \mathbb{Z}/2)$, if and only if $u + v$ is a sum of 4 squares in $\mathbb{R}(W)$.

Proving universal CH_0 -triviality via (2c) : hypotheses on $p(u)$ ensuring that $u + v \in \mathbb{R}(W)$ is a sum of 4 squares

16 / 27

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

$CH₀$ -triviality via sums of 4 squares, $p(u)$ of degree 2

Theorem. Let $p(u) = u^2 + au + b \in \mathbb{R}[u]$ be separable and nonnegative. Let $X/\mathbb{P}^1_\mathbb{R}$ be a special quadric fibration with affine equation

$$
x^2 + y^2 + z^2 = u.p(u).
$$

If $b \ge a^2/3$, then X is universally CH₀-trivial.

This covers the case $p(u) = u.(u^2 + 1)$ but does not cover the range $a^2/3 > b > a^2/4$.

Proof. Recall that Δ is defined by $w^2 = v.p(-v)$, and $W = X \times_{\mathbb{R}} \Delta$. In $\mathbb{R}(u, v)$,

$$
up(u) + vp(-v) = (u + v)(u2 - uv + v2 + au - av + b) =
$$

= $(u + v) \left(\left(u + \frac{a - v}{2} \right)^{2} + \frac{3}{4} \left(v - \frac{a}{3} \right)^{2} + b - \frac{a^{2}}{3} \right).$

Since $b-\frac{a^2}{3}\geq 0$, $\frac{up(u)+vp(-v)}{u+v}$ is a sum of 3 squares in $\mathbb{R}(u,v)$, hence a sum of 4 squares. In $\mathbb{R}(W)$, we have

$$
x^2 + y^2 + z^2 + w^2 = up(u) + vp(-v).
$$

Thus $u + v$ is a sum of 4 squares in $\mathbb{R}(W)$.

 $CH₀$ -triviality via sums of 4 squares, $p(u)$ of higher degree Theorem. Let $X/\mathbb{P}^1_\mathbb{R}$ be a special quadric fibration with affine equation

$$
x^2 + y^2 + z^2 = u.p(u).
$$

Let $p(u) = u^{2n} + \sum_{i=0}^{n-1} a_{2i}u^{2i}$. If $a_0 > 0$ and $a_{2i} \ge 0$ for all $0 < i < n$. then X is universally CH₀-trivial.

Theorem. Let $X/\mathbb{P}^1_\mathbb{R}$ be a special quadric fibration with affine equation

$$
x^2 + y^2 + z^2 = u.p(u).
$$

Let $p(u) = u^{2n} + \sum_{i=0}^{2n-1} a_i u^{2i}$. There exists a nonempty open set $U \subset \mathbb{A}^{2n}(\mathbb{R})$ such that for any $(a_0, \ldots, a_{2n-1}) \in U$, the associated variety X is universally $CH₀$ -trivial.

Universal Chow triviality for $deg(p) = 2$ via the criterion : (2b) For $F = \mathbb{R}(\Delta)$, the map $H^3(F, \mathbb{Z}/2) \rightarrow H^3_{nr}(F(X)/F, \mathbb{Z}/2)$ is an isomorphism.

Theorem. Let $p(u) \in \mathbb{R}[u]$ be a positive polynomial of degree 2. Let $X/\mathbb{P}^1_\mathbb{R}$ be a special quadric fibration with affine equation

$$
x^2 + y^2 + z^2 = u.p(u).
$$

Assume that the elliptic curve E/\mathbb{R} defined by $z^2=u.p(u)$ has "odd" complex multiplication, namely $End_{\mathbb{C}}E = \mathbb{Z}[\omega]$, with $\omega^2 - d\omega + c = 0$, c, $d \in \mathbb{Z}$ and d odd. Let Δ be defined by $w^2 = v.p(-v)$. Let $F = \mathbb{R}(\Delta)$. Then the map $H^3(F,{\mathbb Z}/2)\to H^3_{{\mathrm{nr}}}(F(X)/F,{\mathbb Z}/2)$ is an isomorphism, and the variety X is universally $CH₀$ -trivial.

Main points of the proof

Let F be any overfield of $\mathbb R$. We consider the birational conic bundle fibration $X_F \rightarrow {\mathbb P}^2_F$ induced by the projection map

$$
(x, y, z, u) \mapsto (z, u) \in \mathbb{A}^2 \subset \mathbb{P}^2.
$$

The fibration is ramified along the elliptic curve $E_F \subset \mathbb{P}^2_F$ with affine equation $z^2 = u.p(u)$ and possibly along the line at infinity. By general K-theory results on conics, and a standard analysis of residues and their functoriality, one shows that any class $\beta\in H^3_{nr}(F(X)/F,\mathbb{Z}/2)$ trivial at an F -point is the image of a class $\alpha \in H^3(\overline{F}(\mathbb{P}^2), \mathbb{Z}/2)$ whose residues aways from $E_{\mathcal{F}}$ and the line at infinity of \mathbb{P}_F^2 are zero, and whose residue at E_F belongs to $\mathrm{Ker}[\mathrm{Br} (E_{\mathsf{F}}) \to \mathrm{Br} (E_{\mathsf{F}'})]$, where $\mathsf{F}':=\mathsf{F} (\sqrt{-1}).$ We would like to get rid of this possible residue.

Let $G = \mathbb{Z}/2 = \text{Gal}(F'/F)$. We have a standard exact sequence

 $0 \to H^2(\mathit{G},\mathit{F}') \to \operatorname{Ker}[\operatorname{Br}(\mathit{E}_\mathit{F}) \to \operatorname{Br}(\mathit{E}_{\mathit{F}'})] \to H^1(\mathit{G},\operatorname{Pic}\left(\mathit{E}_{\mathit{F}'}\right)) \to 0.$

Let $F = \mathbb{R}(\Delta)$. The G-lattice $M := Hom_{\mathbb{C}}(\Delta_{\mathbb{C}}, E_{\mathbb{C}})$ is isomorphic, as an abelian group, to $End_{\mathbb{C}}(E_{\mathbb{C}})$, which is abstractly \mathbb{Z} or $\mathbb{Z} \oplus \mathbb{Z}$ (last case, complex multiplication).

Using $E(\mathbb{R})$ connected, one gets $H^1(G,\mathrm{Pic}\,(E_{F'})) \simeq H^1(G,M).$ So the obstruction to solving our problem lies in the finite group $H^1(G, M)$, which one may show is either 0 or $\mathbb{Z}/2$.

Key technical result :

Proposition. Assume that the elliptic curve E/R defined by $z^2=u.p(u)$ has "odd" complex multiplication, namely $End_{\mathbb{C}}E = \mathbb{Z}[\omega]$, with $\omega^2 - d\omega + c = 0$, $c, d \in \mathbb{Z}$ and d odd. Let Δ be defined by $w^2 = v.p(-v)$. Let $F = \mathbb{R}(\Delta)$ and $F' = F(\sqrt{-1})$. Then $H^1(G, \text{Pic}(E_{F'})) = H^1(G, M) = 0.$

Under this hypothesis, the residue of α at E_F is of the shape $(\delta, -1)$ with $\delta \in F^\times$. Over \mathbb{A}_F^2 the classes α and $(\delta, z^2 - \mu \rho(\mu), -1)$ have the same residues. Their difference is thus in $H^3(F,\mathbb{Z}/2)$. Since $-(z^2-up(u)=x^2+y^2$ in $\mathbb{R}(X)$, the image of $(\delta, z^2 - up(u), -1)$ in $H^3(F(X), \mathbb{Z}/2)$ is $(\delta, -1, -1)$ hence comes from $H^3(F,\mathbb{Z}/2)$. QED

Comparing the two methods for $deg(p) = 2$

Let E/\mathbb{R} be the elliptic curve with equation $z^2 = u.(u^2 + au + b)$, $a, b \in \mathbb{R}$. We assume $b > 0$ and $0 \le a^2/b < 4$. One computes

$$
j(E) = 256[3 - (a^2/b)]^3/[4 - (a^2/b)] \in \mathbb{R}.
$$

 $0\leq \mathsf{a}^2/\mathsf{b}\leq 3$ if and only if $\mathsf{j}(E)\geq 0$, and then $0\leq \mathsf{j}(E)\leq 1728.$ $3 \leq a^2/b < 4$ if and only if $j(E) \leq 0$. $a^2/b = 3$ corresponds to $j(E) = 0$ and $a^2/b = 0$ to $j(E) = 1728$

24 / 27

 $\mathbf{A} \equiv \mathbf{A} + \math$

Chow triviality for $x^2 + y^2 + z^2 = u.(u^2 + au + b)$, with $b > 0$ and $a^2 - 4b < 0$.

First method (sum of squares) This works for all (a,b) , with $b>0$, $0\leq a^2/b\leq 3$, i.e. any $j(E) > 0$. Here $j(E)$ takes all values in [0, 1728].

Second method (conic bundle fibration and E had odd complex multiplication). For $3 < a^2/b < 4$, i.e. $j(E) < 0$, this is the only method we have. So we do not know what happens if such E does not have complex multiplication or has even complex multiplication.

For E with odd complex multiplication, the invariant $j(E) \in \mathbb{R}$ is algebraic, the values it takes are in $[-\infty, 1728]$.

Theorem (Yu. Zarhin) : these values are dense in $[-\infty, 1728]$.

In a recent paper, Zarhin systematically analyzes odd versus even complex multiplication.

Examples for which we can prove X is universally CH_0 -trivial

 $p(u) = u^2 - 3u + 3$ E is given by $z^2=(u-1)^3+1.$ It has complex multiplication by ω with $\omega^2+\omega+1=$ 0. This it has odd CM. Here $j(E)=$ 0. Both methods apply.

 $p(u) = u^2 + 1$ E is given by $z^2 = u(u^2 + 1)$. It has $j(E) = 1728$. The first method applies. The curve E has CM by $\omega=$ √ $\overline{-1}$, but $\omega^2+1=0$ hence it is not odd CM. The second method does not apply.

 $p(u)=u^2-21u+112.$ Here $j(E)< 0,$ the first method does not apply. The curve has complex multiplication by $\mathbb{Z}[\omega]$ with apply. The curve has complex multiplication by $\mathbb{Z}[\omega]$ with
 $\omega = (1 + \sqrt{-7})/2$. Here $\omega^2 - \omega + 2 = 0$, thus is odd CM, the second method applies.

Open problems

Let X/\mathbb{R} be a smooth projective model of the variety with affine equation $x^2 + y^2 + z^2 = u.p(u)$, with $p(u)$ monic, separable, positive on R, of degree at least 2. Let Δ/\mathbb{R} be the curve with affine equation $w^2 = v.p(-v)$.

Are the following equivalent conditions always satisfied ? (a) The variety X/\mathbb{R} is universally CH_0 -trivial. (b) The rational function $u + v \in \mathbb{R}(X \times_{\mathbb{R}} \Delta)$ (a sum of 6 squares) is a sum of 4 squares.

- Are there examples for which X is rational over \mathbb{R} ?
- Are there examples for which X is not rational over \mathbb{R} ?
- What about $deg(p) = 2$?
- What about $x^2 + y^2 + z^2 = u.(u^2 + 1)$? (universally CH_0 -trivial).