Linear and nonlinear elliptic partial differential equations Final exam

In the sequel, we assume that $\Omega \subset \mathbb{R}^N$ is a bounded open set with $N \geq 2$.

Exercise 1. Let $A = (a_{ij})_{1 \le i,j \le N}$ be a matrix whose coefficients satisfy $a_{ij} \in L^{\infty}(\Omega)$ for all $1 \le i, j \le N$ as well as the ellipticity condition : there exists $\lambda > 0$ such that

$$A(x)\xi \cdot \xi \ge \lambda |\xi|^2$$
 for a.e. $x \in \Omega$ and all $\xi \in \mathbb{R}^N$.

Let us also consider $h = (h_1, \ldots, h_N)$ with $h_i \in L^2(\Omega)$ for all $1 \le i \le N$.

1. Show that there exists a unique $u \in H_0^1(\Omega)$ satisfying

(1)
$$-\operatorname{div}(A\nabla u) = -\operatorname{div}h$$
 in $\mathcal{D}'(\Omega)$

2. Show that (1) is equivalent to

(2)
$$\int_{\Omega} A\nabla u \cdot \nabla v \, dx = \int_{\Omega} h \cdot \nabla v \, dx \quad \text{for all } v \in H_0^1(\Omega).$$

3. We next intend to show that, if $h_i \in L^q(\Omega)$ for all $1 \leq i \leq N$ with q > N, then $u \in L^{\infty}(\Omega)$, and

 $\|u\|_{L^{\infty}(\Omega)} \leq C \|h\|,$

where C > 0 only depends on N, q and Ω .

- (a) Let $k \ge 0$. We already know that $(u k)_+ = \max(u k, 0) \in H^1(\Omega)$ and $\nabla(u k)_+ = \mathbf{1}_{\{u \ge k\}} \nabla u$. Show that, actually, $(u k)_+ \in H^1_0(\Omega)$.
- (b) Show that

$$\|\nabla(u-k)_+\|_{L^2(\Omega)} \le \frac{|\Omega_k|^{\frac{1}{2}-\frac{1}{q}}}{\lambda} \|h\|_{L^q(\Omega)},$$

where $\Omega_k = \{x \in \Omega : u(x) \ge k\}.$

(c) We recall a version of *Sobolev's imbedding* which states that if $N \ge 2$, then there exists a constant $C_* > 0$ such that

$$\|w\|_{L^r(\Omega)} \le C_* \|\nabla w\|_{L^2(\Omega)} \quad \text{ for all } w \in H^1_0(\Omega),$$

where r = 2N/(N-2) if N > 2, while $r \in [2, +\infty)$ is arbitrary if N = 2. Show that

$$\|(u-k)_+\|_{L^1(\Omega)} \le \frac{C_* |\Omega_k|^{\frac{1}{2} - \frac{1}{r} + \frac{1}{p}}}{\lambda} \|h\|_{L^q(\Omega)}.$$

(d) Show that

$$||(u-k)_+||_{L^1(\Omega)} = \int_k^\infty |\Omega_s| \, ds.$$

and deduce that

(3)
$$H(k) \le \frac{C_* \|h\|_{L^q(\Omega)}}{\lambda} [-H'(k)]^{\frac{1}{2} - \frac{1}{r} + \frac{1}{p}},$$

where $H(k) := \int_{k}^{\infty} |\Omega_{s}| ds$.

(e) Let $k_0 = \sup\{k \ge 0 : H(k) > 0\}$. Show that

$$k_0 \le \frac{\beta^{\gamma} H(0)^{1-\gamma}}{1-\gamma},$$

where $\beta = C_* \|h\|_{L^q(\Omega)} / \lambda$ and $1/\gamma = 1/2 + 1/p - 1/r$.

(f) Deduce that $k_0 \leq C_* |\Omega|^{\frac{1}{2} - \frac{1}{r} + \frac{1}{p}} ||h||_{L^q(\Omega)}$ and show that

$$u \le C(N, p, \Omega) \|h\|_{L^q(\Omega)}$$
 a.e. in Ω .

(g) Conclude that

$$||u||_{L^{\infty}(\Omega)} \leq C(N, p, \Omega) ||h||_{L^{q}(\Omega)}.$$

Exercise 2. Let $A = (a_{ij})_{1 \le i,j \le N}$ be a matrix whose coefficients satisfy $a_{ij} \in L^{\infty}(\Omega)$ for all $1 \le i, j \le N$ as well as the ellipticity condition : there exists $\lambda > 0$ such that

$$A(x)\xi \cdot \xi \ge \lambda |\xi|^2$$
 for a.e. $x \in \Omega$ and all $\xi \in \mathbb{R}^N$.

The goal of this exercise is to show the existence of weak solutions to the PDE

$$\begin{cases} -\operatorname{div}(A\nabla u) = f & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

when the right hand side f only belongs to $L^1(\Omega)$.

1. Assume first that there exists $u \in H_0^1(\Omega)$ such that

(4)
$$-\operatorname{div}(A\nabla u) = f \text{ in } \mathcal{D}'(\Omega).$$

(a) Let $1 \le p < N/(N-1)$ and q = p/(p-1) > N its conjugate exponent. For $h = (h_1, \ldots, h_N)$ with $h_i \in L^q(\Omega)$ for all $1 \le i \le N$, let $v_h \in H_0^1(\Omega)$ be the unique solution of

$$-\operatorname{div}(A^T \nabla v_h) = -\operatorname{div} h \text{ in } \mathcal{D}'(\Omega),$$

where A^T is the transpose of the matrix A. Justify quickly the existence and uniqueness of v_h . Show that

$$\int_{\Omega} A\nabla u \cdot \nabla v_h \, dx = \int_{\Omega} f v_h \, dx = \int_{\Omega} h \cdot \nabla u \, dx$$

(b) Using the conclusion of exercise 1, deduce that

$$\int_{\Omega} h \cdot \nabla u \, dx \le C \|f\|_{L^1(\Omega)} \|h\|_{L^q(\Omega)},$$

where C > 0 only depends on Ω , N and p.

(c) Deduce that

$$\|\nabla u\|_{L^p(\Omega)} \leq C \|f\|_{L^1(\Omega)}.$$

2. We now discuss the existence of solutions $u \in W_0^{1,p}(\Omega)$, with $1 \le p < N/(N-1)$, to (4).

(a) For $f \in L^1(\Omega)$, let $(f_n)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{C}^{\infty}_c(\Omega)$ such that $f_n \to f$ in $L^1(\Omega)$. For each $n \in \mathbb{N}$, let us consider $u_n \in H^1_0(\Omega)$ such that

$$-\operatorname{div}(A\nabla u_n) = f_n \text{ in } \mathcal{D}'(\Omega)$$

Show that for all $n \in \mathbb{N}$, then $u_n \in W_0^{1,p}(\Omega)$ for any p < N/(N-1), and that if n and $m \in \mathbb{N}$, then

$$||u_n - u_m||_{W^{1,p}_0(\Omega)} \le C||f_n - f_m||_{L^1(\Omega)}$$

- (b) Deduce that $u_n \to u^{(p)}$ in $W^{1,p}(\Omega)$, where $u^{(p)} \in W^{1,p}_0(\Omega)$ satisfies (4).
- (c) Show that the limit $u^{(p)}$ is independent of p.

Exercise 3. Let $f \in L^2(\Omega)$ and $a : \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function satisfying

 $\alpha \leq a(x,s) \leq \beta$ for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$,

where $\alpha > 0$ and $\beta > 0$. Using Schauder's fixed point Theorem, show the existence of solutions $u \in H_0^1(\Omega)$ to

$$-\operatorname{div}(a(x, u)\nabla u) = f \text{ in } \mathcal{D}'(\Omega).$$