Linear and nonlinear elliptic partial differential equations Final exam

In the sequel, we assume that $\Omega \subset \mathbb{R}^N$ is a bounded open set with $N \geq 2$.

Exercise 1. Let $A = (a_{ij})_{1 \le i,j \le N}$ be a matrix whose coefficients satisfy $a_{ij} \in L^{\infty}(\Omega)$ for all $1 \le j$ $i, j \leq N$ as well as the ellipticity condition : there exists $\lambda > 0$ such that

$$
A(x)\xi \cdot \xi \ge \lambda |\xi|^2
$$
 for a.e. $x \in \Omega$ and all $\xi \in \mathbb{R}^N$.

Let us also consider $h = (h_1, \ldots, h_N)$ with $h_i \in L^2(\Omega)$ for all $1 \le i \le N$.

1. Show that there exists a unique $u \in H_0^1(\Omega)$ satisfying

(1)
$$
-\operatorname{div}(A\nabla u) = -\operatorname{div} h \quad \text{in} \ \mathcal{D}'(\Omega).
$$

2. Show that [\(1\)](#page-0-0) is equivalent to

(2)
$$
\int_{\Omega} A \nabla u \cdot \nabla v \, dx = \int_{\Omega} h \cdot \nabla v \, dx \quad \text{for all } v \in H_0^1(\Omega).
$$

3. We next intend to show that, if $h_i \in L^q(\Omega)$ for all $1 \leq i \leq N$ with $q > N$, then $u \in L^{\infty}(\Omega)$, and

 $||u||_{L^{\infty}(\Omega)} \leq C||h||,$

where $C > 0$ only depends on N, q and Ω .

- (a) Let $k \geq 0$. We already know that $(u k)_{+} = \max(u k, 0) \in H^{1}(\Omega)$ and $\nabla(u k)_{+} =$ $\mathbf{1}_{\{u\geq k\}}\nabla u$. Show that, actually, $(u-k)_+ \in H_0^1(\Omega)$.
- (b) Show that

$$
\|\nabla(u-k)_{+}\|_{L^{2}(\Omega)} \leq \frac{|\Omega_{k}|^{\frac{1}{2}-\frac{1}{q}}}{\lambda} \|h\|_{L^{q}(\Omega)},
$$

where $\Omega_k = \{x \in \Omega : u(x) \geq k\}.$

(c) We recall a version of *Sobolev's imbedding* which states that if $N \geq 2$, then there exists a constant $C_* > 0$ such that

$$
||w||_{L^r(\Omega)} \le C_* ||\nabla w||_{L^2(\Omega)} \quad \text{ for all } w \in H_0^1(\Omega),
$$

where $r = 2N/(N-2)$ if $N > 2$, while $r \in [2, +\infty)$ is arbitrary if $N = 2$. Show that

$$
||(u-k)_{+}||_{L^{1}(\Omega)} \leq \frac{C_{*}|\Omega_{k}|^{\frac{1}{2}-\frac{1}{r}+\frac{1}{p}}}{\lambda}||h||_{L^{q}(\Omega)}.
$$

(d) Show that

$$
||(u-k)_{+}||_{L^{1}(\Omega)} = \int_{k}^{\infty} |\Omega_{s}| ds.
$$

and deduce that

(3)
$$
H(k) \leq \frac{C_* \|h\|_{L^q(\Omega)}}{\lambda} [-H'(k)]^{\frac{1}{2} - \frac{1}{r} + \frac{1}{p}},
$$

where $H(k) := \int_k^{\infty} |\Omega_s| ds$.

(e) Let $k_0 = \sup\{k \ge 0 : H(k) > 0\}$. Show that

$$
k_0 \le \frac{\beta^{\gamma} H(0)^{1-\gamma}}{1-\gamma},
$$

where $\beta = C_* ||h||_{L^q(\Omega)}/\lambda$ and $1/\gamma = 1/2 + 1/p - 1/r$.

(f) Deduce that $k_0 \leq C_* |\Omega|^{\frac{1}{2} - \frac{1}{r} + \frac{1}{p}} ||h||_{L^q(\Omega)}$ and show that

$$
u \le C(N, p, \Omega) ||h||_{L^{q}(\Omega)}
$$
 a.e. in Ω .

(g) Conclude that

$$
||u||_{L^{\infty}(\Omega)} \leq C(N, p, \Omega) ||h||_{L^{q}(\Omega)}.
$$

Exercise 2. Let $A = (a_{ij})_{1 \le i,j \le N}$ be a matrix whose coefficients satisfy $a_{ij} \in L^{\infty}(\Omega)$ for all $1 \le j \le N$ $i, j \leq N$ as well as the ellipticity condition : there exists $\lambda > 0$ such that

$$
A(x)\xi \cdot \xi \ge \lambda |\xi|^2
$$
 for a.e. $x \in \Omega$ and all $\xi \in \mathbb{R}^N$.

The goal of this exercise is to show the existence of weak solutions to the PDE

$$
\begin{cases}\n-\text{div}(A\nabla u) = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$

when the right hand side f only belongs to $L^1(\Omega)$.

1. Assume first that there exists $u \in H_0^1(\Omega)$ such that

(4)
$$
-\operatorname{div}(A\nabla u) = f \text{ in } \mathcal{D}'(\Omega).
$$

(a) Let $1 \le p \le N/(N-1)$ and $q = p/(p-1) > N$ its conjugate exponent. For $h = (h_1, \ldots, h_N)$ with $h_i \in L^q(\Omega)$ for all $1 \leq i \leq N$, let $v_h \in H_0^1(\Omega)$ be the unique solution of

$$
-\text{div}(A^T \nabla v_h) = -\text{div}h \text{ in } \mathcal{D}'(\Omega),
$$

where A^T is the transpose of the matrix A. Justify quickly the existence and uniqueness of v_h . Show that

$$
\int_{\Omega} A \nabla u \cdot \nabla v_h \, dx = \int_{\Omega} f v_h \, dx = \int_{\Omega} h \cdot \nabla u \, dx.
$$

(b) Using the conclusion of exercise [1,](#page-0-1) deduce that

$$
\int_{\Omega} h \cdot \nabla u \, dx \leq C ||f||_{L^{1}(\Omega)} ||h||_{L^{q}(\Omega)},
$$

where $C > 0$ only depends on Ω , N and p.

(c) Deduce that

$$
\|\nabla u\|_{L^p(\Omega)} \leq C \|f\|_{L^1(\Omega)}.
$$

2. We now discuss the existence of solutions $u \in W_0^{1,p}$ $0^{(1,p)}(0)$, with $1 \leq p \leq N/(N-1)$, to [\(4\)](#page-1-0). (a) For $f \in L^1(\Omega)$, let $(f_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{C}_c^{\infty}(\Omega)$ such that $f_n \to f$ in $L^1(\Omega)$. For each $n \in \mathbb{N}$, let us consider $u_n \in H_0^1(\Omega)$ such that

$$
-\text{div}(A\nabla u_n) = f_n \text{ in } \mathcal{D}'(\Omega).
$$

Show that for all $n \in \mathbb{N}$, then $u_n \in W_0^{1,p}$ $n_0^{1,p}(\Omega)$ for any $p < N/(N-1)$, and that if n and $m \in \mathbb{N}$, then

$$
||u_n - u_m||_{W_0^{1,p}(\Omega)} \leq C||f_n - f_m||_{L^1(\Omega)}.
$$

- (b) Deduce that $u_n \to u^{(p)}$ in $W^{1,p}(\Omega)$, where $u^{(p)} \in W_0^{1,p}$ $C_0^{1,p}(\Omega)$ satisfies [\(4\)](#page-1-0).
- (c) Show that the limit $u^{(p)}$ is independent of p.

Exercise 3. Let $f \in L^2(\Omega)$ and $a : \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function satisfying

 $\alpha \leq a(x, s) \leq \beta$ for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$,

where $\alpha > 0$ and $\beta > 0$. Using Schauder's fixed point Theorem, show the existence of solutions $u \in H_0^1(\Omega)$ to

$$
-div(a(x, u)\nabla u) = f \text{ in } \mathcal{D}'(\Omega).
$$