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Introduction

In this paper, we prove the following theorem.

THEOREM. Let k be a number field, and let XaP^ (w ^ 3) be a cubic
hypersurface defined over k. If X contains a set of three conjugate singular points,
and if X has rational points over all completions of k, then X has a rational point
over k. Moreover, if X is geometrically integral and is not a cone, and if n ^ 4,
then weak approximation holds for Xsmooth c X; in the case where n = 4, the
Brauer-Manin obstruction to weak approximation on X&mooih is the only one.

(Concrete equations for such cubic hypersurfaces are given in Proposition 1.6.)
The local assumptions come automatically as soon as n 2s 9 (Demj'anov, Lewis,

Springer, cf. [4, § 4]). Thus any cubic hypersurface X <= Pn
k with n s* 9 with a set of

three conjugate singular points has a rational point over the number field k. The
same statement is obvious when X contains a ^-rational singular point or a pair of
conjugate singular points (since X then contains the line through them; note
however that some work then remains to be done as far as weak approximation is
concerned; see [3, 9.8.3]). When A: = Q, A' is smooth, and n^9, it is a deep
result of Heath-Brown [7] that X has a Q-rational point.

The case n = 3 of the theorem, part of which goes back to Skolem [12] and B.
Segre [11], is known (Coray [5], Coray and Tsfasman [6]).

The proof of the above theorem for n s* 4 uses techniques similar to those of
the joint paper [3] of Sansuc, Swinnerton-Dyer, and the first-named author: the
fibration method and descent theory. We refer to [2] for the account of descent
theory. The fibration method is described at some length in the introduction of
[3]. This method aims at proving the Hasse principle and weak approximation for
the (smooth locus of the) total space of a proper (surjective) fibration / : X^>Y
of A:-varieties, once these properties are known for the base space Y and all fibres
f~l(P), with P € Y{k). Here / need not be smooth, but crucial requirements for
the method to work are that all geometric fibres of / be integral and that Y be
proper over k. The method sometimes also works over a non-proper basis, for
example, Y = A£, but one must then appeal to strong approximation on Y.

The basic idea of the present paper is that the situation of the theorem is
tailored for the fibration method. Namely, the three conjugate singular points will
in general span a plane n defined over k, and any 3-dimensional linear space H
containing fl will cut out on X a cubic surface with three singular points. One
then fibres X by means of a pencil, or a linear system (HK) of such linear spaces.
As mentioned above, one only expects this method to work when all the varieties
Hi (IX are integral, where A runs through the geometric points of either the
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projective or affine space of parameters. This cannot always be arranged: indeed
there are counter-examples to weak approximation in some very special cases
when n = 4 (§8). Even in cases where weak approximation actually holds, the
fibration method may break down when n = 4. At this point we have recourse to
descent theory, and it is one of the astonishing facts of the present paper that in
all dubious cases, the descent varieties always turn out to be essentially cubic
hypersurfaces of a type already handled by the fibration method.

We now give a short description of the contents of each section.
In § 1, we give references for the Theorem when n = 3 and we investigate a

number of easy degenerate cases. All the remaining ones are classified into three
types. Type (I) for n = 4 is handled by the fibration method and strong
approximation in § 2. The case (I), n >4, is then easily obtained by the fibration
method together with weak approximation (§ 3). The cases (II), n = 4, and (III),
n = 4, require the descent method together with the results of § 3 as well as some
Brauer group computations which are postponed to §9. These two cases are
handled in § 4 and § 6 respectively. The fibration method and weak approxima-
tion, together with Hilbert's irreducibility theorem, easily yield the higher-
dimensional cases of (II) and (III) (§5 and §7 respectively). In §8 we give
explicit counter-examples to weak approximation in the case (III), n = 4. Finally,
§ 9 computes the value of the Brauer group of a smooth proper model Z of the
cubic hypersurface X. For n = 4, these computations are used in the proofs of § 3
and § 5; for n > 4, the Brauer group of Z comes entirely from the Brauer group
of k. Thus for n > 4 there is no obstruction of the Manin type to the Hasse
principle or weak approximation, which indeed both hold.

Notation. We use Z to denote the ring of integers, and Q the rational field.
If A: is a field, a fc-variety X is an algebraic variety defined over k. If K/k is a

field extension, XK = XxkK is the ^-variety defined by extending the ground
field k to K. By k one denotes a separable closure of k, and one writes
X = Xxkk.

A A:-variety X is geometrically integral if X is reduced and irreducible. The
smooth locus ^smOoth of such a variety is a Zariski-dense open set.

The affine n-space over the field k is denoted by A£, and Pk is the projective
n -space over k.

We use Gm,k for the standard multiplicative group, viewed as an algebraic
group over k, and for any positive integer n, \in c= Gm,k is the group of nth roots
of unity. If E/k is a finite separable extension, RE,kGm is the fc-torus obtained
from Gm>E by means of Weil descent from E to k.

The cohomology groups are Galois or more generally e"tale cohomology
groups.

For notation and definitions pertaining to descent theory, in particular for
torsors under tori, we refer to [2].

1. Reductions

Let A; be a field, with char(fc) = 0. Let F be a non-zero cubic form in (n + 1)
variables with coefficients in k and let X a Pk be the cubic hypersurface defined
byF = 0.

PROPOSITION 1.1. Assume that W 2= 3. If F is not absolutely irreducible,. or if X
has a conical point, then X has a rational point over k.
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Proof. If F is not absolutely irreducible, either it has a linear factor L defined
over k and L = 0 certainly has non-trivial solutions in kn+1, or it is a product
F = LXL2L3 of three conjugate linear factors over the algebraic closure k of k.
Since n ^ 3 , the system Lx = L2 = L3 = 0 has non-trivial solutions in kn+1. Quite
generally, the locus of conical points on a A>variety XaP%, if non-empty,
contains A:-rational points, since it is a linear space globally defined over k.

In the remainder of this section we assume:

(*) X is geometrically integral (equivalently, F is absolutely irreducible) and
X is not a cone.

PROPOSITION 1.2. If X contains a singular k-point, then X is a k-rational variety.

Proof. Simply parametrize X by means of the lines through the fc-point.

PROPOSITION 1.3. If X contains a k-point, then it is k-unirational.

Proof. If X is singular in codimension 1, an intersection argument together
with Bertini's theorem show that the maximal component of the singular locus
consists of one linear space P^~2 which is double on X, and X is a ^-rational
variety. The case where X is regular in codimension 1 is handled in [3, Remark
2.3.1].

PROPOSITION 1.4. If X contains a set of at least three conjugate singular points
which lie on a line L, then X is a k-rational variety.

Proof. Consideration of the possible intersections of three lines in a plane
shows that given any plane II through L, the intersection n fl X is of the shape
2L + L', that is L is double on X, and since X is not a cone, Proposition 1.2
applies.

PROPOSITION 1.5. If X contains a set of three conjugate singular points which do
not lie on a line, and if the plane II which contains them lies entirely in X, then X
is a k-rational variety.

Proof. Let K = k(a>) be the cubic extension over which the singular points are
defined. We may assume that these are given by the equations

XQ + (Oi+\X\ + G)i+\X2 = XQ + Q)i+2X\ + COi+2X2 = X3 = ... = Xn = 0,

where a>, (i mod 3) are the various images of co in k. A cubic form F defining X
then reads:

F — >̂  (v _l_ r.\ v _1_ r.\^ *- \ ( v A- f.\ -v _l_ r-.»2 „ \ f / „ „ \

— £j [Xo T (Oi+iXi -T (Vi+iX2)[Xo -I- (Vi+2Xi -t U)i+2X2)Lji[X3, . . . , Xn)
i mod 3

,, ...,xn) + C(x3, ...,xn),
i mod 3

where Lh respectively Qi} are the various images of a linear form L, respectively
a quadratic form Q, with coefficients in k(co), and where C is a cubic form with
coefficients in k. If one and hence all L, identically vanish, the plane n is double
on X and we may apply Proposition 1.2. We may thus assume that the forms L,
are not identically zero.

We now consider the graph r of the rational map from X to PjJ"3 which sends
(jc0, ...,*„) to (JC3, ...,xn). Let F be the function field k(xjx3, ...,xjx3). Set
fl, = L-{x3,..., xn)lx3, bi = Qi(x3,..., xn)/xl, c = C(x3,..., xn)lx\.
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The generic fibre of the (dominant) projection map r -* P£~3 is isomorphic to a
quadric given in projective space P3

F with coordinates (Xo, Xu X2, X3) by the
vanishing of the form

I mod 3

1 mod 3

This quadric is geometrically integral since the a, are non-zero.
Now note that the form q, which is defined over F, is isotropic over the

odd-degree extension F(a>) of F. By a well-known theorem of Springer, it is also
isotropic over F. Thus the function field of X, which is equal to the function field
of F, is purely transcendental over F, and hence also over k.

PROPOSITION 1.6. If X contains a set of three conjugate singular points which do
not lie on a line and such that the plane II which they span is not contained in X,
then X is defined by a cubic form

(1.1) N
2
2 ,..., xn) + C(x3,..., xn) = 0,
/ = 0

where K = k((o) is the cubic extension over which the singular points are defined,
(Oi are the conjugates of (o in k, each quadratic form Qt has coefficients in
Ki = k((Oi) and the forms Q, are conjugated just as the (ot are, and where C is a
cubic form with coefficients in k. The plane H is defined by x3 = ... = xn = 0.

Proof. We may assume that the plane spanned by the three conjugate singular
points is given by x3 =... =xn = 0. Since the plane II is not contained in X, the
trace of X on II is a cubic curve with three singular points which do not lie on a
line. Hence it is a union of three lines, and this accounts for the term

<OXI + (o2x2). Now a linear change of variables of the type

xQ + CO,*! + cofx2-*x0 + WiXx + (ofx2 + Lfa, ...,xn) (i = 0, 1, 2),

where L, is a linear form with coefficients in k((ot), enables one to get rid of the
terms which are quadratic in the variables x0 + (op^ + (ofx2 (i = 0,1,2).

Equation (1.1) enables us to distinguish several cases, whose study will require
different methods.

(I) The greatest common divisor of all forms Qt and C is of degree at most 1.
(II) The greatest common divisor of all forms Qt and C is a quadratic form

Q(x3, ...,xn) with coefficients in k. In this case, equation (1.1) reads

(1.2) NKlk{x0 + (oxx + (o2x2) + Q(x3,..., xn)L{x0, ...,xn) = 0,

where L is a linear form with coefficients in k, such that L(x0, xlf x2, 0, 0) does
not identically vanish.

(III) All forms Q, identically vanish. Equation (1.1) here reads

(1.3) Afc/*(*o + « » i + <o2x2) + C(x3,..., xn) = 0.
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THEOREM 1.7. Let k be a number field, and let XczP3
kbe a cubic surface defined

over k. If X is singular, then it satisfies the Hasse principle. If X is geometrically
integral and not a cone, and if X contains exactly three singular points, and
X(k) =£ 0 , then X is a k-rational surface. In particular, weak approximation then
holds for any smooth model of X.

Proof. The Hasse principle statement is due to Skolem [12]. The hard case of
Skolem's result is precisely that of three conjugate singular points. Skolem uses
equation (1.1) and simplifies it by allowing quadratic field extensions. The
it-rationality statement (which is specific to the case of three singular points) is
due to B. Segre [10], a modern version being given by Coray [5]. Proofs of both
results are also given by Coray and Tsfasman ([6, Propositions 3.1 and 3.2]).
They actually show that if X contains exactly three singular points, then X is
A;-birational to a Del Pezzo surface Z of degree 6. Such a surface Z is fc-rational
as soon as Z(k)^0, and if A: is a number field, it satisfies the Hasse principle
(Manin). The degenerate cases (^geometrically reducible, Xa cone) are covered
by Proposition 1.1 above.

2. Case (I), n = 4

This section is devoted to the proof of the following theorem.

THEOREM 2.1. Let XczPt be a geometrically integral cubic hypersurface given
by the equation

2

(2.1) NK/k(x0 + cox! + w2x2) + 2 (x0 + coixl + (ojx2)Qi(x3, x4) + C(x3, x4) = 0,
«=0

where notation is as in Proposition 1.5, and assume that the greatest common
divisor of the forms Qt (i = 0, 1, 2) and C is of degree at most 1. Then the Hasse
principle and weak approximation hold for any smooth model of X.

The proof will use the following easy lemmas.

LEMMA 2.2. Let k be an algebraically closed field, let n s* 3 be an integer, let
Qi(y*> •••>yn) 0' = 0, 1, 2) be quadratic forms, and let C(y3, ...,yn) be a cubic
form. The form

2

F = y0yly2+
yZ ytQiiy*, •••>)'«) + c(y3, ...,yn)

i=0

is irreducible unless Qo = Qx = 0 and C = 0, or Qx = Q2 = 0 and C = 0, or
Q% = Qo = 0 and C = 0. If none of these conditions occur, and if n = 3, then the
cubic surface F = 0 is not a cone.

Proof. If F is not irreducible, some non-zero linear form L(y0,..., yn) divides
it. Now L(yo,y1,y2,0,...,0) divides y0yiy2> and hence we may assume, for
example, that L=yo + M(y3,..., yn) with M linear. Consideration of the
coefficients of yxy2, yx, y2, in the identity F( - M(y3,..., yn), yx,..., yn) = 0
shows that Qx = Q2 = 0 and M = 0, and hence C = 0. Assume that n = 3 and let P
be a conical point of X. Then one of the lines in the plane y3 = 0 does not go



524 JEAN-LOUIS COLLIOT-THELENE AND PER SALBERGER

through P. Now the plane through P and such a line lies entirely in X, whence
the form F is reducible.

LEMMA 2.3. There exists an integer No such that if K is a finite field, UK^N0,

and 2 is a geometrically integral cubic surface defined over K, then 2 has a
non-singular K-rational point.

Proof. According to Chevalley's theorem, any cubic surface over a finite field
K contains a jc-rational point. The result now follows from a simple discussion of
the possible singularities on 2 (if 2 has only isolated singularities, their number is
at most 4, see [6, Lemma 1.1]; a singular curve on 2 can only consist of a line).

Proof of Theorem 2.1. Given a non-empty Zariski open set W of a smooth
^-variety W, the set V(kv) is dense in W(kv) by the implicit function theorem.
Thus it is enough to prove the theorem for some non-empty open set U of the
smooth locus of X. We shall take as U the non-empty open set

x* I I ( ( I ! (*o + o>/*i + cojx2)) + &(x3, x4)) * 0

(that U is non-empty follows from Lemma 2.2).
We thus assume that U{kv) # 0 for each place v of k, and we give ourselves a

finite set 5 of places of k and points Pv e U(kv) for v e S. We want to find a point
P € U(k) which is arbitrarily close simultaneously to each Pv. Given Xek, let Hk

be the hyperplane x3 = kx4, and let 2A = XD Hx a //A = P\. and U^ = UnHx. An
immediate computation shows that Uk is smooth whatever A. In other terms, Hk is
transversal to X in any (geometric) point of U.

If the forms Qi(x3, x4) (i = 0, 1, 2) and C(x3, x4) have a common linear factor,
then we may assume that this factor is x4. Let L be the composite of the
extensions Kick. The assumptions of Theorem 2.1 (that is, X is of Type (I))
imply that the polynomials Q,-(f, 1) (i = 0, 1, 2) and C(t, 1) in L[t] have no
common factor. Thus there exist polynomials at{t) (i = 0,1, 2) and b(t) in L[t]
such that

(2.2) i f l , ( 0 G i ( U ) + *(0C(U) = l.
i=O

In order to prove the theorem, we may enlarge the set of places S to any bigger
finite set of places (for each new place, we may choose a point Pv e U(kv)).

We shall enlarge 5 so that it contains all the real places and so that for any
non-archimedean place v $ S:

for any place w of L above v, each <w, is integral at the place w, and the
discriminant D(l, co, to2) is a unit at the place v;

for any place w of L above v, all coefficients of Qt{x3, x4), C(x3, x4), at(t), b{i)
are integral at w;
the order of the residue class field at v is bigger than No (for No as in
Lemma 2.3).
Let us now fix a place v0 of k, v $ S, such that K(&kkv is not a field (that such a

place exists is a special case of Tschebotarev's theorem).
For each v e S, let ^ € kv be the value of (x3/x4) at the point Pv e U(kv).
By strong approximation, we may choose kek arbitrarily close to each Â  for
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v € S and integral at each non-archimedean place v for v <£ S and v=£v0. In
particular, the choice of U and the implicit function theorem imply that we may
choose A such that, for each v e S, there exists a (smooth) point Mv € Ux(kv)
which is as close as we wish to the given point Pv. The equation of 2A a Hx — P\
reads:

2

(2.3) NK/k(x0 + fl»i + o)2x2) + 2 (x0 + (OiXx + fl)fjc2)fi,-(A, I)x2 + C(A, 1)*2 = 0.
i=0

Since the (2,(A, 1) (i = 0, 1, 2) are conjugate, either all or none of them are zero.
It then follows from (2.2) and Lemma 2.2 that the cubic surface 2A, which
contains three conjugate singular points in the plane x4 = 0, is geometrically
integral and is not a cone.

We now make a claim: for each place v of k, 2Asmooth(^w) is not empty. This is
clear for each place v eS, since Uk <= 2Asmooth. Assume that K<8kkv is not a field.
Then one of the singular points in the plane xA = 0 is defined over k^,, so that ZAJtu

is fcv-birational to Plv, and hence in particular Ux(kv)^0. Assume now that v
does not belong to 5 and that K®kkv is a field. Since the coefficients in equation
(2.3) all lie in the ring of integers Ov of kv, we may define the reduction 2A>Bru

over the residue class field KV of Ov by the same equation (2.3). Let w be a place
of L above v. The change of variables

yt =
has coefficients in Ow, the ring of integers of Lw, and is invertible over Ow (by the
choice of 5). Thus 2A>JCu x KW is given over the residue class field KW of Ow by the
equation

(2.4) yoyxy2+2 Qifr, %«*4 + C(A, \)x\ = 0.
i=0

The assumption that K<8kkv is a field implies that the Qt(X, 1) (i = 0,1, 2) reduce
to elements which are transitively conjugated by Gal^^/*•„), and hence all either
vanish or do not vanish. Setting t = A in (2.2) and reducing the equation just
obtained shows that the hypotheses of Lemma 2.2 are fulfilled by equation (2.4),
so that 2AjCu is geometrically integral. Thus 2A>Kt) contains a smooth KV-point
according to Lemma 2.3, and hence 2A contains a smooth kv-point by Hensel's
lemma.

Now the cubic surface 2A is geometrically integral, is not a cone, contains three
conjugate singular points, and it contains smooth &„-points for all places v of k.
According to Theorem 1.6, its smooth locus contains fc-points and satisfies weak
approximation (in fact 2A is a /^-rational variety); hence we may find a fc-point
P e Uk(k) <= U(k) which is simultaneously as close as we wish to each point
Mv e Ux{kv), and hence finally to each Pv € U(kv).

3. Case (I), n > 4

THEOREM 3.1. Let X a P%, n>4, be a geometrically integral cubic hypersurface
given by the equation

(3.1) F = NK/k(x0 + wxx + (o2x2)
2

+ 2 (*o + ft>,*i + tojx2)Qi(x3,...,xn) + C(x3,..., xn) = 0,
/=0
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where notation is as in Proposition 1.6, and assume that the greatest common
divisor of the forms Qt (i = 0,1, 2) and C is of degree at most 1. Then the Hasse
principle and weak approximation hold for any smooth model of X.

Proof It is enough to prove the theorem for the smooth locus U = Xsmooth of
X. We thus assume that U(kv) is non-empty for each place v of k, and that for
each v in a finite set of places So we are given points Pv e U(kv).

Let Z <= P% be the linear space defined by xo = x1=x2 = 0. By assumption, the
closed subvariety of Z given in homogeneous coordinates (x3,..., xn) by
Qo = Q\= QT. ~ 0 and C = 0 is either a codimension-2 subvariety Y in Z or is the
union of such a codimension-2 subvariety and a hyperplane H of Z with
multiplicity 1. In the latter case, we may assume this hyperplane to be given by
JCM = O. Let V = X\ZC\X. Projection induces a A>morphism JI: V—>Z which
in homogeneous coordinates reads (x0,..., xn)-*(x3,..., xn), and the fibre
VM = Jt~1(M) of a point M = (A3, ..., An) e Z is simply the complement of
Z(JC0 = xx — x2 = 0) in the cubic surface

(HM) NK/k(x0 + coxx + a>2x2)
2

+ 2 (*o + <oix1 + afixJQfa,..., A*)/2 + C(A3,..., An)f
3 = 0.

i=0

Let W <= V be the smooth open set (W c £/) defined by the non-vanishing of the
first derivative F'Xo. One easily checks that the restriction of n to W is smooth.

If M e Z(k) does not lie on YUH, the cubic surface HM is geometrically
integral and is not a cone. (Lemma 2.2 applies here since the Qi{h3,..., kn)
(i = 0, 1, 2) are conjugate and hence are simultaneously zero or non-zero.) Fix
such a fc-point Mo. It then follows from Lemma 2.3 and from Hensel's lemma that
there exists a finite set Sx of places of k such that for each v £ Sx, there exists a
kv-point in W D 2Mo c 2MoSmooth.

For each place v eSx, we fix a (smooth) point Pv€W(kv). Since W(kv) is dense
in U(kv) by the implicit function theorem, we may also assume that Pv eW(kv)
for each v e So. Let S = So U Sx. For each v eS, let Mw = n{Pv). Since ;r: W-» Z
is smooth, the implicit function theorem implies that if Nv e Z(kv) is close enough
to Mv, the set (W (1 VNJ(kv) is not empty and contains smooth points Rv which
are arbitrarily close to Pv.

Let us choose a point M e Z(k), M^M0 such that the line A = MM0 does not
meet the subvariety Y (whose codimension in Z is 2) and is transversal to H, and
such that for each v eS, the set VM(kv) contains a point Rv which is arbitrarily
close to Pv (weak approximation in Z - P£~3)- Now 3T~\A) is the complement of
Z(x0 = xx = x2 = 0) in a cubic hypersurface Xx a P4

k given by an equation

2

i=0

where the qt (i — 0, 1, 2) and c are forms (in new coordinates x3 and x4) which
satisfy the assumptions of Theorem 2.1, precisely because A does not meet the
subvariety Y and is transversal to H. Since the projection W C\ Xx-* P\ given by
(x3, JC4) is smooth, W n Xx is a smooth open set of A"x, and this open set contains
kv-points for each place v of k. Theorem 2.1 applies, and we may find a point
P e (W fl Xx)(k) which is arbitrarily close simultaneously to each point Rv for
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v eS. Since P belongs to W(k), it defines a smooth k-point on the original
hypersurface and this k-point P may be chosen arbitrarily close to each of the
points Pv (v eS0).

4. Case (II), n = 4

In this section we shall consider Case (II) for n = 4. Thus X a Pj will be a
geometrically integral cubic hypersurface given by an equation

(4.1) NKlk{xQ + cox! + co2x2) + Q(x3, x4)(L(x0, xlf x2) + M(x3, x4)) = 0,

where Q is a non-zero quadratic form with coefficients in k, and L and M are
linear forms with coefficients in k, with L =£ 0.

LEMMA 4.1. The surface X is a cone if and only if

(i) M = 0 a/w/ (? w proportional to the square of a linear form, or

(ii) QM =£ 0 is proportional to the cube of a linear form.

Proof. If the cubic hypersurface A!" is a cone, the vertex of this cone is given by
the vanishing of all second derivatives of its defining form. The lemma follows by
a straightforward computation.

The main problem in this section is weak approximation. Indeed:

LEMMA 4.2. There is a rational k-point on X. If X is not a cone, then it is even
k-unirational, so that k-points are Zariski-dense on X.

Proof. If M is identically zero, any fc-point (0,0,0, x3, JC4) with Q(x3, xA) =£ 0 is
non-singular on X. Assume that M does not vanish identically. If M does not
divide Q, the fc-point given by

x0 = xx = x2 = M(x3, x4) = 0

is non-singular. If M divides Q, one easily shows that either A!" is a cone or X is
fc-birational to an affine space. If X is not a cone, fc-unirationality follows from
Proposition 1.3.

PROPOSITION 4.3. If Q is of rank 1 and if X is not a cone, then X is a k-rational
variety.

Proof. The point defined by xo = xl=x2 = Q=0 is singular on X. The
conclusion follows from Proposition 1.2.

THEOREM 4.4. Let X czP^be the geometrically integral cubic hypersurface given
by equation (4.1). Assume that Q(x3, x4) is of rank 2 and that M(x3, x4) is zero or
divides Q. Then weak approximation holds for any smooth model of X.

Proof. According to Lemma 4.1, X is not a cone. If M =£0 divides Q, the
rational point xo = xl=x2 = M = 0 is singular on X, which is /:-rational by
Proposition 1.2. Assume that A/ = 0. An affine model Y of X is given by the
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system

w2x2) + Q(x3, xA) = 0,

L(x0, xu x2) = 1.

Assume that the coefficient of x2 in L is non-zero. Then Y is also given by an
equation

Q(x3, x4) + C(x0, xx) = 0,

where C is an irreducible polynomial of the third degree. That weak approxima-
tion holds for any smooth model of such a Y is obvious if Q is reducible over k (Y
is then &-birational to an affine space). If Q is irreducible, it is a special case of
Theorem 9.3 of [3] (see also Remark 9.3.2 of [3]).

THEOREM 4.5. Let Xc.Pt be the geometrically integral cubic hypersurface given
by equation (4.1). Assume that LM =£ 0, rank Q = 2, and M does not divide Q.

(i) The Brauer-Manin obstruction to weak approximation on a smooth proper
model of X is the only one.

(ii) / / Q does not split into linear factors over the discriminant extension of K/k,
then weak approximation holds for any smooth model of X.

Proof. The proof will be by descent and naturally breaks into a number of
steps. The reader who would like to get an overview of the proof is invited to
read step (g) first.

(a) Equations for X. Let F be the separable quadratic fc-algebra k[t]/Q(t, 1),
and let a be the image of t in F. Let E be the separable A>algebra K®kF. After a
suitable fc-linear change of coordinates, we may write (4.1) as

(4.2) NK/k(x0 + <ox1 + (o2x2)

+ NF/k(x3 - ax4){a T r^ (x 0 + (oxx + Q)2x2) + b TrF/Ar(x3 - ax4)} = 0,

with a,b ek*.
Let U <=. X be the open set of X defined by NK/k(x0 + a>xx + co2x2) =£ 0. By going

over to the algebraic closure, one easily checks that either U is smooth or U
contains a unique, ^-rational, singular point. This last case occurs if and only if
a3 + b2 = 0 (the singular A:-point then lies on x3 = xA = 0). Since X is not a cone
(Lemma 4.1), the second possibility implies that A' is a ^-rational variety, and the
theorem certainly holds. We may assume:

(4.3) The open set U of X defined by NK/k(x0 + <oxi + (o2x2) =£ 0 is smooth.

Note that this open set U may also be described by means of the affine equations

NK/k(x0 + (oxx + a)2x2) + NF/k(x3 - ooc4) = 0,

(4.4) a TTK/k(x0 + (ox1 + co2x2) + b TrF/*(*3 - ax4) = 1,

(b) The k-torus T. Let 71 = i?F/fc(/?£/FGm) be the fc-torus whose associated
functor on commutative fc-algebras A is:

= KerNE/F
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There is an exact sequence of fc-tori:
NE/F

(4.5) 1 >T > RE/kGm > RF/kGm > 1,
which makes RE/kGm into a torsor over RF/kGm under T. For any semi-local
^-algebra A, this sequence induces an isomorphism

(4.6) (A®kF)*/NE/F(A®kE)* =H\X(A, T).

(c) A torsor over U under T. Given any c e F*, the function c~1(x3 — oa4)
belongs to H°(U, RF/kGm), and we may use it to pull back the torsor under T
given by (4.5), thus getting a torsor 5"c over U under T. The total space of this
torsor is given by the following set of ajfine equations in A11:

NK/k(x) + NF/k(x3 - ax4) = 0,

a Tr^/fc(x) + b TxFlk{x3 - ax4) = 1,
(4.7)

(x3 - ax4) = cNE/F(y - az),

NK/k(x)*0,

where we have introduced variables (y0, yi, yi, z0, zX) z2) and denoted

x =xo+ wxx + co2x2,

Z = Zo+ (DZX + 0)2Z2.

(d) An extension property. Let us show:

(4.8) The torsor 3~c over U under T extends to a torsor under T over any
smooth compactification Z of U.

According to [2, Lemme 2.7.6] or [3, Lemma 12.6] and (4.6) above, it is
enough to show:

(4.9) For any, discrete rank-1 valuation ring A which is a A>algebra and whose
fraction field is k(U), the class of (x3 - ax4) in F(U)*/NE/FE(U)* ^Hlt(k(U), T)
comes from

(A®kF)*/NE/F(A®kE)*~HUA, T).
By an easy restriction-corestriction argument we may assume that K is a Galois

extension of k and that F is a split quadratic extension of k; that is, we may
change variables and assume that Q = x3x4. An affine equation of X now reads:

(4.9.1) NK/k{x0 + (oxx + (o2x2) = x3(L(x0, xlt x2) + cx3 + d),

where L and cx3 + d are both non-zero with coefficients in k, cd =£ 0, and we must
prove (4.9) with F = k, E = K, and x3 in place of {x3 — ax4).

Let A be a discrete valuation ring with k a A and with fraction field k(X). Let
n be a uniformizing parameter of A. Then A ®kK is a semi-local Dedekind ring
with fraction field K(X). If A®kK is not a discrete valuation ring itself, since
[K : k] = 3 we conclude that n may be written as the product of a unit in A by the
norm of an element of A<S>kK. Let us now assume that A®kK is a discrete
valuation ring. Then n is a uniformizing parameter for A®kK, and an element
/ e k(X) may be written / = uNK/k(g) with u a unit of A and g e K{X) if and only
if its valuation ifA(f) = v(f) is divisible by 3.
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Let us show that such is the case for f = x3. In (4.9.1) the linear form
L(x0, xlt x2) may be written as a trace TTK/k(p(x0 + (oxx + (O2x2)) for a suitable
peK*.

First assume that v(x0 + (oxx + (o2x2) = a 2s 0. It then follows that
v(L(x0,xux2))^a^O. The valuation of the left-hand side of (4.9.1) is 3a5*0.
This implies that u(x3)2=0. Assume that v(x3)>0. Then the valuation of the
left-hand side is positive; also the valuation of the left-hand side is 3a, and hence
a>0. We now have v(L(x0)xlt x2))*= a > 0, v(x3)>0, whence

v(L{x0) xx, x2) + cx3 + d) = 0',

hence finally v(x3) = 3a, so that 3 divides v(x3).
Now assume that v(x0 + (oxx + co2x2) = a<0. We then have v(L(x0, xlf x2)) =

v(TiK/k(p(xo + coxl + (o2x2)) ss a. Assume first that v(x3) 2* a. The valuation of
the right-hand side of (4.9.1) is then at least la, which contradicts the fact that
the valuation of the left-hand side is 3a. Hence v(x3)<a. We now have
v{L{xQ, xlf x2) + cx3 + d) = v(x3), and (4.9.1) implies that —3a = 2U(JC3), so that
3 divides v(x3). This completes the proof of (4.9).

(e) Equations for torsors of a given type. For Z a smooth compactification of
U, there is an exact sequence

(4.10) 0 > Hl(k, T) > H\t(Z, T) - ^ H o m G ( f , Pic Z),

where the middle term classifies torsors over Z under T, and the right-hand side
arrow sends a torsor & to its type A = x(5").

According to (4.8), a given torsor 5"c over U as in (4.7) is the restriction of a
torsor 3~ over Z under T. Let A be the type of such a 2F.

Comparing the e"tale cohomology sequences associated to (4.5) over Speck,
over Z and over U then shows:

(4.11) The restriction to U of any torsor of type A may be written as a torsor
&c as in (4.7) for a suitable c e F*.

(f) Factorizing the projection 3~C-*U through a cubic hypersurface of Type (I).
Let us introduce new variables w0, wl, w2, set w = w0 + (owl + a)2w2, and con-
sider the fc-morphism from A* with coordinates

K , wu w2, y0, yu yi, zot z\> z2)
to A" with coordinates

C*o> Xi, x 2 , x 3 , x 4 , y 0 , y l t y 2 , z0, zx, z2)

given by

(4.12) x = w.NEIK(y-az),

where x,y and z are as in (4.7). Let

(4.13) d = NFlk{c)ek*.

Then the fc-subvariety of A£ defined by

(4.14) a TrKlk{wNEIK{y - az)) + b TrF/k(cNE/F(y - ccz)) = 1,
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is mapped isomorphically onto ^ c A " (cf. (4.7)), the projection from 3~c as
given by (4.14) to U being given by

x3 - <xx4 = cNE/F(y - az),
(4-15)

x0 + cox! + a) x2 = (w0 + (ow1 + o) w2).NE/K(y - ocz).
Let Wc c P | with homogeneous coordinates (w0, wx, w2, y0, y\, y-i, z0, zlf z2) be

the cubic hypersurface defined by the equation:

(4.16) NK/k(w) 4- d{a TrK/k(wNE/K(y - az)) + b TrF/lc(cNE/F(y - az))} = 0,

and let Uc <= Wc be the open set defined by NK/k(w).NE/k(y — az)¥=0.
Now (4.16) is exactly as (1.1) in Proposition 1.6, with wt in place of xt

(i = 0, 1, 2), and the yt (i = 0, 1, 2) and z,- (i = 0, 1, 2) in place of x, (/ > 2). By
going over to k and making an obvious change of variables, one easily checks that
the forms da TrK/k(wNE/K(y — az)) and db TrF/k(cNE/F(y — az)) (this last form
corresponds to C in (1.1)) are non-zero and have no common factor.

Thus Wc, which is geometrically integral (Lemma 2.2), is a singular cubic
hypersurface of Type (I). Using ab^O one can also check that it is not a cone.

Projection A \̂0—>P% induces a /omorphism from STC, as given by (4.14), to
Uc c= Wc, and one easily checks that it makes 2TC into a ^3-torsor over Uc. In
particular, Uc is smooth since 3~c is smooth itself (it is a torsor under the torus T
over the smooth fc-variety U). On the other hand, (4.15) expresses the JC, as
homogeneous cubic forms in the other variables. Thus the projection from STC to
UczXczPt: factorizes through Uc\ We have the following diagram of k-
morphisms:

(4.17)

(g) Completion of the proof. Fix a smooth compactification Z of U. Since X{k)
is Zariski-dense in X (Lemmas 4.1 and 4.2), we also have Z(k)i=0 (and hence
certainly Z(kv) =£ 0 for each place v of k). Let 5 be a finite set of places of k and
for each v eS, let Pv e U(kv). Applying the extension property (4.8), one sees
that the torsor J"1 over U extends to some torsor over Z. Fix such a torsor, and
let A be its type. If there is no Brauer-Manin obstruction to weak approximation
on Z, which we now assume, descent theory [2, § 3.7] shows that there exists a
torsor 3~ over Z of type A such that 9~(kv)±@ for each place v of k and that Pv

belongs to the projection of 3~(kv) to Z(kv) for each place v eS. Together with
(4.11), this implies:

(4.18) There exists a ceF* such that ^c(kv)^0 for each place v of k and
such that each Pv for v e S lifts to some point Qv € 9~c(kv).

Using diagram (4.17) we now conclude that Uc(kv)^0 for each place v of k
and Pv = rc(Mv) with Mv = qc(Qv)e Uc(kv) for each v eS. As seen in (f) above,
Uc is a smooth open set of the cubic hypersurface Wc a P | and this cubic
hypersurface is of Type (I). According to Theorem 3.1, Uc satisfies the Hasse
principle and weak approximation, and we may find a fc-point M e Uc(k) which is
arbitrarily close simultaneously to each Mv for v € S, thus yielding a it-point
P = rc{M) which is arbitrarily close simultaneously to each Pv for v e S.
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This completes the proof of Part (i) of the theorem. Part (ii) follows from the
following statement, which guarantees that there is no Brauer-Manin obstruction
to weak approximation [2, The"oreme 3.7.6], and whose proof we defer to § 9:

(4.19) If Q does not split into linear factors over the discriminant extension of
K/k, then H\Gd\(klk), Pic Z) = 0 for any smooth proper model Z of X.

REMARK 4.6. The above proof generally follows the pattern of other proofs in
[3]. In particular, there is the 'miraculous' change of variables (4.12) in (f) which
turns the equations (4.7) of the torsor into the simpler (4.14) (compare with [3,
(7.12.2), (12.26)]). However, there is one extra argument here: namely (4.14) is
not yet simple enough, and we only succeed because of the factorization
described in diagram (4.17).

As a matter of fact, the variety Uc, together with the morphism rc to U, is a
torsor over U under a certain torus, and this torsor extends to a torsor over any
smooth compactification Z of U. Indeed, the composition of natural inclusions

induces a homomorphic embedding of fi3 into the fc-torus T. Let S be the fc-torus
defined by the exact sequence

Following equations (4.7), (4.14), (4.16) reveals that the action of jM3c=r on
(4.14) simply reads as

(x, y, z)-» (§x, gy, lz) (§ e fi3).

Since quotienting by this action gives precisely the map qc, it follows that
rc- t/c—> t/ is the torsor over U under S = 77jtf3 obtained from the torsor 2TC->U
under T by the change of structural group T—>S. Now this change of group can
be applied to any torsor 5" over a smooth compactification Z of U, extending 3~c,
as given by (4.8), thereby yielding a natural extension of the torsor rc: UC^>U
over Z.

Thus we could have used torsors of type

as descent varieties.

5. Case (II), n > 4

In this section, we let ZcPjJ, for n>4, be a geometrically integral cubic
hypersurface given by an equation

(5.1) NK/k(x0 + o)xl + (o2x2) + Q(x3,..., xn)(L(x0, xu x2) + M(x3,..., xn)) = 0,

where Q is a quadratic form and L and M are linear forms with coefficients in k,
withL^O.

THEOREM 5.1. Assume that Q is of maximal rank (n — 2) s* 3 or that X is not a
cone. Then weak approximation holds for any smooth model of X and any such
model contains a k-point.
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Proof. First note that X always contains a non-singular fc-point. Indeed, it
contains the /c-linear space H,

xo = xl=x2 = M(x3)...,xn) = O.

Thus if X is not a cone, X contains a non-singular fc-point (since it is a ^-rational
variety otherwise). If Q is of rank at least 3, then there is a fc-point on the linear
space H with Q{x3,..., xn)i^0, arid such a fc-point is non-singular on X. As a
corollary, we get that X is fc-unirational (Proposition 1.3).

If the quadratic form Q is not of maximal rank (n — 2), let (ar3, ..., an) e kn~2

be non-zero and such that all partial derivatives of Q vanish at this point. Then
the fc-point (0,0,0, a3, ..., <xn) is a singular fc-point on X. Thus X is /c-rational
since it is not a cone.

We may now assume that Q is of maximal rank (n — 2) 2* 3.
Suppose first that M = 0. The same argument as in Theorem 4.4 then shows

that X contains an affine open set U given by an affine equation:

where C is a polynomial of the third degree and Q is of rank at least 3. Since X is
fc-unirational, Usmooth(k) is not empty. That Usmooth satisfies weak approximation
is easy to prove [3, Proposition 3.12].

We may now assume that Q is of maximal rank and that M is non-zero.
In this case we shall prove the theorem by reduction to Theorem 4.5. Let S be

a finite set of places of k, let {Mv}veS be a finite set of smooth local points. We
may assume that all these points are contained in the open set xn =£ 0. Let kv e kv

be the value of the function xn-Jxn at the point Mv.. Changing each Mv slightly if
necessary, we may assume that each hyperplane xn-x = kvxn is transversal to X at
the point Mv. Using weak approximation on k, we may now find Xek such that

(a) A is so close to each Â  for v e S that there exists a kv -point Pv very close to
Mv and lying on the hyperplane section Xx given by xn^ = kxn, the point
Pv being smooth on Xx\

(b) Q(x3,..., *„_!, kxn-\) is a quadratic form of maximal rank (n - 3 ) and is
irreducible over the discriminant extension of K/k;

(c) M(x3, ..., *„_!, hXn-x) does not vanish identically.

Only (b) deserves an explanation. For n 2s 6 it is obvious. For n = 5, let P(t) be
the separable polynomial which is the discriminant of the binary quadratic form
<2(*3, x4, tx4), and let k(y/d) be the discriminant extension attached to K/k. It is
a consequence of Hilbert's irreducibility theorem (with the approximation
condition) that one may find A e k satisfying (a) and (b) and such that neither
— P(A) nor — P(X)ld are squares, which implies that — P(A) is not a square in
k(y/d).

Now X^czPl~l is given by an equation of Type (II), with L non-zero, M
non-zero, and Q irreducible over the discriminant extension of K/k and of
maximal rank. An obvious induction argument, together with Theorem 4.5,
completes the proof.

For n 2=6, there is a much easier way to prove Theorem 5.1, which we shall
now present.
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PROPOSITION 5.2. Let Xcz P£, for n sM, be given by (5.1). Assume it is not a
cone. Then X is k-birational to an ajfine space or to a k-variety given by an affine
equation n_1

2 aix
2+f(xo,x1,x2) = Q,

with a(ek* and fa non-zero polynomial.

Proof. First assume that M is identically zero. We may assume that Q is in
diagonal form Q = EjL3flfX?. Here all a, are non-zero, since X is not a cone. The
open set xnL(x0, xlt x2) # 0 of X is then given by the affine equation

n-\

2 atx
2 + an + NK/k(x0 + coxx + 0)2x2)lL{x0, xu x2) = 0.

i=3

A change of variables Xi-*XtL(x0, xlt x2) (i = 3 , . . . , n - 1) and a multiplication
by L2 complete the proof.

Note that we could have set L(x0, xx, x2) = 1, as in the proof of the previous
theorem. This leads to an affine equation of the shape

i = 3

so that the conclusion already holds in this case with one more variable in the
left-hand quadratic form.

Suppose now that M is not identically zero. We may set M=xn. If
S(x3,..., xn-.l) = Q(x3,..., *„_!, 0) is a degenerate quadratic form and
(a3,..., an-i) e kn~3 is a non-zero point at which all first derivatives of S vanish,
then (0,0,0, a3,..., ffn-i> 0) is a singular fc-point on X, which is then fc-birational
to an affine space (Lemma 1.2). If 5 is non-degenerate, setting xn = 1 and
performing linear changes of variables, we find that the open set
xnL(x0, xif x2) =£ 0 of X is given by an affine equation

n - l

2 <*iX2 + an + NK/k(x0 + (oxx + (o2x2)/(L(x0, xu x2) + 1) = 0,
i=3

where afeA:* (i = 3 , . . . , n — 1) and anek. A change of variables *,—•
Xi(L(x0, xi} x2) + 1) (i = 3, ..., n — 1) and a multiplication by (L + I)2 complete
the proof.

COROLLARY 5.3. If X is as above and n^6, respectively n^5ifM = 0, and if Z
is a smooth proper model of X, then the Galois module PicZ is stably a
permutation module.

Proof. Apply [3, Remark 3.7.1].

COROLLARY 5.4. If k is a number field, n 2s 6, respectively n^5ifM = 0, and Z
is a smooth model of X, then Z(k) is not empty and weak approximation holds
forZ.

Proof. That Z{k) is not empty follows from the fact that X is fc-unirational
(beginning of the proof of Theorem 5.1). Now apply [3, Proposition 3.12] (whose
proof is easy).
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6. Case (III), n = 4

In this section we consider a geometrically integral cubic hypersurface X a P£
given by the equation

(6.1) NK/k(Xo + (OX! + 0)2X2) + C(*3, XA) = 0,

where C is a non-zero cubic form with coefficients in k.

LEMMA 6.1. If C is not separable and if X has smooth kv-points for all places v
of k, then X is a k-rational variety.

Proof First assume that C = - cx\ with cek*. Let T be the 2-dimensional
fc-torus given by

+ (o2x2) = 1,

and let E be the principal homogeneous space under T given by

NK/k(x0 + (oxx + (o2x2) = c.

In this case X is a cone, and it is A>birational to the product of A* by the principal
homogeneous space E. Because T is 2-dimensional, E(k)^0 implies that E is
it-rational [14, 4.74] and that E satisfies the Hasse principle [14, 6.40].

Now assume that C = cx2x4 with cek*. In this case X is a fc-rational variety,
since the open set x3 =£ 0 is given by the affine equation

co2x2) + cx4 = 0.

THEOREM 6.2. Let Xa Pi be given by equation (6.1). Assume that the form C is
separable. Let Z be a smooth proper model of X. If C is irreducible over k, then
the Hasse principle and weak approximation hold on Z. If C is reducible over k,
then Z(k) is non-empty and the Brauer-Manin obstruction to weak approximation
on Z is the only one; if C does not split completely over the discriminant extension
of K/k, then weak approximation holds on Z.

Proof The proof will be by descent and will follow the same pattern as that of
Theorem 4.5. The reader will easily recognize the various steps. We may assume
that the coefficient of x3 in C(JC3, JC4) is non-zero. Let P(x3) = — C(x3> 1). This is a
separable polynomial of degree 3. Let U a X be the smooth open set with affine
equation

(6.2) NK/k(x0 + coxx + w2x2) = P(x) # 0.

Let L be the separable A>algebra L = k[x]/P(x) = k[6], where 6 denotes the class
of x in L. Note that P(x) then reads

P(x) = cNL/k(x-d)

for some cek*. Let M be the separable fc-algebra M = K<8)kL. Let T be the
A:-torus defined by the exact sequence

(6.3) 1 > T > Gm,k x R
M/k
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where the right-hand arrow is given on a commutative fc-algebra A by

A* x (A ®*M)*-> (A ®kL)*,

(A, " ! ) ->(A.JW!)) .
Given any semi-local commutative fc-algebra A, sequence (6.3) induces an
isomorphism

(A®kL)VA*.NM/L(A®kM)* =Hlt(A, T).

Note that (x3- 6) defines a fc-morphism U^>RL/kGm, and hence, in particular,
an element of (k(X)<S>kL)*. We now claim:

(6.4) For any discrete valuation ring Aczk(X) which contains k and whose
field of fractions is k(X), the class of

(x 3 " 0) € {k{X)®kL)*lk(X)*.NMIL(k{X)®kM)* -HUk(X), T)

belongs to the image of (A®kL)*/A*.NM/L(A®kM)* ^H\t(A, T).

This is proved by a computation based on (6.2) and is analogous to the proof of
[3, (12.21)]. Since H\t(k(X), T) is killed by 3, we may allow quadratic extensions
and assume that K/k and L/k are cyclic extensions. If K®kL is not a field,
H\t{k{X), T) = 0 and the result is clear. We may thus assume that M = K®kL is
a field. Let us write (6.2) as

(6.2.1) NK/k(x0 + (oXl + co2x2) = c(x - d)(x - 6'){x - 6") ± 0,

where 0' and d" are the two conjugates of 0 in L. Let A be as in (6.4), let
p be a uniformizing parameter of A. Up splits in A®kK, then any prime n
above p in A<B)kL splits in A®kM, and hence belongs to the product
(A®kM)*.NM/L(k(X)®kM)*, and hence so does any element of (k(X)®kL)*.
We may therefore assume that p remains prime in A ®k K, and hence that any
prime n in A %k L above p remains prime in A ®k M.

Let us first consider the case where there is just one prime ideal n above p, that
is, p remains prime in A®kL and hence in A<B)kM. Let vn be the associated
valuation. If vn(x-6)<0, then va(x - 6) = vn(x) and (x - 0)1 x e (A®kL)*;
hence (x-0)ek(X)*.(A®kL)*. If vn(x-0) = 0, then (x - 6)e (A®kL)*. If
vn(x -d)>0, then v^x - 6') = vn(x - 6") = 0, and from (6.2.1) we conclude
t h a t xd

Let us now consider the case when there are three prime ideals in A&kL
above p, with conjugate generators nu JZ2, n3. If vn.(x - 6)<0 for some i,
valuation arguments imply that

vp(x) = !/„,(*) = v*k* ~e) = Vnfr ~ e>) = "*{* ~ 0").
Consideration of the Galois action then reveals that vn.(x — 0) = vn(x — 6) for
j±i. Thus (x-d)/xe(A®kL)*, and hence (x - 6) ek(X)*.(A®kL)*. If
vn.(x - 6) > 0 for some i, then

Galois considerations then yield vn.(x - 6) = 0 for j =£ /. On the other hand,
(6.2.1) now gives

vn.(x -6) = vn.(NK/k(x0 +(ox1 + (o2x2)) = 3n



ARITHMETIC ON CUBIC HYPERSURFACES 537

for some n e Z. If we let II, be the generator of the prime ideal of A GbkM above
nh we find that {x - 0)/AW(n.)" belongs to (A®kL)*, whence

(x-d)e (A ®kL)*.NM/L(k(X) ®kM)\

Finally, if vnfx - 0) = 0 for all i, then certainly (x - 0) e (A ®kL)*.
Given p e L*, let S~p be the affine k-variety defined in Ai4 by

<*>2X2) = cNUk{x - 0 ) =£ 0,

(A is a variable in k and § is a variable in M, and hence represents nine variables
in k). Note that 3~p is a torsor over the smooth A:-variety U under the &-torus T.
Just as in Theorem 4.5, part (d) of the proof, it follows from (6.4) that this torsor
extends to a torsor over any smooth compactification of U.

We refer to § 9 for the proof of the following fact.

(6.6) If C does not split completely as the product of three linear factors over
the discriminant extension of K/k, then H\k, Pic Z) = 0 for any smooth proper
model of X.

If C is reducible and, say, x3 divides C, then the k-point given by

is non-singular since C is separable. Hence any smooth proper model Z of X
contains a fc-point. More is true: since X is not a cone (easy verification),
X(k)=t0 implies that X is /ounirational (Propositions 1.2 and 1.3).

Let us assume that U(kv)^0 for all v (this comes for free if C is reducible). If
C splits completely over the discriminant extension of K/k, assume that there is
no Brauer-Manin obstruction to weak approximation on smooth proper models
of X. Let S be a finite set of places of k, and for each v e S, let Pv be a point of
U(kv). Just as in the proof of Theorem 4.5, it then follows from (6.4), (6.6), and
descent theory [2, § 3] that there exists p e L* such that the ^-variety ZTP has
kv-points for each place v ek and such that for each place v eS there exists
Mv e 9~p{kv) which projects down to Pv e U(kv). In order to prove the theorem, it
will be enough to show that a ^-variety such as 3~p satisfies the Hasse principle
and weak approximation.

The change of variables

(6.7) y0 + <oyx + (o2y2 = (x0 + (oxx + <o2x2)/LNM/K(f;),

realizes an isomorphism between STP and the subvariety of A£4 (with coordinates
Ofo» yi, yi> x> k, £)) given by the following system:

(6.8.1) NK/k(y0 + coyl + co2y2) = c.NUk(p),

(6.8.2) * - 0 = p.A.AW(£)*O.

This A>variety clearly is the product of the A;-variety Vp a A^ given by (6.8.1) with
the A;-variety Wp a A" given by (6.8.2). Thus the effect of the change of variables
(6.7) has been to separate variables.

The variety Vp clearly is a principal homogeneous space under a 2-dimensional
fc-torus. As such, it satisfies the Hasse principle and weak approximation [14, 4.74
and 6.40]. It only remains to prove the same statement for Wp.
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The change of variables

u=x.k~1, v = k~1,

induces a ^-isomorphism between Wp and the subvariety of A" given by

u-v6 = p.NM/L(Z)*0,

which is itself an open set in the closed subvariety of A" given by

(6.9) u-vd = p.NMIL(%).

Identifying coefficients of 1, 0 and 62 in this equality, we see that (6.9) is
equivalent to the system

(6.10) "=/„(!), v=gptf), 0 = hptf),
where fp,gp,hp are cubic forms in nine variables with coefficients in k. The
^-variety defined by this last system is fc-isomorphic to the cubic cone in A*
defined by

(6.11) M£) = °-
As will be checked below, hp is an absolutely irreducible form. We now conclude
that Wp is fc-birational to the product of Aj by the geometrically integral cubic
hypersurface Xp<zP8

k defined by (6.11), and it is enough to prove the Hasse
principle and weak approximation for the smooth locus of Xp.

Let us introduce variables u, v, w, u', v', w', u", v", w", let {0,}J=i(2,3>
respectively { p , } , ^ ^ , be the image of 0, respectively p, in F under a fixed
isomorphism L^kk-Yi^ik. Define the following linear forms with coefficients
in k:

Ti = u + div + djw, Tl = u' + dtv' + djw', 77= u" + 0.V + djw".

From (6.9) we deduce that over k, hp(g) = hp(u, v, w, u', v', w', u", v", w")
reads 3

K = S BiNuM + coTl + aP-T'l),

where (Xi, = (0i+1 - ei+2)Pi ^Q (/mod3) and the forms NK/k(Tt + (oT\ + co2T'f)
have coefficients in fc(0,).

Let (Oj (y = 1, 2, 3) be the various images of co in k. Fix an embedding of K into
k, so that co = (ox.

Define linear forms with coefficients in k in the variables
u, v, w, u', v', w', u", v", w":

The form hp then reads

(6.12) hp = 2 atiYuYuYu,
i=i

and hence is irreducible over k and one checks that Xp is not a cone.
The subvariety HcV\ defined by Yif2 = Yif3 = 0 (i = 1, 2, 3) is a 2-dimensional

linear space defined over K a k and it is contained in the singular locus of Xp. Let
F be the closed set ^1,1.^2,1^3,1 = 0. If PeH(k) does not belong to F, the
tangent cone to Xp at P is defined by a quadratic form of rank 6. Let P be a
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Appoint of H which does not lie on F. The three conjugates of P define a set of
conjugate singular points on the cubic hypersurface Xp c Pf.

According to 1.2,1.4, and 1.5, either Xp is a A>rational variety, or Xp is defined
by an equation of the type

(6.13) NK/k(x0
 2

i = 0
(x0 + cOiXi + (ojx2)Qi(x3,..., xs) + C(x3,..., x8) = 0.

If this equation were of Type (III), the tangent cone to P would be defined by a
quadratic form of rank 2, and this has been excluded. Since the tangent cone at
each of the conjugates of P is of rank 6, each form Qt in (6.13) is of rank 4. If
(6.13) were of Type (II), each of Qx, Q2, Q3 and C would be divisible by some
quadratic form Q of rank 4 defined over k. An obvious change of variables would
reduce (6.13) to

NA:/*(*O + <w*i + o)2x2) + Q(x3, ..., x6)L(x0> ..., x8) = 0,

which is the equation of a cone. But Xp is not a cone (cf. (6.12)). Hence Xp is of
Type (I) and according to § 3 the smooth locus of Xp satisfies the Hasse principle
and weak approximation. This completes the proof of Theorem 6.2.

7. Case (III), n > 4

THEOREM 7.1. Let I c P ^ , with n>4, be a geometrically integral cubic
hypersurface given by an equation

(7.1) NK/k(x0 + G)Xl + co2x2) + C(x3, ..., xn) = 0,

where C is a cubic form. Assume that C is irreducible over k or that X is not a
cone. Then the Hasse principle and weak approximation hold for any smooth
model of X.

Proof Suppose first that the form C is reducible over k. Thus, after a change
of coordinates,

, ..., xn) =xnQ(x3, ..., xn),

where Q is a quadratic form with coefficients in k. Note that X contains the
fc-linear space

Xo = Xi= X2= Xn = 0 ,

and hence contains non-singular A;-points since it is not a cone (if it contains a
singular k-point, it is fc-birational to an affine space). Thus if C is reducible, X is
fc-unirational (Proposition 1.3) and ^-rational points are Zariski-dense on it. Let
us write

Q = ax2
n + xnR(x3, ...,xn_!)-l-5(x3, ...,xn.x).

If the quadratic form 5 is degenerate and, say, (a3,..., an^x) e k"~3 is a non-trivial
point at which all first derivatives of S vanish, then the it-point
(0,0,0, a3, ..., an_i, 0) is singular on X, which is then fc-birational to an affine
space since it is not a cone (Lemma 1.2). If the form S is non-degenerate,
performing linear changes of variables reduces the equation of X to

<o2x2) + xn(S(x3,..., *„_!> + cx2
n) = 0,
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for some cek. Thus the equation of the affine open set xn =£ 0 of X is given by

S(X3, . . . , Xn.x) = - (C + NK/k(x0 + COXi + (O2X2)).

Since the right-hand side is irreducible over k and of total degree 3 and the
quadratic form S is of rank (n - 3), weak approximation for Xsmooth is a special
case of [3, Theorem 9.3] when n = 5. For n 5= 6 it follows from the much easier
Proposition 3.12 of [3].

We now study the case where the cubic form C is irreducible over k. Let X be
such that Ar

smooth(^) =^0 for all places v of k. We may assume that the coefficient
c of xl is non-zero. Let S be a finite set of places of k and let {Mv}veS be a finite
set of smooth local points. We may suppose that all these points are contained in
the smooth open set U of X defined by xn.C±Q. Enlarging S, we may also
suppose that the finite set S contains all places v of k such that c is not a local
norm for the extension K/k. Let h e kv be the value of the function xn-.Jxn at
the point Mv. Slightly changing each Mv if necessary, we may assume that each
hyperplane xn-1 = Xvxn is transversal to X at the point Mv. Using weak
approximation on k and Hilbert's irreducibility theorem with the approximation
condition, we find A e k such that

(a) A is so close to each Â  for v e S that there exists a kv -point Pv which is
arbitrarily close to Mv and which lies on the hyperplane section Xk given by
JC«_! = Xxn, the point Pv being smooth on Xk\

(b) C(x3,..., Jtn_i, ton-i) is a n irreducible cubic form over k which does not
vanish at Pv for v eS.

It is now clear that the smooth open set C(x3, ..., xn_x, hcn-x) =£0 of the cubic
hypersurface Xx a PJp1 defined by

o)2x2) + C(x3,..., xn-u hcn-i) = 0

contains /^-points for all places v (for v $ S, there exist such points with
*4 = ... =xn_! = 0). Theorem 6.2 and an induction on the dimension of cubic
hypersurfaces given by an equation (7.1) with C irreducible over k complete the
proof of the theorem.

8. Counter-examples to weak approximation

In this section we give counter-examples to weak approximation which reveal
that the restriction on C in Theorem 6.2, that is in Case (III), n = 4, is necessary.
Namely, weak approximation may not hold when the cubic form C(*3, *4) splits
completely over the discriminant extension associated to the cubic extension K/k.

Similar examples surely exist in Case (II), n = 4, that is, when the form Q in
Theorem 4.5 splits into linear factors over the discriminant extension of K/k.
Exhibiting such examples will be left as an exercise for the reader.

Let k = Q(0), where 6 is a primitive cube root of 1, let F = Q((o) and let
K = k((o), where co = ^/3. The cyclic extension K/k is ramified only at the prime
A = 1 - 6. Let kx, respectively Kx, respectively Fx, denote the completions of k,
respectively K, respectively F, at the unique prime above 3. Let X be the smooth
Q-variety defined in affine space AQ by the equation

(8.1) NFIQ(x + (oy + (o2z) = t2-t + l = (t + 6)(t + 62) * 0.
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PROPOSITION 8.1. The variety X(Q) is not empty but is not dense in X(Q3) for
the 3-adic topology. Similarly, X(k) is not empty and is not dense in X{kx) for the
X-adic topology.

Proof. We know that X{Q) c X(k) contains the rational point (x, y, z, t) =
(0,1, 0,1).

Let v =£ A be a place of k. Let (x, y, z, t) be in X(kv). Then t + 0 is a local norm
at v. Indeed, either v splits in K (this is always so if v is archimedean), in which
case the statement is clear, or v is inert. The extension Kv/kv is then an
unramified extension of non-archimedean local fields of degree 3, so that a
non-zero element a of kv is a norm if and only if its valuation v(a) is divisible
by 3. Thus the valuation of the left-hand side of (8.1) is divisible by 3. If
v(t + 6)>0, then v(t+62) = 0 and 3 divides v(t + 0). If v(t+6)<0, then
v(t + 02) = v(t + 0), whence 3 divides 2v(t + 0), and hence also v(t + 0).

We can already conclude that if M = (x, y, z, t) e X(k), then t + 0, which is a
local norm for the cyclic extension K/k at all places v of k except perhaps at
v = A, must also be a local norm at A. The function t + 0 is invertible on X and
the map from X(kx) to kt/NKt which associates the class of t + 0 to (x, y, z, i) is
continuous. Hence for any (x, y, z, t) e X(kk) in the closure of X(k), (t + 0) e kk

is a norm of Kk. This certainly implies that for any (x, y, z, t)eX(Q3) in the
closure of A'(Q), (t + 0) e kx is a norm of Kk.

If we can produce an element t e Q3 such that
(a) t + 0 is not a norm for KJkx. (which is true if and only if t is not a norm

for FA/Q3),
(b) t2 — t + 1 =£ 0 is a norm for i^/Q3 (which is true if and only if t2 — t + 1 is a

norm for KJkk),
say f2 - f + 1 = NF/Q(x + <oy + <o2z) =£ 0, with JC, y, z € Q3, then the point
(x, y, z, t) e X(Q3) a X(kx) will not belong to the closure of X(Q) in X(Q3), nor
will it belong to the closure of X(k) in X{kx).

Now t = 3 is the required element of Q3, as a diligent application of the
Artin-Tate formulae (see [1, § 4, F3]) reveals:

[3+0,3]3 = 2 (3),

[3 2 -3 + l, 3]3 = 0 (3).

Here is another example, which was kindly communicated to us by Daniel
Coray, and which avoids wild ramification. It was inspired by Swinnerton-Dyer's
counter-example to the Hasse principle for cubic surfaces [13].

Let k = Q, and let 0 be a root of
03 - 702 + 140 - 7 = 0.

Then K = Q(0) is a cyclic extension of Q, unramified away from 7. Let X be the
smooth variety defined in AQ by

(8.2) NKlk(x + 6y + d2z) = (t + l)(t + 2) # 0.

It contains the Q-point (0,2,0,6). For any place v =£ 7 of Q and any (x, y, z, t) e
X(kv) one checks, just as above, that (t + 1) is a local norm for the extension K/k
at v. In order to see that A'(Q) is not dense in X(Q7), it is thus enough to find
t e Q7 such that (t + l)(t + 2) ¥= 0 and t + 1 is not a local norm for K/k at v = 1 but
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2) is a local norm. Now t = \ is a suitable value. Indeed, 2 ^ ± 1
modulo 7 but 6 = - 1 modulo 7 and for the tamely ramified extension Q7(0)/Q7,
the units congruent to 1 in Q7 are exactly the norms of units congruent to 1 in

9. Computations of Brauer groups

In this section we compute the Brauer groups of smooth proper models of most
geometrically integral non-conical hypersurfaces X c PJJ (n 5= 4) defined by an
(absolutely irreducible) cubic form:

(9.1) N
2

2 ? , •••> xn) + C(x3, . . . , x n ) = 0,
1=0

with K = k((o), a)h Qi and C being as in Proposition 1.6. Here the ground field k
is an arbitrary field of characteristic zero and @ is the Galois group Gal(£/fc) of
an algebraic closure k of k. The irreducibility assumption implies that not all
forms Qi and C vanish.

Let Y be the projective space P£~3 with coordinates (y3, ..., yn). Let M a P"~3

be the closed fc-variety which over k is the union over i mod 3 of the closed
subvarieties defined by

Qi+iiy*, • --^yn) = Qi+2(yi>--,yn) = 0 a n d C(y3, ...,yn) = 0.

Let Yo be a non-empty Zariski open set of Y whose complement contains M.
Projection (JC0, ...,*„) ^ (̂ 3> •••» ^n) induces a rational map Z • Y. Let S

be the graph of this map. It is the subvariety of X x Y given by the equations

xtfj = Xjyif where 3^i<j^n.

Let F, respectively F, denote the function field of Y, respectively Y, and let EF be
the generic fibre of S/Y. Then SF is isomorphic to the cubic surface in P3

F with
coordinates (Xo, Xlt X2, X3) given by the equation

2

(9.2) NK/k(X0 + o)Xl + co2X2) + 2 bi(X0 + a>iXx + cojX2)Xl + cX\ = 0,

where b( = Q^,..., yn)ly\ (i = 0, 1, 2) and c = C(y3,..., yw)/yi
The assumption that X is geometrically integral and Lemma 2.2 imply that EF is

geometrically integral. Let 5, (i mod 3) be the subvariety of Sfc(<u.) given by

(9.3) x0 + (i)i+lxx + (oj+1x2 = xo + (oi+2xx + (oj+2x2 = x3 = x4 = ...=xn=0.

Then the generic point of 5, coincides with the rational point P( on SxFF(<y,)
given by

(9.4) ^ o + ©,-+1*1 + coj+1X2 = X0+ (Oi+2XX + a$+2X2 = X3 = 0.

If C2 + 4Q0Q1Q2 = 0, there is a singular F-point on EF given by the three
equations

2bi(X0 + Q)iXx + <ti2iX2) + cX3 = 0 (i = 1, 2, 3).

Thus if C2 + 4Q0QlQ2 = 0, then the cubic surface EF is an F-rational variety
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(Proposition 1.2 and Lemma 2.2), and hence Z is a ^-rational variety and Pic Z is
a stably permutation module [2, Proposition 2.A.I].

If C2 + 4j2oQIC^^O, which we now assume, then the points Pt are the only
(geometric) singular points on EF. Let W be the blowing-up of S along the closed
subvariety U?=o^i- Then the generic fibre WF of W/Y is the blow-up of SF along
its singular locus U?=o Pi- Since SF is normal and its geometric singular points are
rational double points of type either Ax or A2, this blow-up is smooth.

Now let V be the Zariski open set of W whose complement is the union of the
singular loci of the singular fibres of W/Y and let U be the inverse image of Yo

under the projection V-*Y. The fibres of U/Yo are non-empty and are
geometrically integral (Lemma 2.2). Let Up denote the generic fibre of U/%. We
have a natural exact sequence

(9.5) Pic Yo-> Pic £/-> Pic Up-* 0,

and it follows, from [6, Proposition 3.2], that

(9.6) Pic Up is stably a permutation ©-module.

Note that we also have a natural isomorphism

(9.7) k[Y0]*-k[U)*.

Indeed, k[U]* aF* because UF/F is proper and geometrically integral. But the
map U—> Yo is surjective, so that any function in F* whose inverse image on U is
invertible must belong to A:[Y0]*-

LEMMA 9.1. Let XczPk(n^3) be a geometrically integral cubic hypersurface as
in (9.1) and assume that each Qt divides C and that each Q( divides Qi+iQi+2.
Then there is a Del Pezzo surface Z of degree 6 defined over k such that X is
k-birational toYxkZ = P£~3 xkZ.

Proof. It follows from the assumptions that there are linear ^,-forms
Li(x3, ..., J O ^ O which are conjugate under Gd\(k/k) exactly as the Qt are, and
a e k* and f$ e k such that

(a) Qi = aLi+lLi+2(i = 0,1, 2),

(b) C = 0IlLoL,.
Let ai = L,(y3, ..., yn)/y3e K^Y) and consider SF c PF (cf. (9.2)) in the new

coordinates So, S1} S2, S3 given by

Ho + cOi*! + (ojE2 = a~\X0

Then EF is given by the equation:

Hence X is A>birational to Yxk W, where W is the cubic surface over k defined by
precisely the same equation as above. Such a cubic surface is fc-birational to a Del
Pezzo surface of degree 6 [6, Theorem 1.3].

PROPOSITION 9.2. Let X^P^ (n^M) be a geometrically integral cubic hyper-
surface defined by a form as in (9.1). Assume that X is of Type (I), and let Z be a
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smooth proper model of X. Then PicZ is a stably permutation module,
H\®, Pic Z) = 0, and Br Z/Br k = 0.

Proof. If Q{ divides C and each Q( divides Qi+1Qi+2, then the conclusion
follows from Lemma 9.1, [2, Proposition 2.A.1], and [6, Proposition 3.2]. We
may thus assume that either £), does not divide C or that, for some i, Qt does not
divide <2i+iQ»+2- Then there exists a hyperplane H czY defined over k such that
M\MC\H is of codimension at least 2 in Y\H. Let Yo be the complement of
H0UM in Y. Then ic[Y0]* = k* and Pic Yo = 0. It now follows from (9.5), (9.6),
and (9.7) that PicZ is stably a permutation module (cf. [3, Lemma 3.6] or [2,
Proposition 2.A.I]). The last two statements are well-known consequences of the
first.

PROPOSITION 9.3. Suppose that X is of Type (II) and n 5* 5. Then
//*(©, Pic Z) = 0 for any smooth proper model Z of X.

Proof. When the quadratic form Q (notation of (5.1)) is not of maximal rank,
X is a ^-rational variety since it is not a cone (cf. the proof of Theorem 5.1);
hence Pic Z is a stably permutation module and //*(©, Pic Z) = 0. So assume that
Q is of maximal rank (n - 2) ̂  3. Now M is the geometrically integral quadric
Q = 0. Let Yo be the complement of M. We still have k[Y0]* = k*, but now
Pic Yo = Z/2, and (9.5) and (9.6) only imply that H1^, Pic 0) is killed by 2.
Since k[Y0]* = k*, this implies that H\&, PicZ) itself is killed by 2. But the
cubic surface UF becomes rational over the cubic extension K(Y) of F = k(Y)
(Proposition 1.2); hence the variety UK is a JC-rational variety. A corestriction
argument then shows that Hx{%, Pic Z) is killed by 3, and this completes the
proof of Hl(&, PicZ) = 0.

Note that for n 5s 6, Corollary 5.3 gives a better result.

PROPOSITION 9.4. Suppose that X is of Type (III), and n^5. Then
i /^©, Pic Z) = 0 for any smooth proper model Z of X.

Proof. The hypersurface X is now given by an equation

co2x2) + C(*3, ..., xn) = 0.

According to [2, Theoreme 2.B.I], it is enough to prove the theorem under the
assumption Z{k) =£ 0 . Since Z is smooth and X is proper, this assumption implies
that X(k)¥z0; hence X is A:-unirational (Proposition 1.3) and hence in turn X(k)
is Zariski-dense in X.

Since XK is a ^-rational variety and K/k is of degree 3, standard arguments
imply that if H\Q, PicZK) = 0 when K/k is cyclic and g = Ga\(K/k), then
H\®, Pic Z) = 0 in general.

(a) Let us first assume that the cubic form C is absolutely irreducible. Then M,
which is given by the vanishing of C, is absolutely irreducible. Let Yo be the
complement of M in Y. We have K[Y0]* = K*; hence K[U]* - K* by the
analogue of (9.7) and PicY0K = Z/3. The analogue of (9.5) at the level of K
reads

Pic Y0>K-» Pic UK-+ Pic UFK-> 0,
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and it follows from [6, Proposition 3.2], that Pic UFK is stably a permutation
©-module. If the map Pic yo>/c—*•Pic UK is zero, then Pic UK is stably a
permutation module, hence so is PicZ* since K[U]* = K*, and hence finally
i/^g, Pic ZK) = 0. If the map is non-zero, the above sequence may be completed
into an exact sequence

0-> Pic YOtK-> Pic UK^> Pic UFK-+ 0.

Part of the associated cohomology sequence may be inserted in a diagram:

(Pic uKy - » (Pic uFKy — H\Q, Pic yOtK) —> Hl(Q> Kc UK) - * o

1 1
Pictf >Picf/F

The assumption U(k)*0 (X(k) is Zariski-dense), together with K[U]* = K*,
implies that the map Pic £/-» (Pic UK)a is an isomorphism (cf. for example [2, p.
412]). Thus the cokernel of the map (Pic i/*)9—> (Pic UFK)S is at least as big as the
cokernel of the map Pic UF-* (Pic UFK)Q. But UF is a smooth proper surface which
is F-birational to a Severi-Brauer surface over F (see Lemma 9.5 below). Now
either this surface has^an F-point, in which case its function field is purely
transcendental over F, and hence Z is a ^-rational variety, so that the conclusion
certainly holds, or the cokernel of the map Pic f/F—»(Pic UFK)Q is equal to Z/3.
Since H\q, Pic Y0>K) = Hl(Z/3, Z/3) = Z/3, the above diagram now implies that
H\Q, Pic UK) = 0. Together with K[U]* = K* this implies that H\Q, Pic ZK) = 0.

(b) Now assume that the cubic form C contains a linear factor defined over k. Then
X is given by an equation

(o2x2) + L(x3, ..., xn)Q(x3, ...,xn) = 0,

where L, respectively Q, is a linear, respectively quadratic, form with coefficients
in k. Any common zero of x0, xx, x2, L and Q is a singular point on X. Hence X
has a singular point defined over a field extension FIk of degree at most two.
Now X is F-rational since it is not a cone (Proposition 1.2). On the other hand,
Xk(w) is A:(ft>)-rational. Standard arguments now imply that //*(©, Pic Z) = 0.

(c) We now consider the only case which is left, namely the case when the
cubic form C is a constant multiple of the product of three conjugate linear forms.
Since X is not a cone, this may only occur when n = 5. In this case, after a linear
change of variables, an equation for X reads

co2x2) - cNUk(x3 + TX4 + T2X5) = 0,

where L = k{x) is a cubic extension of k and c e k*. The affine cone over X
contains the variety Yc:

(o2x2) = cNL/k(x3 + TJC4 + T2X5) =£ 0,

which is a principal homogeneous space under the torus TKtL,

(oxl + w2x2) = NUk(x3 + xx4 + z2x5) * 0.

Since we assumed that Z(k) J= 0 , which implied that X(k) is Zariski-dense, Yc is
actually a trivial principal homogeneous space; that is, we may reduce to c = 1. Let W
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be a smooth compactification of TKL. Now it may be shown that Hl{%, Pic W) = 0.
When L/k is cyclic, this appears in [8, Proposition 3.3], which, together with a
restriction-corestriction argument, is enough to complete the case under considera-
tion . (As Sansuc (in unpublished work) has shown, the vanishing actually holds for tori
of type TKtL in a more general situation, namely with K/k a cyclic field extension of
arbitrary degree and L/k any finite field extension.) Now Wis A>birational to Z x k P\,
and therefore H*(©, Pic Z) = 0 also.

The previous results are not used in the proofs of this paper, but they give
some reason for the Hasse principle and weak approximation to hold: there is no
obstruction of the Manin type.

In the proof of Proposition 9.4 and in the proof of Theorem 9.6 below, we use
the following lemma, whose proof is hard to locate in the literature.

LEMMA 9.5. Let K = k((o) be a cubic extension of the field k. Let X be the cubic
surface defined by the equation

xx + (o2x2) + cx\ = 0,

where c ek*. If K/k is a cyclic extension, then X is k-birational to a Severi-
Brauer surface defined over k.

Proof. Let / : W-*X be the desingularization obtained by blowing up the
three double points (of type A2) Po, Pi, Pi on XK. For i e Z/3 let LicXK be the
line through Pi+1 and Pi+2, and let M, <= WK be the strict transform of L, under
/ ~ \ It is shown in [6] that one obtains a smooth Del Pezzo surface Y of degree 6
by contracting the exceptional curves of the first kind Af,. The inverse image of
each P{ on WK consists of two smooth projective lines £, and F( with
(Ei.Ei) = - 2 , (Fi.Fi) = - 2 , (Ef.Fi) = 1. Consideration of the tangent cone at Ph

together with the assumption that K/k is a cyclic extension, shows that both lines
Ej and Ft are defined over K. By intersection theory one then obtains that the
images of the six lines {Eh ^}(ez/3 on YK are the six exceptional curves of the first
kind on YK, which build up a hexagon. Since each of them is defined over K, we
may find among them a set of three non-intersecting curves which is globally
defined over k and may therefore be blown down over k to produce a Del Pezzo
surface of degree 9, that is, a Severi-Brauer surface defined over k.

We now consider cubic threefolds of Type (II) and (III). The following result
played a crucial rdle in the proof of the Hasse principle and weak approximation
(see §§4 and 6):

THEOREM 9.6. Let XcP% De a geometrically integral and non-conical hyper-
surface defined by a cubic form as in (9.1). Let Z be a smooth proper model of X.
Then H\&, Pic Z) = Br Z/Br k = 0if

(a) X is of Type (II), and the quadratic form Q(x3, x4) is irreducible over the
discriminant extension of K/k,

(b) X is of Type (III) and the cubic form C(x3, x4) does not split completely
over the discriminant extension of K/k.

Proof. Since XK is a AT-rational variety (Proposition 1.2), a corestriction
argument implies that H*(©, Pic Z) is killed by 3. Thanks to another
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corestriction argument, to prove the theorem it is enough to prove that
Hl{Gd\{klk^), Pic Z) = 0, where kx is the discriminant extension of K/k (trivial if
K/k is Galois, quadratic otherwise). In other words, it is enough to prove that
//*(©, PicZ) = 0 when K/k is cyclic, which we now assume. The assumptions in
(a) and (b) then read:

(a) in Case (II), Q is irreducible over k,

(b) in Case (III), C does not split completely over k.

Moreover, we may assume that Z(k)i=0 [2, Theoreme 2.B.I]. This then
implies that X(k) =£ 0 (Nishimura's lemma). Since the cubic hypersurface X is not
a cone, this implies that X is fc-unirational (Proposition 1.3). In particular, X{k)
is Zariski-dense in X. We may assume:

(9.8) In Case (III), the cubic form C(x3, x4) is separable.

Indeed, if C is not separable, then X is a ^-rational variety (use the same proof as
in Lemma 6.1).

We shall use the same notation as in the beginning of the section. Here Y = P\,
and we let Yo be the complement of M. In Case (II), Yo is the complement of two
points, and in Case (III) it is the complement of three points. In both cases,
PicYo = 0. Note that the assumptions imply that C2 + 4Q1Q2Q3i=0) so that the
generic fibre VF = WF of V/Y is proper, smooth and geometrically integral over
F = k(Y). Since the map V—> Y is surjective, this implies that k[V]* = k*. Now,
by [3, Lemma 3.6] or [2, Proposition 2.A.1], there exists an exact sequence of
©-modules:

0->NX^>N2@PicZ^Pic f ->0 ,

where Nx and N2 are both permutation ©-modules; hence H1(@, Pic Z) = 0 as
soon as H\®, Pic V) = 0.

Note that the restriction map Pic V—> Pic U is surjective since V is smooth. The
exact sequence (9.5) here reduces to an isomorphism between Pic U and the
stably permutation module Pic UF. Letting Pv,o = Ker(PicF-» Pic U), we then
get the exact sequence

(9.9) P i c F ^ P i c f ? ® - * / / 1 ^ , Pv,o)^H\®, P i c F ) ^ 0 .

From k[V]* = k* and V(k)¥^0 (X is /c-unirational) and from the first terms of
the Leray spectral sequence for V/k and the etale_ sheaf Gm, we deduce that
Pic V — Pic P&. Together with the isomorphism Pic U — Pic Up, this implies

(9.10) Coker(Pic V& -> Pic t/®) =- Coker(Pic UF -* Pic Uf).

Assume that X is of Type (III). From equation (9.2) and the fact that K/k is
Galois it follows that UF is F-birational to a Severi-Brauer surface over F
(Lemma 9.5). From (9.10) one then concludes that

Coker(Pic V®-> Pic U®) - Z/3

if UF is not F-rational (which is then equivalent to UF{F) = 0 ) .
Thus by (9.9) the theorem will follow if we can prove

(9.11) //*(©, Pv,o) = 0 when X is of Type (II), and H\%, Pv,o) = Z/3 when X
is of Type (III) but UF is not an F-rational variety (if it is, Z is ^-rational and the
theorem follows trivially).
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There is an obvious commutative diagram of ©-modules:

deg
1 —> k[Y]* —> k[Y0]* — D J

F —-> PK,^—•• 0

In this diagram, Divy> y0Y, respectively Divj? £ V, denotes the group of divisors on
Y, respectively V, with support in Y\Y0, respectively V\U (these are permuta-
tion modules). From this diagram and Shapiro's lemma we deduce

(9.12) H\®, Pv.u) = Ker{//2(®, Divy)y0Y)^tt2(@, Divp^V)0# 2 (®, Z)}.

Suppose first that X is of Type (II) and let L be the quadratic extension of k
defined by the vanishing of Q and let E be the compositum of K and L in k.
Given a field /? with k^R^k, let ©* = Gal(£/fl). The ©-module Divy j>0Y is
the ©-module Z[©/©L] induced from the trivial ©L-module Z, and the
©-module Div^QV is the induced module Z[©/©£]. From (9.12) we deduce

(9.13) //*(©, Pv.o) = Kn{H2(®L, Z) i5£!^°I!!i//2(©£, Z) 0i/2(®, Z)}.

In the diagram

H\k, Z) - ^ //2(L, Z) C o r e S ) H\k, Z)

(9.14)

the vertical arrows are injections, the composite top map is multiplication by
2 = [L:k], the square commutes, and H2(K/k, Z) is killed by 3. From this and
(9.13) one immediately concludes that H\Qb, Pv,o)= 0-

Suppose next that X is of Type (III) and that C is irreducible over K. Let L be
the cubic extension of k defined by the vanishing of C, choose an embedding
Lczk and let E be the compositum of K and L in k. Just as above, Divp y0 Y is the
induced ©-module Z[@/@L] and Divp((/V is the induced ©-module Z[©/©£].
From (9.13) and the same diagram (9.14) as above, it now follows that

H\®, PVi0) - H\EIL, Z) - Z/3,

which proves (9.11) in the case under consideration.
Suppose now that X is of Type (III) and C is irreducible over k but becomes

reducible over K. In this case UF is actually defined over k, as a simple change of
variables in equation (9.1) reveals. But since V(k) is Zariski-dense in V, this
implies that UF(F) =£ 0 and that UF is an F-rational variety (and Z a ^-rational
variety).

Finally, assume that X is of Type (III) and that C is reducible over k, but does
not split completely over K. Thus the separable form C is the product of a linear
form and a quadratic form Q. Let L be the quadratic extension of k defined by
the vanishing of Q. By assumption, this extension is linearly independent from K.
Let E be the compositum of K and L in k. Now

YoY = Z 0 Z[©/@L], V\\VtUV = Z[@/©*] 0 Z[©/©£].
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Applying (9.12), one finds that

, Z)@H2(E/L, Z)^>H\k, Z)},

where the arrow is induced by the sum of corestrictions

H\k, Z) 0#2(L, Z)^>H\k, Z).

Basically the same argument as that given after (9.14) reveals that the above
kernel may be identified with the kernel of the map

H2(K/k, Z)®H\Klk, Z)^>H2{K/k, Z),

Z/3 8Z/3->Z/3,

and hence is isomorphic to Z/3, which completes the proof.
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