Mathematics for IA 1 (2024) (Mathématiques pour l'Intelligence Artificielle 1)
Kernel and operator-theoretic methods in machine learning (2024)
- Lecture Notes (Work in progress, likely many typos and errors left!)
- List of papers to be presented by students:
- Concentration Inequalities and Moment Bounds for Sample Covariance Operators.
Vladimir Koltchinskii, Karim Lounici
https://arxiv.org/abs/1405.2468
- Kernel Methods are Competitive for Operator Learning.
Pau Batlle, Matthieu Darcy, Bamdad Hosseini, Houman Owhadi
https://arxiv.org/abs/2304.13202
- Physics-informed machine learning as a kernel method.
Nathan Doumèche, Francis Bach, Claire Boyer, Gérard Biau
https://arxiv.org/abs/2304.13202
- Learning linear operators: Infinite-dimensional regression as a well-behaved non-compact inverse problem.
Mattes Mollenhauer, Nicole Mücke, T. J. Sullivan
https://arxiv.org/abs/2211.08875
- Nyström Kernel Mean Embeddings
Antoine Chatalic, Nicolas Schreuder, Lorenzo Rosasco, Alessandro Rudi
https://proceedings.mlr.press/v162/chatalic22a.html
and
Mean Nyström Embeddings for Adaptive Compressive Learning
Antoine Chatalic, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco
https://proceedings.mlr.press/v151/chatalic22a.html
-
A kernel-based analysis of Laplacian Eigenmaps
Martin Wahl
https://arxiv.org/abs/2402.16481