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1 Introduction

1.1 Planar maps

Planar maps are graphs embedded in the two-dimensional sphere. They have been used by physicists
as discrete models of random geometry, especially in the setting of (two-dimensional) quantum gravity.
The main goal of these lectures is to show that a large planar map chosen at random in an appropriate
class, such as the class of all triangulations of the sphere, is close in a certain sense to a random
compact metric space called the Brownian sphere (or the Brownian map). The Brownian sphere thus
provides a universal model of random geometry, which gives insight into the properties of large planar
maps chosen at random.

Definition 1. A planar map is a proper embedding of a finite connected graph in the two-dimensional
sphere S2, viewed up to orientation-preserving homeomorphisms of the sphere.

We speak of a “proper” embedding to mean that there are no edge-crossings. In the preceding
definition, we should have written “multigraph” instead of “graph”, meaning that we allow self-loops
and multiple edges. In these lectures, we will concentrate on quadrangulations, which have no self-loops,
but multiple edges may occur as in the figure below.

Root
vertex

Root
edge

v

w

Figure 1: A (planar) quadrangulation

Definition 2. A planar map is said to be rooted if there is a distinguished edge, and this distinguished
edge called the root edge is oriented. The origin of the root edge is called the root vertex. The planar
map is said to be rooted and pointed if in addition there is a distinguished vertex (which may or may
not be the root vertex).

When we identify two rooted (and pointed) planar maps modulo an orientation-preserving homeo-
morphism of the sphere, we of course require that this homeomorphism preserves the root edges (and
the distinguished vertices in the pointed case).
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The faces of a planar map are the connected components of the complement of edges. The degree
of a face counts the number of edges in the boundary of a face, with the convention that if both sides
of an edge are incident to the same face, this edge is counted twice in the degree of the face (this is the
case for the face incident to the vertex v in Fig. 1). A planar map is a triangulation if all its faces have
degree 3, a quadrangulation if all faces have degree 4, and more generally a p-angulation if all faces
have degree p. The planar map of Fig. 1 is a (rooted and pointed at v) quadrangulation with 7 faces.

It will also be important to introduce the notion of a corner of a vertex v of a planar map: a corner
of v is an angular sector between two successive edges incident to v (which may be the same in the
case when v is incident to a single edge). For instance in Fig. 1, the vertex v has only one corner, but
w has 5 corners. Each face in a quadrangulation has exactly 4 corners (two of them may correspond to
the same vertex, as in the case of the face containing v in Fig. 1).

We emphasize that planar maps are identified modulo orientation-preserving homeomorphisms of
the sphere. Roughly speaking, this means that we can deform continuously the edges and move the
vertices without changing the planar map in consideration.

1.2 Quadrangulations

Consider a planar map m, and let v, resp. f , resp. e, be the number of vertices, resp. of faces, resp. of
edges, in m. By Euler’s formula we have

v + f − e = 2.

Suppose in addition that m is a quadrangulation with n faces (thus f = n). Then, by counting the
number of edge sides in two different manners, we have 4f = 2e, and therefore e = 2n and v = n+ 2.

We denote the set of all rooted quadrangulations with n faces by Qn. The set Qn is finite, and we
have

#Qn = 2
n+ 2 3n cn

where cn is the n-th Catalan number,

cn = 1
n+ 1

(
2n
n

)
.

This formula (and many other similar formulas for the enumeration of planar maps) is due to Tutte
[18]. Since for each rooted quadrangulation, there are exactly n+ 2 manners of choosing an additional
distinguished vertex, the set Q•n of all rooted and pointed quadrangulations with n faces has cardinality

#Q•n = (n+ 2)Qn = 2 · 3n cn.

We will later give an explanation of the latter formula.

A general planar map The associated quadrangulation (red edges)

Figure 2: Tutte’s bijection

A motivation for studying the special case of quadrangulations comes from the fact that there is a
nice bijection called Tutte’s bijection between the set of all rooted planar maps with n edges and the
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set Qn. Informally, starting from a general rooted planar map m, we add a vertex inside each face of
m, and we then draw a red edge between this vertex and each corner of the face containing it. The
collection of all red edges then forms a quadrangulation (some convention is needed to define the root
edge of this quadrangulation from the root edge of m). See Fig. 2 for an illustration. As a consequence
of this bijection, the previous formula for #Qn also gives the number of planar maps with n edges.

Let us now come to our main objective. For every n ≥ 1, we choose a random quadrangulation
Qn uniformly at random in the set Qn (or in Q•n, but this will make no difference for our purposes).
Writing V (Qn) for the set of all vertices of Qn, we equip V (Qn) with the graph distance dQn

gr : if
u, v ∈ V (Qn), dQn

gr (u, v) is the minimal number of edges on a path connecting u and v in Qn. Then
(V (Qn), dQn

gr ) is a (finite) random metric space, and we want to argue that when n is large this metric
space is close (modulo an appropriate rescaling of the distance) to a certain random compact metric
space. To make the preceding claim precise, we will need an appropriate notion of convergence of a
sequence of metric spaces.

1.3 The main theorem

If (E, d) is a compact metric space, we use the notation dEHaus for the usual Hausdorff distance between
compact subsets of E. If K and K ′ are two compact subsets of E,

dEHaus(K,K ′) = inf{ε > 0 : K ⊂ K ′ε and K ′ ⊂ Kε},

where Kε stands for the ε-enlargment of K.
Then, if (E1, d1) and (E2, d2) are two compact metric spaces, the Gromov-Hausdorff distance

dGH(E1, E2) is defined by

dGH(E1, E2) = inf{dEHaus(ψ1(E1), ψ2(E2))},

where the infimum is over all choices of the compact metric space E and the isometric embeddings
ψ1 : E1 −→ E and ψ2 : E2 −→ E of E1 and E2 into E.

It will be useful to have an alternative definition of dGH(E1, E2) in terms of correspondences. A
correspondence between E1 and E2 is a subset R of E1 ×E2 such that, for every x1 ∈ E1, there exists
at least one x2 ∈ E2 such that (x1, x2) ∈ R and, conversely, for every y2 ∈ E2, there exists at least one
y1 ∈ E1 such that (y1, y2) ∈ R. The distortion of the correspondence R is defined by

dis(R) = sup{|d1(x1, y1)− d2(x2, y2)| : (x1, x2), (y1, y2) ∈ R}.

We have then [3]
dGH(E1, E2) = 1

2 inf
R∈C(E1,E2), (ρ1,ρ2)∈R

dis(R), (1)

where C(E1, E2) denotes the set of all correspondences between E1 and E2.
Let K denote the set of all compact metric spaces modulo isometries. Then one proves [3] that

(E1, E2) −→ dGH(E1, E2) defines a distance on K, and moreover the metric space (K, dGH) is separable
and complete (separability can be deduced from the fact that finite metric spaces are dense in K).
Consequently, (K,dGH) is a Polish space. The convergence in distribution of a sequence of random
compact metric spaces is then a special case of the familiar notion of convergence of random variables
with values in a Polish space.

Recall that Qn is uniformly distributed on the set Qn.

Theorem 1. [9, 14] We have
(
V (Qn),

(9
8
)1/4

n−1/4dQn
gr

) (d)−→
n→∞

(m∞, D∗),

where the convergence holds in distribution in (K, dGH), and the limit (m∞, D∗) is a random compact
metric space called the Brownian sphere.
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The fact that n−1/4 is the correct rescaling factor will be explained later using the coding of
quadrangulations by labeled trees. The constant (9/8)1/4 is needed because, as we will see below, there
is a “canonical” way of defining the limiting space (m∞, D∗) (otherwise we could just replace D∗ by
(9/8)−1/4D∗ ...).

The preceding theorem can be extended to much more general classes of random planar maps (e.g.
triangulations, p-angulations, general planar maps with a given number of vertices, planar maps with
prescribed face degrees, etc.). The normalizing factor n−1/4 is still the same in these extensions, but
the constant (9/8)1/4 has to be replaced by another constant depending on the class in consideration.
These results show that the Brownian sphere is a “universal” model of random geometry, in the sense
that (m∞, D∗) appears as the scaling limit of many different discrete models.

Figure 3: Simulation of a large triangulation (by N. Curien)
On the other hand, it is possible to get different limiting objects by considering random planar

maps under distributions that favor the appearance of very large faces [10]. In particular, this leads to
the so-called stable maps, which have aroused some interest in theoretical physics.

Among the recent developments around the Brownian sphere, we mention the work of Miller and
Sheffield, who have used the Gaussian free field (and the Quantum Löwner Evolution) to provide
another construction making it possible to equip the Brownian sphere with a conformal structure and
involving deep connections with Liouville quantum gravity.

In order to explain the main ideas of the proof of Theorem 1, we mention the following key steps of
the argument:

• the coding of quadrangulations by discrete labeled trees;

• scaling limits for random labeled trees, with convergence to the Continuum Random Tree (CRT)
equipped with Brownian labels;

• the construction of the Brownian sphere from the CRT equipped with Brownian labels;

• the convergence of rescaled quadrangulations to the Brownian sphere from the convergence of
random labeled trees.

The preceding steps are summarized in the following diagram.

(random) quadrangulations (random) labeled trees

CRT with Brownian labelsBrownian sphere

coding

coding

scaling
limit

scaling
limit

Theorem 3
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We emphasize that the coding of quadrangulations by trees (which is explained in detail in the
next section) remains valid in some form for much more general planar maps (see e.g. [2]), even if the
technical details become more intricate. The principle saying that the geometry of a planar map can
be described by an appropriately chosen labeled tree seems to hold in a very general setting.

2 Coding quadrangulations by labeled trees
We will consider rooted ordered trees, which are called plane trees in combinatorics (see e.g. [17]). We
use the notation N = {1, 2, . . .} and by convention N0 = {∅}. We introduce the set

U =
∞⋃
n=0

Nn.

An element of U is thus a sequence u = (u1, . . . , un) of elements of N, and we set |u| = n, so that |u|
represents the “generation” of u. If u = (u1, . . . um) ∈ U and j ∈ N, we write uj = (u1, . . . um, j) (uj is
a “child” of u). The mapping π : U\{∅} −→ U is defined by π((u1, . . . , un)) = (u1, . . . , un−1) (π(u) is
the “parent” of u).

Definition 3. A plane tree τ is a finite subset of U such that:

(i) ∅ ∈ τ .

(ii) u ∈ τ\{∅} ⇒ π(u) ∈ τ .

(iii) For every u ∈ τ , there exists an integer ku(τ) ≥ 0 such that, for every j ∈ N, uj ∈ τ if and only
if 1 ≤ j ≤ ku(τ)

The number ku(τ) is interpreted as the “number of children” of u in τ .
For our purposes, it will be important to view a plane tree as a planar map (with only one face!)

in the way suggested by the left side of Fig. 5: points of τ correspond to vertices of the graph and
edges connect each vertex u ∈ τ\{∅} to its parent π(u). Note that the children u1, u2, . . . of a vertex
u are enumerated from left to right in the representation of Fig. 5.

∅

1 2

(1, 1)

(1, 2, 2)

(1, 2, 3, 1)

(1, 2, 3)(1, 2, 1)

(1, 2)

k

Cτ (k)

1 2 3

1

2

3

Figure 4: A plane tree and its contour function.

We denote the set of all plane trees by A. In what follows, we see each vertex of the tree τ as an
individual of a population whose τ is the family tree. By definition, the size |τ | of τ is the number of
edges of τ , |τ | = #τ − 1. For every integer n ≥ 0, we put

An = {τ ∈ A : |τ | = n}.
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We leave it as an exercise for the reader to check that the cardinality of An is the n-th Catalan number
cn.

In the representation of Fig. 5, we can make sense of corners of each vertex u of the tree, exactly
in the same way as we defined corners for a planar map (indeed we already said that we can view a
tree as a planar map), and it is easy to verify that a tree τ ∈ An has 2n corners. Corners of a tree τ
can be listed in cyclic order by moving around the tree in clockwise order, starting and ending at the
corner “below” the root ∅ (see the left side of Fig. 6 below for an example). The contour sequence of
the tree is then the sequence of vertices attached to the corners in this enumeration. To make this
more precise, if τ ∈ An, the contour sequence (v0, v1, . . . , v2n) is defined inductively as follows:

• v0 = ∅.

• For every i = 0, 1, . . . , 2n−1, vi+1 is either the first child of vi that does not appear in {v0, . . . , vi},
or, if there is no such child, the parent of vi.

Note that v2n = ∅. For instance, the contour sequence of the tree of of Fig. 4 starts with

∅, 1, (1, 1), 1, (1, 2), (1, 2, 1), (1, 2), (1, 2, 2), . . .

We define the contour function of τ by Cτ (i) = |vi|, for every 0 ≤ i ≤ 2n. See Fig. 4 for an example.

Definition 4. A labeled tree is a pair (τ, (`v)v∈τ ) that consists of a plane tree τ a collection (`v)v∈τ of
labels assigned to the vertices of τ such that the following properties hold:

(i) for every v ∈ τ , `v ∈ Z ;

(ii) `∅ = 0 ;

(iii) for every v ∈ τ\{∅}, `v − `π(v) = 1, 0, or − 1.

Condition (iii) just means that when crossing an edge of τ the label can change by at most 1 in
absolute value. See Fig. 5 for an example.

∅

1 2

(1, 1)

(1, 2, 2)

(1, 2, 3, 1)

(1, 2, 3)(1, 2, 1)

(1, 2)

0

−1
0

−1 1

2

3

01

Figure 5: An admissible assignment of labels (in red) to the tree of Fig. 4.

If θ = (τ, (`v)v∈τ ) is a labeled tree, and (v0, v1, . . . , v2n) is the contour sequence of τ , we define the
label function of θ by setting Lθ(i) = `vi for every 0 ≤ i ≤ 2n.

Let us write Tn for the set of all labeled trees with n edges. Since increments of labels along each
edge can be chosen arbitrarily in {−1, 0, 1}, we get

#Tn = 3n#An = 3ncn.

The reason for introducing labeled trees comes from the following key theorem, where we recall the
notation dQgr for the graph distance on the vertex set V (Q) of a quadrangulation Q.
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Theorem 2 (Cori-Vauquelin [5], Schaeffer [16]). One can construct a bijection Θ : Tn × {−1, 1} −→
Q•n in such a way that the following properties hold. If (τ, (`v)v∈τ ) ∈ Tn, η ∈ {−1, 1}, and Q =
Θ((τ, (`v)v∈τ ), η),

(i) the vertex set of τ is canonically identified with V (Q)\{v∗}, where v∗ denotes the distinguished
vertex of Q;

(ii) modulo the preceding identification, we have for every v ∈ V (Q)\{v∗},

dQgr(v∗, v) = `v −min{`w : w ∈ τ}+ 1. (2)

The preceding statement is somewhat informal, and a more precise version would require the
construction of the bijection Θ, which will give additional properties. Before explaining the construction
of Θ, let us emphasize that property (ii) will be of particular importance as it relates graph distances
on Q to labels on the associated tree. The bijection of Theorem 2 is often called the CVS bijection (for
Cori-Vauquelin and Schaeffer).

0

1−1

10

0−1−1

−1

−2
v∗

0

1−1

10

0−1−1

−1

c0

c1
c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

Figure 6: Illustration of the CVS bijection (case η = −1). On the left side, c0, c1, . . . are the corners of
τ enumerated in cyclic order. On the right side, construction of the quadrangulation by drawing a red
edge from each corner.

Construction of the bijection Θ. We start by drawing the (labeled) tree (τ, (`v)v∈τ ) in the plane as in
Fig. 4. On the example shown in Fig. 6, vertices are represented by small circles and their labels are
displayed inside the circles (moreover in the right part of this figure, we have redrawn the tree τ with
edges in dotted lines, because edges of the tree will not be edges of the associated quadrangulation,
and we give the construction of the quadrangulation from this redrawn tree). Then the construction
proceeds as follows. We first add an extra vertex “outside” τ , which is denoted by v∗, and we assign the
label `v∗ = min{`w : w ∈ τ} − 1 to this vertex. We let c0, c1, . . . , c2n−1 be the corners of τ enumerated
in cyclic ordering as explained previously (see the left side of Fig. 6). For every corner ci, 0 ≤ i ≤ 2n−1,
we draw a red edge that connects this corner to the next corner in cyclic ordering with label `ci − 1
(here the label `c of a corner is obviously the label of the associated vertex). This is possible unless `ci

is equal to the minimal label on τ , in which case we connect the corner ci to v∗. The reader will verify
that it possible to draw all red edges so that they do not cross and do not cross the edges of the tree.
See Fig. 6 for an example. In this example, the corner c0 is connected to the next label with label
`c0 − 1 = −1, which is c1, the corner c1 has minimal label and is thus connected to v∗, the corner c2 is
connected to the next corner with label −1, which is now c5, the corner c3 is connected to the next
corner with label `c3 − 1 = 0, which is c4, and so on.
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The collection of the 2n red edges that we have drawn forms a quadrangulation Q — this is
relatively easy to check but we omit the details — whose vertex set is the vertex set of τ to which
we have added the extra vertex v∗. This quadrangulation has 2n edges and thus n faces (the reader
may also observe that each face contains exactly one edge of τ). As we want to obtain a rooted
and pointed quadrangulation, we still need to specify the root edge and the distinguished vertex of
this quadrangulation: the distinguished vertex is v∗ and the (unoriented) root edge is the red edge
constructed from the corner c0. To specify the orientation of the root edge, we use the parameter η:
we decide that the root vertex is the root of the tree if and only η = 1.

It is not difficult to verify that the previous construction provides a mapping from Tn×{−1, 1} into
Q•n. The nontrivial part is to prove that this mapping is a bijection, which can be done by constructing
the inverse mapping (see e.g. [4]).

Let us finally discuss properties (i) and (ii) in the theorem. Property (i) follows from our construction.
As for (ii), we note that the labels of two vertices connected by an edge of Q differ by +1 or −1, and it
readily follows that a path (in the quadrangulation) connecting a vertex v to v∗ must have length at
least `v − `v∗ = `v −min{`w : w ∈ τ}+ 1. The other inequality is also easy. From a vertex v we can
construct a path from v to v∗ in Q, with length `v − `v∗ , as follows. We start from any corner of v in
τ and consider the edge of Q from this corner to the next corner with label `v − 1. From the latter
corner, we also have an edge of Q to a corner with label `v − 2. We iterate this procedure until we
arrive at the unique vertex v∗ with minimal label in V (Q). Clearly, we have obtained a path from v to
v∗ with length `v − `v∗ . This path is a geodesic in Q and is called the simple geodesic starting from the
corner of v considered initially.
Remark. It follows from the CVS bijection that #Q•n = 2#Tn = 2 · 3n cn, and we recover an
enumeration formula given above.

3 Scaling limits of trees

3.1 Convergence of contour functions

For every n ≥ 1, consider a random labeled tree (τn, (`nv )v∈τn) which is uniformly distributed over
Tn, and note that τn is then uniformly distributed over An. Our goal is to derive a scaling limit for
(τn, (`nv )v∈τn), or more precisely for the contour and label functions that code this labeled tree.

Let us start by discussing the tree τn. Recall that a Dyck path of length 2n is a sequence
(x0, x1, x2, . . . , x2n) of nonnegative integers such that x0 = x2n = 0, and |xi − xi−1| = 1 for every
i = 1, . . . , 2n. Recall the notation Cτ for the contour function of a plane tree τ (see Fig. 4). It is
straightforward to verify that the mapping

An 3 τ 7→ (Cτ (i), 0 ≤ i ≤ n)

is a bijection from An onto the set of all Dyck paths of length 2n.
On the other hand, let (Sk)k≥0 be simple random walk (coin-tossing) on Z, with S0 = 0, and set

T = min{k ≥ 0 : Sk = −1}.

Then the conditional distribution of (S0, S1, . . . , S2n) given that T = 2n+ 1 is the uniform distribution
on the set of all Dyck paths of length 2n.

The preceding discussion shows that, for the random tree τn which is uniformly distributed over
An, the contour function (Cτn(i), 0 ≤ i ≤ 2n) is distributed as (Si, 0 ≤ i ≤ 2n) under P(· |T = 2n+ 1).
In the following proposition, it is convenient to agree that the contour function Cτn is extended to the
real interval [0, 2n] by linear interpolation between integer times (as in Fig. 4).

Proposition 3. We have ( 1√
2n
Cτn(2n t)

)
0≤t≤1

(d)−→
n→∞

(et)0≤t≤1

where e is a normalized Brownian excursion and the convergence holds in the sense of weak convergence
of the laws on the space C([0, 1],R+) of continuous functions from [0, 1] into R+ (equipped with the
supremum norm).
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The law of the process (et)0≤t≤1 is characterized by its finite-dimensional marginals. Write

pt(x) = 1√
2πt

exp(−|x|
2

2t ), t > 0, x ∈ R,

for the Brownian transition density. Then, for every integer p ≥ 1, and every choice of 0 < t1 < t2 <
· · · < tp < 1, the distribution of (e(t1), . . . , e(tp)) has density

(0,∞)p 3 (x1, . . . , xp) 7→ 2
√

2π qt1(x1) p∗t2−t1(x1, x2) p∗t3−t2(x2, x3) · · · p∗tp−t1(xp−1, xp) q1−tp(xp) (3)

where
qt(x) = x

t
pt(x), t > 0, x > 0,

and
p∗t (x, y) = pt(y − x)− pt(y + x) , t > 0 , x, y > 0

is the transition density of Brownian motion killed when it hits 0.
Let us discuss the convergence of finite-dimensional marginals in Proposition 3. It is convenient to

write P` for a probability measure under which the simple random walk S starts from ` ∈ Z. A useful
ingredient is Kemperman’s formula (see e.g. [15, Section 6.1]), which states that, for every integers
` ≥ 0 and m ≥ `+ 1,

P`(T = n) = `+ 1
n

P`(Sn = −1). (4)

On the other hand, the classical local limit theorem applied to the random walk S gives, for every
ε > 0,

lim
n→∞

sup
x∈R

sup
s≥ε

∣∣∣√nP(Sbnsc = bx
√
nc or bx

√
nc+ 1

)
− 2ps(0, x)

∣∣∣ = 0. (5)

Fix t ∈ (0, 1). We use both (4) and (5) to verify that

lim
n→∞

√
2nP

(
Sb2ntc = bx

√
2nc or bx

√
2nc+ 1

∣∣∣T = 2n+ 1
)

= 4
√

2π qt(x) q1−t(x), (6)

which gives the convergence of one-dimensional marginals in Proposition 3 (even in a strong form).
Let us explain the derivation of (6). We first write for i ∈ {1, . . . , 2k} and ` ≥ 0,

P(Si = ` | T = 2n+ 1) = P({Si = `} ∩ {T = 2n+ 1})
P(T = 2n+ 1) .

By an application of the Markov property of S, we have

P({Si = `} ∩ {T = 2n+ 1}) = P(Si = `, T > i)P`(T = 2n+ 1− i).

Furthermore, a simple time-reversal argument shows that

P(Si = `, T > i) = P`(Si = 0, T > i) = 2P`(T = i+ 1).

Summarizing, we have obtained

P(Si = ` | T = 2n+ 1) = 2P`(T = i+ 1)P`(T = 2n+ 1− i)
P(T = 2n+ 1)

= 2(2n+ 1)(`+ 1)2

(i+ 1)(2n+ 1− i)
P`(Si+1 = −1)P`(S2n+1−i = −1)

P(S2n+1 = −1) (7)

using (4) in the second equality.
We apply this identity with i = b2ntc and ` = bx

√
2nc or ` = bx

√
2nc+ 1. Using (5), we have first

2(2n+ 1)(bx
√

2nc+ 1)2

(b2ntc+ 1)(2n+ 1− b2ntc) ×
1

P(S2n+1 = −1) ≈ 2
√

2π (2n)1/2 x2

t(1− t)
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and, using (5) once again,

Pbx√2nc(Sb2ntc+1 = −1)Pbx√2nc(S2n+1−b2ntc = −1)
+ Pbx√2nc+1(Sb2ntc+1 = −1)Pbx√2nc+1(S2n+1−b2ntc = −1) ≈ 2 (2n)−1 pt(0, x)p1−t(0, x).

Putting these estimates together, and recalling that qt(x) = (x/t)pt(0, x), we arrive at (6).
Higher order marginals can be treated in a similar way. Let us sketch the case of two-dimensional

marginals. We observe that, if 0 < i < j < 2n and if `,m ∈ Z+, we have, by the same arguments as
above,

P(Si = `, Sj = m,T = 2n+ 1) = 2P`(T = i+ 1)P`(Sj−i = m,T > j − i)Pm(T = 2n+ 1− j).

Only the middle term P`(Sj−i = m,T > j − i) requires a different treatment than in the case of
one-dimensional marginals. However, by an application of the reflection principle, one has

P`(Sj−i = m,T > j − i) = P`(Sj−i = m)− P`(Sj−i = −m).

Hence, using (5), we easily obtain that for x, y > 0 and 0 < s < t < 1,

Pbx√2nc(Sb2ntc−b2nsc = by
√

2nc) + Pbx√2nc+1(Sb2ntc−b2nsc = by
√

2nc+ 1) ≈ 2 (2n)−1/2 p∗t−s(x, y),

and the result for two-dimensional marginals follows in a straightforward way.
The convergence of finite-dimensional marginals is not sufficient to get the statement of Proposition

3: one also needs a tightness argument, which we omit here (see [11] for a detailed proof).

3.2 Interpretation in terms of convergence of trees

Our goal is to explain why Proposition 3 implies a convergence result for random trees. We first explain
how the Brownian excursion e can be viewed as the “contour function” of a certain “continuous tree”.

We consider a (deterministic) continuous function h : [0, 1] −→ R+ such that h(0) = h(1) = 0. To
avoid trivialities, we will also assume that h is not identically zero. For every s, t ∈ [0, 1], we set

mh(s, t) = inf
r∈[s∧t,s∨t]

h(r),

and
dh(s, t) = h(s) + h(t)− 2mh(s, t).

Clearly dh(s, t) = dh(t, s) and it is also easy to verify the triangle inequality

dh(s, u) ≤ dh(s, t) + dh(t, u)

for every s, t, u ∈ [0, 1]. We then introduce the equivalence relation s ∼ t iff dh(s, t) = 0 (or equivalently
iff h(s) = h(t) = mh(s, t)). Let Th be the quotient space

Th = [0, 1]/ ∼ .

Obviously the function dh induces a distance on Th, and we keep the notation dh for this distance. We
denote by ph : [0, 1] −→ Th the canonical projection. Clearly ph is continuous (when [0, 1] is equipped
with the Euclidean metric and Th with the metric dh), and the metric space (Th, dh) is thus compact.

Proposition 4. The metric space (Th, dh) is a compact R-tree.

This means that (Th, dh) is a compact metric space and that, for every a, b ∈ Th there is a unique
continuous injective path going from a to b, up to reparameterization, and the range of this path is
isometric to the line segment [0, dh(a, b)]. Informally, a compact R-tree should be viewed as a connected
union of line segments in the plane, which is a tree in the sense that there is no cycle.

We will say that (Th, dh) is the tree coded by h. By definition, the root ρh of the tree Th is
ρh = ph(0) = ph(1), and the volume measure on Th is the pushforward of Lebesgue measure on [0, 1]
under ph.
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It will be important for us to define “intervals” in the tree Th. Roughly speaking, the mapping
[0, 1] 3 t 7→ ph(t) corresponds to a cyclic exploration of the tree (recall that ph(0) = ph(1)), and, if
a, b ∈ Th, the interval [a, b] corresponds to the set of points of Th that are visited when going from a to
b in this exploration. In view of a more precise definition, let us make the special convention that, for
s, t ∈ [0, 1] such that s > t, the “interval” [s, t] is defined by [s, t] = [s, 1] ∪ [1, t] (of course, if s ≤ t,
[s, t] is the usual interval). Then, for a, b ∈ Th, there is a smallest interval [s, t] with ph(s) = a and
ph(t) = b, and we set [a, b] = ph([s, t]). It is important to observe that [a, b] 6= [b, a] in general.

Definition 5. The Continuum Random Tree (CRT) is the random R-tree Te coded by a normalized
Brownian excursion e.

The CRT was first introduced by Aldous [1] with a different presentation. See [7] for the presentation
that is used here.

We view Te as a random variable with values in the space K introduced in Section 1. This makes
sense because the mapping h 7→ Th, from {h ∈ C([0, 1],R+) : h(0) = h(1) = 0} into K is measurable:
the next lemma even gives the continuity of this mapping.

Lemma 5. Let h1, h2 ∈ C([0, 1],R+) such that h1(0) = h1(1) = 0 and h2(0) = h2(1) = 0. Then,

dGH(Th1 , Th2) ≤ 2 sup{|h1(t)− h2(t)| : t ∈ [0, 1]}.

Proof. We use the definition of dGH in terms of correspondences (1). To this end, we consider the
correspondence between Th1 and Th2 defined by

R = {(ph1(t), ph2(t)) : t ∈ [0, 1]}.

The distortion of R is bounded by noting that, if s, t ∈ [0, 1] with s ≤ t,

dh1(s, t) = h1(s) + h1(t)− 2 min{h1(r) : r ∈ [s, t]},
dh2(s, t) = h2(s) + h2(t)− 2 min{h2(r) : r ∈ [s, t]};

so that

|dh1(ph1(s), ph1(t))− dh2(ph2(s), ph2(t))| = |dh1(s, t)− dh2(s, t)| ≤ 4 sup{|h1(r)− h2(r)| : r ∈ [0, 1]}

and therefore
dis(R) ≤ 4 sup{|h1(r)− h2(r)| : r ∈ [0, 1]}

and we just have to use (1).

Recall that τn is a random plane tree uniformly distributed over An. As previously, we view τn as
a graph (in the way suggested by Fig. 4) and write dτn

gr for the graph distance on τn.

Theorem 6. We have (
τn,

1√
2n

dτn
gr

) (d)−→
n→∞

(Te, de),

in distribution in the space K.

Proof. By Proposition 3 and the Skorokhod representation theorem, we may assume that we have
almost surely

sup
t∈[0,1]

∣∣∣ 1√
2n
Cτn(2n t)− e(t)

∣∣∣ −→
n→∞

0.

Set C(n)(t) = 1√
2nCτn(2n t) for every t ∈ [0, 1]. From the last display and Lemma 5, we get

TC(n)
a.s.−→
n→∞

Te

where the convergence holds in K. Finally, it is straightforward to verify that

dGH
(
(TC(n) , dC(n)), (τn,

1√
2n

dτn
gr )
)
≤ 1√

2n
,

and the statement of the theorem follows.
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4 The scaling limit of labels
Recall our notation (τn, (`nv )v∈τn) for a random labeled tree uniformly distributed over Tn. We are now
interested in deriving a scaling limit for the labels (`nv )v∈τn .

Let h : [0, 1] −→ R+ be a continuous function such that h(0) = h(1) = 0 (as in subsection 3.2). We
also assume that h is Hölder continuous: There exist two positive constants K and γ such that, for
every s, t ∈ [0, 1],

|h(s)− h(t)| ≤ K |s− t|γ .

We use the same notation mh(s, t) = min{h(r) : r ∈ [s ∧ t, s ∨ t]} as above.

Lemma 7. The function (mh(s, t))s,t∈[0,1] is nonnegative definite in the sense that, for every integer
p ≥ 1, for every s1, . . . , sp ∈ [0, 1] and every λ1, . . . , λp ∈ R, we have

p∑
i=1

p∑
j=1

λiλjmh(si, sj) ≥ 0.

Proof. Fix s1, . . . , sp ∈ [0, 1], and t ≥ 0. For i, j ∈ {1, . . . , p}, put i ≈ j if mp(si, sj) ≥ t. Then ≈ is
an equivalence relation on {i : h(si) ≥ t} ⊂ {1, . . . , p}. By summing over the different classes of this
equivalence relation, we get that

p∑
i=1

p∑
j=1

λiλj1{t≤mh(si,sj)} =
∑

C equiv. class of ≈

(∑
i∈C

λi
)2
≥ 0.

Now integrate with respect to dt to get the desired result.

By Lemma 7 and a standard application of the Kolmogorov extension theorem, there exists a
centered Gaussian process (Zhs )s∈[0,1] whose covariance is

E[Zhs Zht ] = mh(s, t)

for every s, t ∈ [0, 1]. Consequently we have

E[(Zhs − Zht )2] = E[(Zhs )2] + E[(Zht )2]− 2E[Zhs Zht ] = h(s) + h(t)− 2mh(s, t) ≤ 2K |s− t|γ ,

where the last bound follows from our Hölder continuity assumption on h (this calculation also shows
that E[(Zhs − Zht )2] = dh(s, t), in the notation of subsection 3.2). From the previous bound and an
application of the Kolmogorov continuity criterion, the process (Zhs )s∈[0,1] has a modification with
continuous sample paths. This leads us to the following definition.

Definition 6. The Brownian snake driven by the function h is the centered Gaussian process (Zhs )s∈[0,1]
with continuous sample paths and covariance

E[Zhs Zht ] = mh(s, t) , s, t ∈ [0, 1].

Notice that we have in particular Zh0 = Zh1 = 0. More generally, for every t ∈ [0, 1], Zht is normal
with mean 0 and variance h(t). We observe that our terminology is different from the one in [6], where
the Brownian snake is defined as a path-valued process: what we call the Brownian snake is the “head”
of the Brownian snake considered in [6].
Remark. Recall from subsection 3.2 the definition of the equivalence relation ∼ associated with
h: s ∼ t iff dh(s, t) = 0. If s, t ∈ [0, 1] are fixed and such that s ∼ t we have Zhs = Zht a.s. (this is
obvious since E[(Zhs − Zht )2] = dh(s, t)). Via a continuity argument, one can get the stronger fact that,
almost surely for every s, t ∈ [0, 1], the condition s ∼ t implies that Zhs = Zht . In other words we may
view Zh as a process indexed by the quotient [0, 1] /∼, that is by the tree Th. Indeed, it is then very
natural to interpret Zh as Brownian motion indexed by the tree Th: In the particular case when Th is
a finite union of segments (which holds if h is piecewise monotone), Zh can be constructed by running
independent Brownian motions along the branches of Th. It is however more convenient to view Zh as
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a process indexed by [0, 1] because later the function h (and thus the tree Th) will be random and we
avoid considering a random process indexed by a random set.

Recall that we have defined the label function Lθ of a labeled tree θ = (τ, (`v)v∈τ ) by setting
Lθ(i) = `vi for every 0 ≤ i ≤ 2n, where (v0, . . . , v2n) is the contour sequence of τ . We extend the
definition of Lθ to the real interval [0, 2n] by linear interpolation.

Theorem 8. Let θn = (τn, (`nv )v∈τn) be uniformly distributed over Tn. Then( 1√
2n
Cτn(2n t),

(9
8
)1/4

n−1/4 Lθn(2n t)
)

0≤t≤1

(d)−→
n→∞

(et, Zt)0≤t≤1

where, conditionally on e, Z is distributed as the Brownian snake driven by e, and the convergence
holds in distribution in the space C([0, 1],R+)2.

Proof. To simplify notation, we write Cn(s) = Cτn(s) and Ln(s) = Lθn(s) in this proof. As in the
proof of Theorem 6, we may assume that

sup
t∈[0,1]

∣∣∣ 1√
2n
Cn(2n t)− e(t)

∣∣∣ a.s.−→
n→∞

0. (8)

Let us discuss the convergence of finite-dimensional marginals in Theorem 8. We aim to prove that for
every choice of 0 ≤ t1 < t2 < · · · < tp ≤ 1, we have( 1√

2n
Cn(2n ti),

( 9
8n
)1/4

Ln(2n ti)
)

1≤i≤p

(d)−→
n→∞

(eti , Zti)1≤i≤p. (9)

Since for every i ∈ {1, . . . , p},

|Cn(2nti)− Cn(b2ntic)| ≤ 1 , |Ln(2nti)− Ln(b2ntic)| ≤ 1

we may replace 2nti by its integer part b2ntic in (9).
Consider the case p = 1. We may assume that 0 < t1 < 1, because otherwise the result is trivial.

It is immediate that conditionally on τn, the label increments `nv − `nπ(v), v ∈ τn\{∅}, are i.i.d. with
uniform distribution on {−1, 0, 1}. Consequently, we may write

(Cn(b2nt1c), Ln(b2nt1c))
(d)=
(
Cn(b2nt1c),

Cn(b2nt1c)∑
i=1

ηi
)

where the variables η1, η2, . . . are i.i.d. with uniform distribution on {−1, 0, 1}, and are also independent
of the trees τn. By the central limit theorem,

1√
n

n∑
i=1

ηi
(d)−→
n→∞

(2
3
)1/2

N

where N is a standard normal variable. Thus if we set for λ ∈ R,

Φ(n, λ) = E
[

exp
(
i λ√
n

n∑
i=1

ηi
)]

we have Φ(n, λ) −→ exp(−λ2/3) as n→∞.
Then, for every λ, λ′ ∈ R, we get by conditioning on τn,

E
[

exp
(
i λ√

2n
Cn(b2nt1c) + i λ′√

Cn(b2nt1c)

Cn(b2nt1c)∑
i=1

ηi
)]

= E
[

exp
(
i λ√

2n
Cn(b2nt1c)

)
× Φ(Cn(b2nt1c), λ′)

]
−→
n→∞

E[exp(iλet1)]× exp(−λ′2/3)
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using the (almost sure) convergence of (2n)−1/2Cn(b2nt1c) towards et1 > 0. In other words we have
obtained the joint convergence in distribution

(Cn(b2nt1c)√
2n

,
1√

Cn(b2nt1c)

Cn(b2nt1c)∑
i=1

ηi
) (d)−→
n→∞

(et1 , (2/3)1/2N), (10)

where the normal variable N is independent of e.
From preceding observations, we have

(Cn(b2nt1c)√
2n

,
( 9

8n
)1/4

Ln(b2nt1c)
)(d)=

(Cn(b2nt1c)√
2n

,
(3

2
)1/2(Cn(b2nt1c)√

2n

)1/2 1√
Cn(b2nt1c)

Cn(b2nt1c)∑
i=1

ηi
)

and from (10) we get
(Cn(b2nt1c)√

2n
,
( 9

8n
)1/4

Ln(b2nt1c)
) (d)−→
n→∞

(et1 ,
√et1 N).

This gives (9) in the case p = 1, since by construction (et1 , Zt1) (d)= (et1 ,
√et1 N).

Let us discuss the case p = 2 of (9). We fix t1 and t2 with 0 < t1 < t2 < 1. Let us set

Či,jn = min
i∧j≤k≤i∨j

Cn(k) , for i, j ∈ {0, 1, . . . , 2n}.

Write vn0 = ∅, vn1 , . . . , vn2n = ∅ for the contour sequence of the tree τn. Then we know that

Cn(b2nt1c) = |vnb2nt1c|, Cn(b2nt2c) = |vnb2nt2c|, Ln(b2nt1c) = `nvn
b2nt1c

, Ln(b2nt2c) = `nvn
b2nt2c

,

and furthermore it follows from the construction of the contour function that Čb2nt1c,b2nt2cn is the
generation of the last common ancestor to vnb2nt1c and v

n
b2nt2c in τn. From the properties of labels in θn,

we now see that, conditionally on τn,

(Ln(b2nt1c), Ln(b2nt2c))
(d)=
( Čb2nt1c,b2nt2c

n ∑
i=1

ηi+
Cn(b2nt1c)∑

i=Čb2nt1c,b2nt2c
n +1

η′i ,
Č
b2nt1c,b2nt2c
n ∑

i=1
ηi+

Cn(b2nt2c)∑
i=Čb2nt1c,b2nt2c

n +1

η′′i

)
(11)

where the variables ηi, η′i, η′′i are independent and uniformly distributed over {−1, 0, 1}.
From (8), we have(

(2n)−1/2Cn(b2nt1c), (2n)−1/2Cn(b2nt2c), (2n)−1/2Čb2nt1c,b2nt2cn

) a.s.−→
n→∞

(et1 , et2 ,me(t1, t2)).

By arguing as in the case p = 1, we now deduce from (11) that
(Cn(b2nt1c)√

2n
,
Cn(b2nt2c)√

2n
,
( 9

8n
)1/4

Ln(b2nt1c),
( 9

8n
)1/4

Ln(b2nt2c)
)

(d)−→
n→∞

(et1 , et2 ,
√
me(t1, t2)N +

√
et1 −me(t1, t2)N ′ ,

√
me(t1, t2)N +

√
et2 −me(t1, t2)N ′′)

where N,N ′, N ′′ are three independent standard normal variables, which are also independent of e.
The limiting distribution in the last display is easily identified with that of (et1 , et2 , Zt1 , Zt2), and this
gives the case p = 2 in (9). The general case of (9) is proved by similar arguments. As was already the
case for Proposition 3, the proof is completed by a tightness argument which we omit. Again, details
can be found in [11].
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5 The definition of the Brownian sphere
Recall our notation Te for the CRT, and the definition of intervals [a, b] on Te. We let Z = (Zt)0≤t≤1
be as in Theorem 8. Recall from the remark following Definition 6 that Z can be viewed as indexed by
the tree Te (so Za makes sense for a ∈ Te). For every a, b ∈ Te, we set

D◦(a, b) = Za + Zb − 2 max
(

min
c∈[a,b]

Zc, min
c∈[b,a]

Zc

)
.

The motivation for this definition comes from the following discrete observation.

Lemma 9. Let θ = (τ, (`v)v∈τ ) be a labeled tree in Tn, and let Q be the quadrangulation associated with
θ by the CVS bijection. Let v0, v1, . . . , v2n be the contour sequence of τn and recall that v0, v1, . . . , v2n
can be viewed as vertices of Q. Then, for every i, j ∈ {0, 1, . . . , n},

dQgr(vi, vj) ≤ `vi + `vj − 2 max
(

min
k∈[[i,j]]

`vk
, min
k∈[[j,i]]

`vk

)
+ 2,

where [[i, j]] = {i, i+ 1, . . . , j} if i ≤ j, and [[i, j]] = {i, i+ 1, . . . , 2n} ∪ {0, 1, . . . , j} if i > j.

Proof. In the enumeration of corners of τ the index i corresponds a corner of vi, and we may consider
the simple geodesic γ from vi to v∗ starting from this corner (cf. the end of Section 2). Similarly,
we can consider the simple geodesic γ′ starting from the corner indexed by j. It follows from the
construction of simple geodesics that γ and γ′ coalesce at a vertex of Q with label

max
(

min
k∈[[i,j]]

`vk
, min
k∈[[j,i]]

`vk

)
+ 1.

The stated bound for dQgr(vi, vj) then follows by considering the path made of γ and γ′ up to the point
where they coalesce.

We then set, for every a, b ∈ Te,

D∗(a, b) = inf
k≥1,a=a0,a1,...,ak−1,ak=b

k∑
i=1

D◦(ai−1, ai),

where the infimum is over all choices of the integer k ≥ 1 and the points a1, . . . , ak−1 of Te. Note that
D∗ is the largest symmetric function of (a, b) ∈ Te × Te that is bounded above by D◦ and satisfies the
triangle inequality.

Lemma 10. Almost surely, for every a, b ∈ Te, we have D∗(a, b) = 0 if and only if D◦(a, b) = 0.

The “if” part is trivial since D∗ ≤ D◦. The “only if” part is more delicate, and we omit the proof
(see [8]). We note that D◦(a, b) = 0 holds if and only if

Za = Zb = max
(

min
c∈[a,b]

Zc, min
c∈[b,a]

Zc

)
.

We then introduce an equivalence relation on Te by setting

a ' b if and only if D∗(a, b) = 0.

Definition 7. The Brownian sphere m∞ is the quotient space Te/ ', which is equipped with the
distance induced by D∗.
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The Brownian sphere was first introduced by Marckert and Mokadem [13] (they use the name
Brownian map), with a somewhat different presentation.
Remark. In the discrete setting, the CVS bijection identifies the vertex set of the quadrangulation Q
(up to the exception of the distinguished vertex v∗) with the vertex set of the associated tree. In the
definition of the Brownian sphere, there is also an associated tree Te, but we need to identify certain
pairs of points of Te. The reason why these identifications are needed can be explained as follows. If Q
is a “large” quadrangulation and (τ, (`u)u∈τ ) is the associated labeled tree, there will exist vertices u
and v of τ such that v is “far” from u at a macroscopic scale, and

• `v = `u − 1,

• when exploring the tree from (a corner of) u to (a corner of) v in the cyclic ordering of corners of τ ,
one encounters only vertices with label at least equal to `u.

These two properties imply that there is an edge of Q between u and v. In the scaling limit (distances
are rescaled by a factor tending to 0), this means that two “distant” points of Te have to be identified.
Notice that the property D◦(a, b) = 0 is a continuous analog of the two discrete properties listed above.

Let us state without proof a few important properties.

• Equivalence classes for ' may contain 1, 2 or 3 points (but not more)

• The metric space (m∞, D∗) is a.s. homeomorphic to the sphere S2 [12].

• The Hausdorff dimension of (m∞, D∗) is a.s. equal to 4 [8].

6 Sketch of proof of Theorem 1
Let (τn, (`nv )v∈τn) be the labeled tree associated with Qn via the CVS bijection. By Theorem 8,( 1√

2n
Cτn(2n t),

(9
8
)1/4

n−1/4 Lθn(2n t)
)

0≤t≤1

(d)−→
n→∞

(et, Zt)0≤t≤1 (12)

where we recall that Cτn(i) = |uni | and Lτn(i) = `nun
i
, if un0 , un1 , . . . , un2n is the contour sequence of τn.

We also know that, for every 0 ≤ i ≤ n,

dQn
gr (vn∗ , uni ) = `nun

i
− `n∗ + 1 (13)

where vn∗ is the distinguished vertex of Qn, and we use the notation `n∗ = min{`nu : u ∈ τn}. Furthermore,
by Lemma 9, we have, for every 0 ≤ i ≤ j ≤ n,

dQn
gr (uni , unj ) ≤ d◦n(i, j),

where we have set
d◦n(i, j) = `un

i
+ `un

j
− 2 min

k∈[i,j]∩Z
`nun

k
+ 2.

By convention, we also take d◦n(j, i) = d◦n(i, j).
We now set, for every i, j ∈ {0, 1, . . . , 2n},

dn(i, j) = dQn
gr (uni , unj ).

The Gromov-Hausdorff convergence stated in Theorem 1 will essentially follow from the convergence in
distribution of the processes (

n−1/4dn(b2nsc, b2ntc)
)

0≤s,t≤1
.

We start by extending dn and d◦n to real values of s, t ∈ [0, 2n]. We set

dn(s, t) = (s− bsc)(t− btc)dn(dse, dte) + (s− dse)(t− btc)dn(bsc, dte)
+ (s− bsc)(t− dte)dn(dse, btc) + (s− dse)(t− dte)dn(bsc, btc),
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and we similarly define d◦n(s, t). Clearly, the bound d◦n ≤ dn and the triangle inequality still hold for
these extended versions.

By definition, if 0 ≤ s ≤ t ≤ 1,

d◦n(b2ns, 2ntc) = Lτn(b2nsc) + Lτn(b2ntc)− 2 min
b2nsc≤k≤b2ntc

Lτn(k) + 2.

It then follows from (12) that(
9
8
)1/4

n−1/4 d◦n(2ns, 2nt)
)

0≤s,t≤1

(d)−→
n→∞

(
Zs + Zt − 2 min

s∧t≤r≤s∨t
Zr

)
.

The limiting process is clearly continuous in the pair (s, t), and vanishes on the diagonal. From the
convergence in the last display, we have, for every ε > 0 and δ > 0,

lim sup
n→∞

P
(

sup
|s−t|≤δ

(
n−1/4 d◦n(2ns, 2nt)

)
≥ ε

)
≤ P

(
sup
|s−t|≤δ

(
Zs + Zt − 2 min

s∧t≤r≤s∨t
Zr
)
≥ ε

)
.

For a fixed value of ε > 0, we can choose δ > 0 small enough so that the right-hand side of the last
display is arbitrarily small. Hence given η ∈ (0, 1), for every integer k ≥ 1 we can find δk > 0 and an
integer nk such that, for every n ≥ nk, we have

P
(

sup
[s−t|≤δk

(n−1/4d◦n(2ns, 2nt)) ≥ 2−k
)
≤ η2−k. (14)

Then, by the triangle inequality, for every s, s′, t, t′ ∈ [0, 1],∣∣∣dn(2ns, 2nt)− dn(2ns′, 2nt′)
∣∣∣ ≤ dn(2ns, 2ns′) + dn(2nt, 2nt′) ≤ d◦n(2ns, 2ns′) + d◦n(2nt, 2nt′),

and it follows from (14) that, for every k ≥ 1 and every n ≥ nk,

P
(

sup
|s−s′|≤δk,|t−t′|≤δk

n−1/4
∣∣∣dn(2ns, 2nt)− dn(2ns′, 2nt′)

∣∣∣ > 2 · 2−k
)
≤ 2η2−k. (15)

If n ∈ {1, . . . , nk − 1} is fixed, the continuity of the mapping (u, v] 7→ dn(2nu, 2nv) shows that (15)
still holds provided we take δk smaller if necessary. Finally, for every k ≥ 0, we can find δk > 0 so that
(15) holds for every n ≥ 1, and therefore, for every n ≥ 1,

P
( ⋂
k≥1

{
sup

|s−s′|≤δk,|t−t′|≤δk

n−1/4
∣∣∣dn(2ns, 2nt)− dn(2ns′, 2nt′)

∣∣∣ ≤ 2 · 2−k
})
≥ 1− 2η. (16)

The set of all continuous functions ϕ : [0, 1]2 −→ R+ such that ϕ(0, 0) = 0 and, for every k ≥ 1,

sup
|s−s′|≤δk,|t−t′|≤δk

|ϕ(s, t)− ϕ(s′, t′)| ≤ 2 · 2−k

is compact by Ascoli’s theorem. We thus obtain from (16) that the sequence of the laws of
(n−1/4dn(2ns, 2nt))(s,t)∈[0,1]2 is tight in the set of probability measures on C([0, 1]2,R+). Thanks
to this tightness property, we may assume that, along a suitable sequence of values of n, we have((9

8
)1/4

n−1/4 dn(2ns, 2nt)
)

(s,t)∈[0,1]2

(d)−→
n→∞

(
D(s, t)

)
(s,t)∈[0,1]2

, (17)

where the random process (D(s, t))(s,t)∈[0,1]2 has continuous sample paths. We may further assume
that this convergence holds jointly with (12). Finally, thanks to the Skorokhod representation theorem,
we may assume that both (12) and (17) hold almost surely (still along the chosen subsequence).

Let us state some properties of D that follows from the preceding convergences.
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• If s ∼ t (meaning that pe(s) = pe(t)), we have D(s, t) = 0. The idea is to write s = lim kn/(2n) and
t = lim `n/(2n), in such a way that unkn

= un`n , forcing dn(kn, `n) = 0 (observe that, for s ≤ t, the
condition es = et = min{er : s ≤ r ≤ t} allows us to find the sequences kn and `n in such a way
that Cτn(kn) = Cτn(`n) = min{Cτn(i) : kn ≤ i ≤ `n}, which implies unkn

= un`n).

• The preceding observation allows us to defineD(a, b) for a, b ∈ Te, in such a way thatD(a, b) = D(s, t)
if a = pe(s) and b = pe(t). Note that D satisfies the triangle inequality, as a consequence of the
(a.s.) convergence (17).

• For every a, b ∈ Te, we have D(a, b) ≤ D◦(a, b). This essentially follows from the bound dn(i, j) ≤
d◦n(i, j), which implies after passage to the limit that, for s ≤ t,

D(s, t) ≤ Zs + Zt − 2 min{Zr : r ∈ [s, t]}.

• If s∗ is the (unique) element of [0, 1] such that Zs∗ = min{Zr : r ∈ [0, 1]}, we have

D(s∗, t) = Zs − Zs∗ .

This follows from (13) by passage to the limit n→∞.

Let us know explain how we get the Gromov-Hausdorff convergence of (V (Qn), (9
8)1/4n−1/4dQn

gr )
along the chosen subsequence of values of n. Thanks to the fact that (12) and (17) hold almost surely,
we will in fact get an almost sure convergence. For a, b ∈ Te, we set

a ≈ b iff D(a, b) = 0.

Then D induces a distance on the quotient space Te/ ≈. We claim that we have
(
V (Qn),

(9
8
)1/4

n−1/4dQn
gr

) a.s.−→
n→∞

(Te/ ≈, D) (18)

along the sequence of values of n chosen previously so that (12) and (17) hold. To verify our claim, we
use the formulation of the Gromov-Hausdorff distance in terms of correspondences. If Π denotes the
canonical projection from Te onto Te/ ≈, we define a correspondence between V (Qn) and Te/ ≈ by
setting

Cn := {(unb2nsc,Π(pe(s))) : s ∈ [0, 1]} ∪ {vn∗ ,Π(pe(s∗))},

where s∗ is such that Zs∗ = min{Zs : 0 ≤ s ≤ 1}.
We then check that the distortion of Cn tends to 0. This is easy since, for s, t ∈ [0, 1],∣∣∣(9
8
)1/4

n−1/4dQn
gr (unb2nsc, unb2ntc)−D(Π(pe(s)),Π(pe(t)))

∣∣∣ =
∣∣∣(9

8
)1/4

n−1/4dn(b2nsc, b2ntc)−D(s, t)
∣∣∣

tends to 0 as n→∞, uniformly in s, t, by (17), and on the other hand,
(9

8
)1/4

n−1/4dQn
gr (vn∗ , unb2nsc) −→n→∞ Zt − Zs∗ = D(Π(pe(s∗)),Π(pe(s))),

again uniformly in s, by (13) and (12). This completes the proof of our claim (18).
However, the proof of Theorem 1 is not yet complete, since on one hand we get only convergence on

a sequence of values of n, and on the other hand we have not checked that D(a, b) = D∗(a, b) for every
a, b ∈ Te. It is in fact enough to prove the latter assertion (because then, the limit on any subsequence
will be the same, and a tightness argument gives the desired result). Note that the bound D ≤ D∗ is
very easy since we already know that D ≤ D◦ and D satisfies the triangle inequality. Unfortunately,
the other bound D ≥ D∗ is much harder to obtain, and we refer to [9] and [14] for two different
approaches.
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