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Abstract

Let v be a place of a global function field K over a finite field, with associated
affine function ring R, and completion K,, and let 1 < m < d. The aim of this
paper is to prove an effective triple joint equidistribution result for primitive partial
R,-lattices A of rank m in Kl,d as their covolume tends to infinity: of their K, -linear
span V} in the rank-m Grassmannian space of K,3; of their shape in the modular
quotient by PGLy, (R,) of the Bruhat-Tits buildings of PGLy, (K,); and of the shape
of A+ in the similar quotient for PGLg_n(K,), where A+ is the orthogonal partial
R, -lattice of rank d —m in the dual space of K,4. The main tools are a new refined LU
decomposition by blocks of elements of SLq(K) ), techniques of Gorodnik and Nevo
for counting integral points in well-rounded families of subsets of algebraic groups,
and computations of volumes of various homogeneous spaces associated with partial
R,-lattices. [

1 Introduction

We fix throughout the paper three positive integers m, n, d such that d = m + n. A
primitive integral vector in R is an element of Z9 with coprimes componants, so that
the cyclic group it generates is a free abelian factor of rank 1 of Z4. More generally, a
primitive m-lattice in RY is a free abelian factor of rank m in Z4. The distribution problems
of primitive integral vectors and of primitive m-lattices have first been studied by Linnik
and Maass (see for instance [Lin| and [Maa]), and have given rise to a huge amount of works
using various tools, see for instance [Schil, [Sch2, [Duk1l, [Duk2l Marl, [EIMV], [EiMSS| [HKI].

Let us define the covolume Covol(A) of a primitive m-lattice A in RY as the Lebesgue
volume of the parallelepided generated by any Z-basis of A, and its shape sh(A) as its equiv-
alence class modulo rotations and homotheties (or its “similarity class” with the terminology
of [Sch2]), which belongs to the double coset space PShy, = PSO(m)\ PGLy(R)/PGLw(Z).
Let us denote by Vj the R-linear subspace of RY generated by A, which belongs to the
Grassmannian space Gry g of m-dimensional R-linear subspaces of RY. Schmidt in [Sch3]
proved that the pairs (Va,sh(A)) equidistribute in Gry g x PShy, (towards the natural
product measure) as the covolumes of the primitive m-lattices A tend to infinity in aver-
age. Without average, stronger equidistribution results have been obtained when fixing
the covolume of the primitive m-lattices and letting it go to oo (possibly requiring some
congruence properties), see for instance [AESI [AES2, [EIRW| when m = 1, [AEW]| when
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m = n = 2, and [Ber]. Schmidt’s result in average was strengthen (with an effective
version) in [HK2|, by adding in the third factor Gry g x PShy x PSh, the equidistribu-
tion of the shapes of the orthogonal n-lattices AL = VAl N ZP of the primitive m-lattices
A. Removing the average aspect and under appropriate congruence conditions, this triple
equidistribution result has been extended in [AMW].

In this paper, replacing Q by any global function field over a finite field F; (not only
the field F,(Y') of rational fractions, though already new and interesting), and Z by the
corresponding affine ring for any fixed choice of place at infinity (not only the polynomial
ring [F,[Y]), we give the first complete treatment of the triple equidistribution of primitive
partial lattices in positive characteristic. Our results are effective and allow versions with
congruences. Since this affine ring is no longer principal in general, we will need to adapt
our tools. Our result is not a result in average, we will also fix the covolume of the
primitive m-lattices and let it go to oo (also requiring an appropriate congruence properties).
This is a major extension of the case d = 2 considered in [HPI], since only a double
equidistribution makes sense in this dimension, and many moduli spaces constructions and
volumes computations where not available. We refer to [HP2| for the consequences of this
work purely in terms of equidistribution of rational points in the Grassmannian spaces
(and in particular to Frobenius numbers). Class number issues prevent the correspondence
between primitive partial lattices and rational points, that was satisfied in the real field
case, to take place. An analogous (though different) study of the distribution of the rational
points just in the Grassmannian spaces over some function fields had been considered in
[Thul.

More precisely, referring to [Gos, [Ros| and Subsection for definitions and com-
plements, we fix a global function field K of genus g over a finite field F,; of order ¢, a
(discrete normalized) valuation v of K and a uniformizer m, of v. We denote by (i the
Dedekind zeta function of K, by K, the associated completion of K, by 0, its valuation
ring, by ¢, the order of its residual field, by |- | = qy_y(') its (normalized) absolute value,
and by R, the affine function ring associated with v (for instance, K = F,(Y), g = 0,
v(P/Q) = deg @ — deg P for all P,Q € F,[Y], O, =F,[[Y!]], ¢ = ¢ and R, = F,[Y]).

We endow K4 with the supremum norm, and any K, -linear subspace of K, with its
induced norm and with its associated normalized Haar measure (giving mass one to its
closed unit ball), see Subsection 2.2 A partial R,-lattice A of rank m (or m-lattice for
short) in K9 is a discrete free R,-submodule of rank m generating a m-dimensional K-
vector subspace V of K,4. We denote by Covol(A) the covolume of A in V. We say that
A is primitive if it is a free direct factor of R,9. Among all the definitions of primitiveness
that were equivalent for partial Z-lattices in R™ and non longer are, this turns out to be
the appropriate one. We denote by Z.%, q the set of primitive m-lattices in K4

Our first result is a joint equidistribution result in modular quotients of Bruhat-Tits
buildings. For & = m,n, let .%,; be the Bruhat-Tits building of the simple algebraic
group PGLy, over the local field K, (see for instance [BrT]). Its PGLy (K, )-homogeneous
set of vertices V.7, is the (discrete) set of K, *-homothety classes [L] of &,-lattices L of
K. The unimodular group GL}(K,) = {g € GLi(K,) : |detg| = 1} acts projectively
on V4, with finitely many orbits. We denote by V.7, x the orbit by GL}(K,) of the
vertex [ﬁyk] € V.7, 1, identified with GL,lc(K,,)/ GLk(0),). The action of the modular group
T, = GLg(R,) on V.7, is proper (with finite stabilisers ka of every vertex z € V.7, ;)
with (discrete) infinite quotient fk\mek. See for instance [Ser2| [BrPP| §15.2] when k = 2
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and [Sou| when g = 0 for the structure of the quotient complex of groups (in the sense of
[BrH|) I'x\-#, k. The measure on I';\Vy.%, ), induced by the counting measure on Vj.%,
is the finite measure

1
Hrovosn = 20 arm—Ap
[z]elk\Vo 7y i Card It

(see [Ball, §1.5] when n = 2). We identify the quotient space 1~1/1€\V0f1,7/7€ with the double
coset space Shi = GLk(@,)\GL,{:(K,,)/f‘k by the map induced by g — ¢! on double
cosets, that we also denote by D — D~1.

Let A € %L q be such that there exists ¢ € Z with C%‘g:}(()f) (R = qylcm(m’n)i and
g € GLq(0),) sending Vi to K,™ x {0} (so that gA becomes a full R, -lattice of K,"). We

define (see Equation ) the shape of A as the class of the m-lattice A modulo scaling
and the maximal compact subgroup action, that is,

_ lem(m,n)

sh(A) = GLw(6,)m ™ 'gAeShl .

Contrarily to the real field case, the rescaling process is much harder when the absolute
value is discrete, hence the above restriction on the covolumes. We also define the orthog-
onal R,-lattice A* of the primitive m-lattice A (which is a primitive n-lattice in the dual
space (K,9)* of K9, see Subsection by AL = Vit A R, where Vi is the sub-
space of (K,4)* consisting in the K,-linear forms on K,9 vanishing on V) and R is the
standard R,-lattice in (K,3)* generated by the dual basis of the canonical basis of K,9.
The following joint equidistribution result of the pairs of shapes of primitive m-lattices
and their orthogonal n-lattices as their covolume tends to infinity, in the product of the
quotients of the Bruhat-Tits buildings .%, » and %, , by their modular groups I'm and f‘n,
is a corollary of Theorem see the end of Subsection [£.3] for its proof.

g (oD@ dtimm (g d1)2 [Td ) (7" —1) Cie(d
(=1 ™" (=12 [Ty (@S =12 [Ty (2 1)

convergence on the (discrete) locally compact space T'w\VoIym % fn\Vofl,m, we have

Corollary 1.1 With ¢ = g), for the weak-star

/
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= ufm\voju,m ® 'uf‘n\VOxﬂu,n '

We refer to Equation for error terms and for versions with congruences of this
corollary. The main result of this paper is the following triple joint equidistribution theo-
rem. We endow the unimodular group GL} (k) with its Haar measure giving mass 1 to
its maximal compact subgroup GLn(&,) and the (discrete, infinite) double quotient Shl
with its induced measure Ishl which is finite (see Subsection . We denote by Gry g
the compact Grassmannian space of m-dimensional K, -linear subspaces of Kyd, and by
HGryq it8 GLq(0))-invariant probability measure.



g g @@ (g d1)2 [T (g, 71— 1) ¢
Theorem 1.2 With ¢’ = D2 ™ @1, (@1
convergence of Borel measures on the locally compact space Gry g X Shﬁ1 X Sh}w we have

i)), for the weak-star
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We refer to Corollary for error terms and for versions with congruences of this
theorem. We will actually prove in Theorem a much stronger (albeit more technical)
equidistribution result. We will define in Subsection a (non discrete) moduli space
Laty, ,, of pairs (L, L) € GLL(K,)/ GLn(R,) x GLy(K,)/ GLy(R,) of unimodular m- and
n-lattices with an appropriate correlation on the determinant of any of their R,-basis.
Using a refined LU decomposition of elements of SLq(K),) introduced in Subsection

we will associate such a pair [A] € La‘c#’n to any primitive m-lattice A, under a restriction

that the linear subspace V) of the primitive m-lattices A belongs to the unit ball Grrgn a of

the lower maximal Bruhat cell of the Grassmannian space Gryq (see Subsection for
more details). We will then prove in Theorem [4.7] the equidistribution of the pairs (Vj, [A])
in Grr{i11 a X Lat}n,n for the primitive m-lattices A whose covolume is fixed (satisfying some
congruénce property) and tends to +00. Theorem will follow by a tricky consideration
of compound matrices.

We refer to Subsection [2.4] for the description of the appropriate congruence subgroup of
SLq4(K,) that we will use for the version with congruences of our theorems. A major part of
the paper consists of a fine study of the homogeneous measures on the various homogeneous
spaces GIy q (see Subsection , Latiw (see Subsections and , and on the double
coset spaces Sh,lC for k = m,n (see Subsection , besides the precise disintegration of the
Haar measure of SLq(K,) by the refined LU decomposition in Subsection[2.5] A key tool of
this paper is the counting result in well-rounded sets of integral points of algebraic groups
over K by Gorodnik and Nevo [GN]. A long study is necessary in order to introduce the
appropriate well-rounded sets, to prove that they are indeed well-rounded, and to compute
their measures: see Subsection [£.I] which gives a precise relationship between primitive
m-lattices in K,% and integral matrices in SLq(R,), and Subsection .

Acknowledgements: The first author thanks the Laboratoire de mathématique d’Orsay for visiting
financial support, and the second author thanks the ETH for visiting financial support.

2 Background definitions and notation

2.1 On global function fields

We refer for instance to [Gosl, [Ros| and [BrPPlL Chap. 14| for the content of this Section.
Let IF, be a finite field of order ¢, where ¢ is a positive power of a positive prime. Let K
be a (global) function field over F, that is, the function field of a geometrically connected
smooth projective curve C over [y, or equivalently an extension of F, of transcendence
degree 1, in which F, is algebraically closed. We denote by g the genus of the curve C.
There is a bijection between the set of closed points of C and the set of (normalized
discrete) valuations v of its function field K, where the valuation of a given element f € K
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is the order of the zero or the opposite of the order of the pole of f at the given closed
point. We fix such a valuation v from now on.
We denote by K, the completion of K for the valuation v, and by

O,={xe K, : v(z) =0}

the valuation ring of (the unique extension to K, ) of v. Let us fix a uniformiser 7, € K of
v, that is, an element in K with v(m,) = 1. We denote by ¢, the order of the residual field
0, /7,0, of v, which is a (possibly proper) power of q. We normalize the absolute value
associated with v as usual: for every x € K, we have the equality

] =g,

Finally, let R, denote the affine algebra of the affine curve C — {v}, consisting of the
elements of K whose only poles (if any) are at the closed point v of C. It is a Dedeking
ring and its field of fractions is equal to K. Note that (see for instance [BrPP, Eq. (14.2)
and (14.3)]

R,n0,=F, and RS =F cO). (2)

The Dedekind zeta function of K is (see for instance [Rosl §5|) defined if Re s > 1 by
1
)= 23
7 N(I)

where the summation is over the nonzero ideals I of R,, with norm N(I) = [R, : I].
By |Ros, Theo. 5.9]), it is a rational function of ¢~* and has an analytic continuation on
C~{0, 1} with simple poles at s = 0, s = 1. Furthermore, it has positive values at s = —i
for all i € N\{0}, since by the functional equation of (i (see loc. cit.), we have

Cr(—i) = @ V20 (1 +4) > 0. (3)

The simplest example corresponds to C = P! (so that g = 0) and v = vy, the valuation
associated with the point at infinity [1 : 0]. Then

o K =TF,(Y) is the field of rational functions in one variable Y over F,,

® vy is the valuation defined, for all P,@Q € F,[Y], by

Voo (P/Q) = deg Q — deg P

e R, =TF,[Y]is the (principal) ring of polynomials in one variable Y’ over Fy,
o K, = Fq((Y )) is the field of formal Laurent series in one variable Y ! over Fy,
o U,, Fq[[ 1] is the ring of formal power series in one variable Y1 over F,,

= Y ! is the usual choice of a uniformizer, and ¢, = q.

2.2 Partial lattices

Let V be a K -vector space with finite dimension D > 1 endowed with an ultrametric norm
| I, and let k € [[1, D]. We denote by By (0, 1) the closed unit ball of V. We endow V' with
the unique Haar measure puy of the abelian locally compact topological group (V, +) such
that py (By(0,1)) = 1. This measure scales as follows under linear maps: for all x € V
and g € GL(V), we have

dpy (9z) = [ det g| duy () . (4)
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When V = K, with its canonical basis (e1,...,eq), we will take the supremum norm
|Arer + -+ + Agea| = ax |\i|. The Haar measure of K,? is then normalized so that
<1<

YA

/LKVd(ﬁVd) = 1. On the dual K,-vector space V*, we will consider the dual norm. When
V = K9, the dual norm on V* is then the supremum norm with respect to the dual basis
(ef,...,e}) of (e1,...,eq).

Recall that for every g € GL(V), its (left) action §: £+~ £ o g~! on the dual space V*
satisfies, for every K,-basis & of V with dual K, -basis %* of V*, that

Mat g+ (§) =1 Matgg(g) -1, (5)

For every K,-vector subspace W of V| its orthogonal space is the K,-vector subspace W+
of the dual K -vector space V* defined by

Wht={(eV*:YzeW, l(z)=0}.

It is well-known that dim(W+') = D — dim(W), that (W+)+ = W and that for every
g€ GL(V), we have (¢gW)+ =g (W).

A partial R,-lattice A of rank k in V| or k-lattice for short, is a discrete free R,-sub-
module of rank k£ generating a k-dimensional K,-vector subspace Vi of V. When k = D,
we say that A is full R,-lattice. We endow V) with the restriction of the norm of V,
hence with its unique Haar measure py, such that py, (By(0,1) nVy) = 1. We define the
covolume Covol(A) of A as the total mass of the induced measure (again denoted by puy, )
on the quotient space Vi /A, that is,

Covol(A) = pv, (Va/A) - (6)

The set Laty (V') of k-lattices in V' is invariant under the linear action of the linear group
GL(V). This action of GL(V) on Laty (V) is transitive, by taking an R,-basis in two k-
lattices, by completing them to two K,-basis Z and %’ of V, and by taking the K, -linear
map sending & to A’. For all g € GL(V) and A € Laty(V), we have

d
Von = gVa and  Covol(gA) = Ll /N Covol(A) . (7)
d,UVgA

In particular, for every A € K,,, we have Covol(AA) = |A\|¥ Covol(A) and if k = D, then
Covol(gA) = | det g| Covol(A) . (8)

An integral structure (or R, -structure) on V is the choice of a full R,-lattice in V.
Alternatively, it is the choice of an equivalence class of K-basis of V', where two K-
bases are equivalent if their transition matrix belongs to GLp(R,). These two definitions
agree by identifying the equivalence class of a Kj-basis (bi,...,bp) with the R,-lattice
R,bi + -+ R, bp it generates. An integral K,-space is a finite dimensional K,-vector
space W endowed with an integral structure, denoted by Wg,. We denote by GL(WEg,) the
subgroup of GL(W) preserving the integral structure Wy, of W. The dual K, -vector space
W* will be endowed with the dual integral structure (see the appendixfor developments),
denoted by Wg =~ and defined by

Wi ={{eW*:YozeWg, lz)eR,}.
6



Equivalently, W§ is the integral structure on W* whose equivalence class of R,-bases
is the set of the dual K -bases of the elements in the equivalence class of the R,-bases
for Wg,. This is well defined by Equation since GLq(R,) is stable by inversion and
transposition. Note that Wg*= Wk, .

For instance, we will endow the product K,-vector space K,9 with its integral structure
R4 (or equivalently with the equivalence class of its canonical basis (e1,...,eq)). By for
instance [BrPPl Lem. 14.4)], we have

Covol(RY) = (Covol(R,))? = ¢le=1d (9)

We will endow the dual K,-vector space (K,3)* with the equivalence class of the dual
basis (ef,...,e}) of (e1,...,eq) (or with the full R -lattice R, e +---+ R, e}). For every
k-lattice A in V, the pair (Va, A) is an integral K, -space with (V))g, = A.

Since the standard R,-lattice R,2 in K,4 does not have covolume 1 (contrarily to the
case of the real field), we define the normalized covolume of an R,-lattice A in V' by

—— Covol(A)
COVO](A) = &)T(‘Ryd) .

Let V be an integral K, -space with finite dimension D, and k € [1, D]. A k-lattice in
Vis
o unimodular if its normalized covolume Covol(A) is equal to 1;
e rational if it is contained in the K-vector space Vg = Vg, ® K generated by the
integral structure Vg, of V' ;
o integral if it is contained in Vg ;
e primitive if it is integral and satisfies one of the following equivalent properties:
(1) the R,-module A is a free direct factor of Vg, (or equivalently, there exists an R,-basis
(by...,bp) of Vg, such that (by...,b) is an R,-basis of A),
(2) the R,-module Vg, /A is a free R,-module of rank D — k.
Note that this definition is appropriate in the setting where R, is not necessarily princi-
pal, and that definitions that were equivalent in the case of (R, Q, Z) instead of (K,, K, R,)
no longer are. For instance, if A is a primitive k-lattice, then V) determines A, with

AZVAQVRV.

But this equality is no longer sufficient for an integral k-lattice A to be primitive.

Note that an integral k-lattice is a rational k-lattice. By taking an R,-basis in two
rational k-lattices, by completing them to two K-bases £ and %’ of Vi, and by taking
the K-linear map sending % to %', we see that the linear group GL(Vk) acts transitively
on the set of rational k-lattices in V.

Let Lat!(V) be the space of unimodular full R,-lattices in V. The closed unimodular
subgroup
GL'(V) = {ge GL(V) : |det g | = 1} (10)

acts transitively on the set of (partial) k-lattices if & < D. It also acts transitively
on Lat'(V) (the determinant of every element g € GL(V) mapping a unimodular full
R, -lattice to another one has absolute value 1 by Equation (8)). Note that the dis-
crete group GL(Vg,) is contained in GL(V), and is exactly the stabilizer in GL(V)
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of the full R,-lattice Vz,. We hence identify from now on the set GL'(V)/GL(Vg,) with
Lat'(V) by the map g GL(Vg,) — gVg,. In particular, we identify Lat}, = Lat'(K,”)
with GLL(K,)/GLp(R,) (by taking the matrix of a linear automorphism of K,” in the
canonical basis of K,).

Let 2Z(V) be the set of primitive k-lattices in V, and L n g = L w(K,3). This
set can be described as a (discrete) homogeneous space as follows. For every commutative
ring A and for all k, k" € N~ {0}, we denote by .} 1/(A) (and by .#j(A) when k = k)
the A-module of k x k' matrices with coefficients in A. Let

P*(R,) = {(g 1) :ae GLn(R,), § € GLo(Ry), 7 € Mmn(Ry), det(a)det(5) = 1} .
(11)

Lemma 2.1 The group I' = SLq(R,) acts transitively on XLy 4.

The validity of this lemma is one of the main reasons for our definition of primitive m-
lattices, and could be no longer true with other definitions. Since the stabilizer in SLq(R,)
of the first coordinates primitive m-lattice R,™ x {0} is equal to P*(R,), we will from now
on, as we may, identify the quotient I'/P*(R,) and Ly q by the map

gP " (Ry) = Ag = g(R)" x {0}) .

Proof. Let A € 2, 4. By the definition of a primitive m-lattice in K,4, there exists an
R,-basis (by,...,bq) of RJ such that (by,...,by)is an R,-basis of A. Let g be the transition
matrix from the canonical basis of B3 to (by,...,bq). Note that a priori g € GLq(R,),
but since det g € R, up to replacing bg by Abg for some A\ € R, which does not change
Ag4 since m < d, we may assume that g € SLq(R,). Then Ay = A, and the map g — A, is
indeed onto. ]

2.3 Orthogonal primitive partial lattices

Let V be an integral K, -space with finite dimension D, and let k € [1,D — 1]. Let A be a
primitive k-lattice in V.
The orthogonal (D — k)-lattice of A is the R,-submodule of the dual integral K,-vector
space V* defined by
A=Wt VvE .

For instance, if V is K,2 with its canonical basis (ey, . .., eq) (defining its integral structure)
and its dual basis (ef,...,e}), if A = @i<i<mRre;, that we have already denoted by
R™ x {0}, then A+ = @y 1<icaRuef, that we will also denote by {0} x R}

Proposition 2.2 The R,-submodule A+ of V* is a primitive (D — k)-lattice in V*. For
every g € GL(Vg,), we have

Vae = (Va)t,  A=AHt  and  (gA)F=GAtL. (12)

Furthermore, if we endow V' with the supremum norm associated with any R, -basis of Vg,
and V* with its dual norm, then A and AL have the same normalized covolume:
Covol(At)  Covol(A)
Covol(RLP~F)  Covol(R})
8
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Proof. Since the k-lattice A is primitive, there exists an R,-basis (b1,...,bp) of Vg,
such that (b1,...,bx) is an R,-basis of A. The dual K,-basis (b7, ...,b},) of (b1,...,bp)
is also an R, -basis of the integral structure Vﬁy of V*. We have V) = ®1<;<x K, b;, hence
Vpt = @r+1<i<p Kb} . Therefore A=Wt Vi = @k+1<isplt b is an integral and
primitive (D — k)-lattice in V*. Moreover, we have Vy1 = @p1<i<pK,bF = Vot, and
(ANt = @r1<i<kRubi = A.

For every g € GL(V'), we have

(gA)F = (Vopa) - Vg, = (gVa) T nVE =g (Va)E n Vi

In particular, if g € GL(Vg, ), then § € GL(V}7 ) and we do have (gA)* = gA™*.
For a proof of Equation , we refer to the end of the appendix O

2.4 Congruence properties on primitive partial lattices

In this subsection, we fix a nonzero ideal I of the Dedekind ring R, , and we define a class
of primitive partial lattices in Kl,d that have specific congruence properties modulo the
ideal I.

A primitive partial lattice A in K, is said to be horizontal modulo I if A = R x I",
as for instance R" x {0}. We will denote by %, a(I) the set of primitive partial lattices
in K,4 that are horizontal modulo I. If I = R, then PLwdl) = PLwa.

Let T' = SLq(R,). We consider the following Hecke congruence subgroup by blocks :

Lr={(3;)el: Bedom()}.

Note that ', = I' and P*(R,) < I'; where PT(R,) is defined in Equation (11J).

The first assertion of the following lemma is a congruence version of Lemma 2.1} and
implies that the map gP*(R,) — Ay = g(R.® x {0}) for g € I'; identifies I';/P*(R,) with
PLmd(I). The second one is exactly [BrPP, Lem. 16.5| when d = 2 and m = 1.

Lemma 2.3 (1) The group I'; acts transitively on L wa(I). Furthermore, for every
geT', we have Ay = g(R," x {0}) € PZLwa(I) if and only if g€ T'y.
(2) We have

e = N [T S

p|l =1

where the first product ranges over the prime factors p of the ideal I.
Proof. (1) Let g = (g ) € I with B an n x m matrix, so that
Ay = g(R x {0) = {(aw, o) 1w € R} .
Then Ay € L a(I) if and only if Bz € I™ for every x € R*, which occurs if and only if
B € Mym(I), that is, when g € I'y.

(2) We denote by |E| the cardinality of a finite set E. For every commutative ring A
with finite group of invertible elements A* and for every £ € N\ {0}, it is well known that
[GL¢(A) : SLy(A)] = |A*| and that if A is a finite field, then

4
£(e—1) i
|GLo(A)| = A = JJ(Al - 1).

i=1




The group morphism of reduction modulo I from SLy(R,) to SLyu(R,/I) is onto, by
an argument of further reduction to the various prime power factors of I and of lifting
elementary matrices. The order of the upper triangular subgroup by blocks

Twa(l) ={(57) €SLa(R,/I): a€ Mun(Ry/I)}
of SLa(R,/I) is |(R,/I)*|7| GLw(R,/I)| | GLy(R,/I)| |R,/I|™™. Hence

[F‘F]] _ ’SLd(RV/I)’ _ |GLd(RV/I)|
' | Tna ()] | GLi(Ry/D)| | GLa(Ry/D)| |Ry/TI™"

(14)

By the multiplicativity of the norm and by the Chinese remainder theorem, the result
reduces to the case when I = p* is the k-th power of a fixed prime ideal p, where k € N.
Let N = N(p) so that N(I) = |R,/I| = N*, and note that R, /p is a field of order N. For
every £ € N~ {0}, the kernel of the morphism of reduction modulo p from GL,(R,/p¥) to
GL¢(R,/p) has order N®*~1 Hence

14
|GL(R,/1)| = N+ T (v - 1)
=1

Therefore, by Equation , we have after simplifications

SN =T N(p)'— N(p)™
I:T;]=NE-DT T = — n()me :
[ I] i Nt —1 ( ) E N(p)l 1

This proves the result. L]

2.5 Refined LU decomposition by blocks

Let G = SLq(K,), which is a unimodular totally disconnected locally compact topological
group. In this subsection, we define some closed subgroups of G and we study their Haar
measures. We will denote an element g € G by blocks as g = (g }) with & an m x m
matrix. For every k € N~ {0}, let I be the identity k x k matrix.

We will consider throughout this paper the following subgroups of G. Let

U ={("s 1) :Be tom(K,)} and U ={("p]) 7€ Mun(K,)}

be the lower and upper unipotent triangular subgroups by blocks of the matrix group G.
For every k € N\ {0}, we define GLL(K,) = {g € GL.(K,) : |det g| = 1}, which is a split
extension of its normal closed subgroup SL(K,) by the compact group {(8 Ik(i 1) ja €
0}, Let

G"={(§§) : e GLy(K,), 6 € GLy(K,), deta detd =1}

be the intersection with G of the product group GLL (K,) x GLL(K,) diagonally embedded
by blocks in GLq(K),). Note that U~,G”, U™ are closed unimodular subgroups of G, and
that G” normalizes U~ and U™. Let

Z = {(m{)lmﬂ”?[n) 'r, s € 7, mr+n3:0},

10



which is a discrete abelian subgroup of G that centralises G” (actually G” is the centralizer
of Z in G), and normalizes U~ and U*.

k3

) 0 0

Let Z' = { ( 0 Iag—2 0 > 10 < i < lem{m,n} — 1} which is a finite subset of order
0 0 m"

lem{m, n} of G (not a subgroup). Let

U = { (g 3) € G:v(det(a)) € lem{m,n} Z } (15)

and %2 = {(2}) € G : det(w) = 0 }, which are disjoint closed subsets of G (not
subgroups), with % open in G, such that

G=23u || dUe=u30 | | %

Z'eZ! zleZ’

is a finite disjoint union of %Cg and finitely many left (or right) translates of %;. Let ydi
be the subgroup of G consisting in the elements of G that act by a permutation and a
possible change of sign on the elements of the canonical basis of K, (in order for their
determinant to be 1). Multiplying on the left an element g € G by an element in yc;—r
amounts to permuting the rows of g by the inverse of the associated permutation and
possibly changing their sign. Since the rank of the submatrix of any invertible matrix
consisting of the first m columns is m, we have %0 < .77 (G ~ %_).

For every closed subgroup H of G, we denote by H(0,) the compact-open subgroup
H n GL,,(0,) of H, and by up the left Haar measure of H normalized so that

pu(H(0y)) =1. (16)

In particular, G(0,) = SLq(0,) and ug(G(6,)) = 1. Note that GLL(0,) = GLq(6))
by Lemma [2.7 and similarly GL(R,) = GLq(R,). For all k, k' € N \ {0}, we endow the
locally compact additive group .#}, ;s (K,) with its Haar measure Haary, ;y normalized so
that

Haary, g (M 1 (Oy)) = 1 .

The group GLj(K,) x GLy/(K,) acts linearly on the K,-vector space .} 1/ (K,) by the
action ¢(g,h) : x — gzh™! for all x € M} 1o (K,) and (g, h) € GLi(K,) x GLy/(K,). The
following claim is well-known.

Lemma 2.4 This action scales the Haar measure Haary, 1 as follows:
V (g,h) € GLi(K,) x GLi (K,), ¢(g,h)s Haarg py = |det g |k, |det h | 7% Haary 5y . (17)

Proof. For every (g,h) € GLi(K,) x GLi (K,), we have ¢(g,h) = ¢(g,id) o ¢(id, h), and
¢(g,id) acts on x € A}, 1y (K,) by the diagonal linear action of g on the &’ columns of z,
and ¢(id, h) acts on x € #}, 1y (K,) by the transpose of the diagonal linear action by the
transpose-inverse of h on the k columns of 'z, since {(x h=!) = 'h~! {x. The result hence
follows from Equation and a diagonal by block computation of determinants. O

The maps u™ : Mym(K,) — U™ and ut : M n(K,) — U™ defined respectively by

B — (IE‘ I(i ) and y — (]6“ 17") are topological group isomorphisms, satisfying

u , Haarpm = py_  and ut, Haarm n = py, - (18)
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We denote by xm (respectively x,) the characters from Z to K, sending ()‘I‘“ 0 ) to
A (respectively u). Note that xm™ xn" is the trivial character. For all z € Z, B €
and v € Mmn(K,), we have

2w (8) 27 = u (((2) ) B (xm(2)Im) 1) - (19)

The Haar measure uz on Z is exactly the counting measure, since Z(0,) = {In} :

ZZE Az (20)

z€Z

The next result gives a refined LU decomposition by blocks of G and the corresponding
decomposition of its Haar measure.

Proposition 2.5 The product map (v, ¢", z,u™) —u"g" zu™ from U~ x G" x Z x U™
to Ug is a homeomorphism and if

q,"" H?:l(%l —1) H?:I(Qz/i —1)

1 = <]-7

[T (a0 — 1)

then
duc(u™ g" zut) = 1 |xm(2)|V™ dpuy- (u”) due(g”) dpz(z) dug+(u®) .

Proof. For every g = (g 4) € G such that deta # 0 (which is the case if g € %), we

have
Im O v Im 0 In @
9:(504*1 L,)(o& 604*17):(,304*1 1,,)(05 Bofl'y) nw)_ (21)
In particular, the matrix § — Ba 1y is invertible, and det(a) det(d — Ba~1y) = 1, so that
v(det(§ — Ba~1y)) = —v(det(a)). Thus if g € %, then v(det(a)) is divisible by m and
v(det((6 — Ba~1y)) is divisible by n. Furthermore,

v(det o)

|det(m, ™ )] = |7, )| |det o] = ¢,/ |deta| = [det | [deta| =1 .

Consider the map Z from % to U~ x G” x Z x UT which to g = (g }) € Y% associates

_v(deta)

- I 0 PR 72 e’ 0
u = /804_1 In y 9§ = _V(det(éfnﬁafl'y))

0 Ty (5 - /Ba_lr}/)
v(det a)] 1
T " 0 Iy a 'y
z=|"" T esegaty  |hUT = <(t)n I, )) ’ (22)
0 Ty " I, "

which is well defined as we just checked. Let us prove that = is onto. Let

= (G )etU, §=(%8)ed 2= (VP L)z wt= () eUt.

Let a = n)d/, B = Bla, v = Ya and § = 7,55 + Ba~ly. The equality mr +ns=0

implies by Gauss Lemma that m divides 7, hence that lem{m,n} = o d{m o divides
mr. Since o/ € GLL(K,), we have
v(deta) = v((m))"deta’) = mr + v(deta’) = mr € lem{m,n} Z . (23)
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Thus g = (g 3) belongs to % and by construction Z(g) = (u™,¢", z,u™). It is immediate
to see that = is continuous on % and is the inverse of the continuous multiplication map
(u™,g", z,ut) > u g’ zut.

Let P~ = U~ G"Z, which is a closed subgroup of G, since Z centralises G” and G"Z
normalizes U™, so that %; = P~U™. By [LanS, §II1.1], since G and U™ are unimodular,
there exists a constant co > 0 such that the restriction to the open set % of the Haar
measure of G satisfies dug(p~u™) = co dup-(p~) duy+ (u™) for (almost) all p~ € P~ and
uteU™.

For all ¢" = (39) € G” and B € Mym(K,), we have gu=(B)g" "t = u(6Ba ).
Therefore, with ¢ the conjugation map z — ¢" z g” ! by ¢" on U™, by Equation (18, by
Equation with £ = n and ¥ = m, and since |det o] = |det 6| = 1, we have

(tgn)sp— = (tgr ou™ )y Haarym = (U™ 0 (0, ) ) Haary
= (u7)« Haary m = py- - (24)
Let z € Z. By the relation between the two characters y, et xn of Z, we have
| det(xn(2)Ln)[™ [ det(xm (2)Im)| " = [xn(2)"™ [xm(2)™] "
= [xm(2) ™™™ Ixm(2) 7" = [xm(2)] 74

Therefore, with ¢, the conjugation map by z on U™, by Equation , by Equation
with £ = n and &/ = m, we have

|—mn

(t2)spy- = (tzou™ )y Haary m = (U™ 0 ¢(xn(2)In, Xm(2)Im))« Haary o
= [xm(2)| ™ g (25)

The product in the group P~ = U~ G”Z may be written as follows: for all (u™,g", 2)
and (0 —,¢",2) in U~ x G" x Z, we have

(ui g// Z) (afa// 2) _ (ui (g// (z’ff Zﬁl)g”_l)) (g”ﬁ”) (z 2) )
By Equations and , the image of the measure
X (2)[™ dpay—(u”) dpn(g") dpz(2)

on U~ x G" x Z by the product map (v, g”,2) — u~ ¢” z is hence a left Haar measure on
P~. Therefore there exists a constant c¢3 > 0 such that, for (almost) all u= e U~, ¢" € G”
and z € Z, we have

X (2)| ™ dpagy- (u”) dpn(g") duz(2) = e3 dup-(u=g"2) .
Therefore, with ¢; = CQCgl, we have
duc(u™ g" zu®) = e1 [xm(2)| T ™ dpy - (u”) dpen(g”) duz(2) dpg+(u®) . (26)

In order to compute the constant ¢;, we evaluate the measures on both sides of Equation
on the compact-open subgroup

_ a -y . aEIm—{-Trl,///m(ﬁ,,), (SEIn‘}'Wy%n(ﬁy),
H = {(ﬁ 3) €GO)): B e My lym(0,), 7 € Tyllln(O),) } '

We are going to need the following well-known result.
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Lemma 2.6 For every N € N, let Hy be the kernel of the morphism from G(0,) to
SLa(0, /7N 0,) of reduction modulo ™ 0,. Then
N(@2-1)—d@rn g 4
(G0, Hx] =0T Tl - 1)
i=2
Proof. The reduction morphism GLd(ﬁy) — GLq(0, /7Y 0,) is onto, and the reduction
morphism SLq(&,) — SLq(0, /7Y €,) is hence also onto. By for instance [Han|, Theo. 2.7]
(applied with k = N to the finite local commutative ring R = 0, /7,50, with maximal
ideal P = m,0,/nF0,), we have
d-1
2 1142 .
‘ GLd<ﬁu/7r1]/Vﬁz/)’ = yﬁyﬁu/wi\]ﬁuyd |GLd(ﬁl//7Tl/ﬁl/)’ = QV(N bd H(QVd - QVZ)
i=0
Nd?- ddrn) d
= Qv H(QVZ - 1) :
i=1
The index of SLq(0, /7N 0,) in GLq(0, /7N 0,) is equal to |(0, /7 6,)*| = ¢N "1 (q,—1).
The result follows. 0
Since puc(G(0,)) = 1 and by Lemma [2.6| with N = 1, the group H has Haar measure

pa(G(O))) 1

Ha(H) = [G(0,) : H] - ql,d(d;l) Hd:2(qu ) :

The group H n U~ = {( 5 I") : B € myMym(0,)} has index ¢ in U~ (0,), and so
does HNUT = {(IS‘ Z‘) iy € Wy///m,n(ﬁu)} in Ut (0,). Hence
1
qun ’
We have H n Z = {Iq}, hence §;_ , |Xm(2)|9™ duz(z) = 1 by Equation (20).

The index of the subgroup H nG” = {(8‘ 9): ?eellm_jﬂmj/;jl?(ﬁﬁ)”)’ det v detd = 1}
v n v)s

v-(HAU ) =py+(HAUY) =

111 the group G”(0,) = {(29) : a« € GLn(0,), 0 € GLy(0,), deta detd = 1} is equal to
IIFX (| GLw(TF, )\ ]GL (IFq )]) Since pgr (G"(0,)) = 1, we hence have
(@ —1)
IU’G”(H A G”) = m(m—1) n(n—1)

o * e/ —Dae * Tli(ai-1)

Note that H is contained in % since for every (g }) € H, we have v(det(a)) = 0 as
deta = det I, = 1 mod 7,. We then also have v(det(§ — fa~ta)) = 0. It follows from
Equation that the product map (v, ¢", z,u™) —u~ ¢" zut from U~ x G" x Z x U™
to % induces a homeomorphism from (H nU™) x (HnG")x (Hn Z) x (HnU") to
H. By Equation and the above computations, we thus have

pa(H)

T o (H AU jor(H A G7) - (H A UY)
_ g " T 1(% ~ DIl — 1)
Hizl(qu - 1) '
Note that ¢; = [[\-; qi:;_ql”n < 1. This concludes the proof of Proposition O
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2.6 Refined LU decomposition by blocks and partial lattices

Let V be a K ,-vector space with finite dimension D > 1, and let k£ € [1, D]. We denote by
Gry (V) the Grassmannian space of k-dimensional K -linear subspaces of V' (endowed with
the compact metrisable Chabauty topology, see Subsection for its measure theoretic
and metric aspects). We define Gry q = Grn(K,2).

An 0, -structure on V is the choice of a finitely generated &, -submodule Vj, generating
V as a K-vector space, or equivalently an equivalence class of K -basis of V', where two
K, -bases are equivalent if their transition matrix belongs to GLp(&),). For instance, we
endow K, and (K,”)* with the &,-structure defined by their canonical basis and its dual
basis, respectively. We denote by GL(Vy, ) the subgroup of GL(V') preserving Vg, , and we
define SL(Vy,) = GL(Vg,) n SL(V). The following claim is well-known.

Lemma 2.7 The group GL(Vy,) is contained in GLY(V) and acts transitively on the
Grassmannian space Gri(V). If k < D, then SL(Vy,) also acts transitively on Gri(V').

Proof. The first claim follows from the fact that the determinant of a matrix in GL(Vy, ),
being an element of & ¢, has absolute value 1. By for instance [Weid, Theo. 1|, every
complete flag (Vi,...,Vp) of V admits a K,-basis (x1,...,2p) which is both adapted to
this flag (that is, V; = K,x1 + --- + Kyx; for every i € [1,D]) and is an O,-basis of
Ve, . Hence every k-dimensional K, -linear subspace of V' admits a K,-basis that can be
completed to an &,-basis of Vi, . Since GL(Vy,) acts transitively on the set of &,-bases
of Vg, , the second claim follows. The last claim when & < D follows by multiplying the
last element of the above &, -basis by an appropriate element of &,*. O

Assume that V' is endowed with a K,-basis (f1,..., fp) defining both an R, -structure
Vr, = Rufi +---+ Ryufp, an O,-structure Vy, = O, f1 + --- + O, fp and an ultrametric
norm ||z1f1 + -+ xpfp| = max |z;| whose (closed) unit ball is Vi, . For instance, V

<1<

It

could be K, with its canonical basis, or its dual space (K,”)* with its dual basis, or
K -linear subspaces of them generated by basis elements. We denote the space of shapes
of unimodular full R,-lattices of V' by

Sh'(V) = GL(Vg,)\ Lat' (V) = GL(Vy,)\ GL'(V)/ GL(Vk,) ,

endowed with the quotient topology (see Subsection for its measure theoretic aspects).
For simplicity, we denote Sh}, = Sh!(K,P).
The shape map of k-lattices of V' is the map

sh: {A € Laty (V) : Covol(A) € qVkZ} — Sh}

defined as follows. Let A € Latg (V). By Lemma choose an element g € GL(Vy,) such
that we have gVp = K, f1 +--- + K, fi. Note that g preserves the covolume of partial
lattices, since it maps the unit ball VA n Vg, of Vi to the unit ball O, f1 + --- + O, fx
of Kufi+ -+ K,fg. Let ©: K, fi +---+ K, fr, — K,/k be the isometric (hence Haar
measure preserving) K -linear isomorphism mapping (fi,..., fx) to the canonical basis of
K F, that preserves the covolume of full R,-lattices. We define

l OV
sh(A) = GLy(6,)m* 5w Mg ga) | (27)

15



1] Covol(A) , . . .. . .
Note that 7.~ 084, Covol( )A is a unimodular k-lattice in V', and that homotheties and linear

maps commute. Furthermore, the shape sh(A) of A does not depend on the choice of g
as above, since given two choices g1 and go, the linear maps © o g; and © o gy differ by
multiplication on the left by an element of GLg(&,). Note that when A is a unimodular
full R, -latice in the product space V = K,*, then Equation greatly simplifies to

sh(A) = GL(0))A

since we can take (f1,..., fr) to be the canonical basis of V' and g = © to be the identity
map of V.

The next result gives the relationship between the refined LU decomposition by blocks
of elements of % and the partial lattices generated by their first m columns. Let us first
give the notation that will be used. For every D € N\{0}, we identify GL(K,”) and
GLp(K,) (respectively GL((K,P)*) and GLp(kK,)) by taking matrices of linear automor-
phisms in the canonical basis (e1,...,ep) of K, (respectively its dual basis (ef,...,e%)
of (K,P)*). Recall that the map h > h = th~1is a group isomorphism from GL(K,9) to
GL((K,3)*). For practical reasons, we denote by R,™ x {0} the m-lattice R,e; +- - -+ Ry,en
of K, and by {0} x R} the n-lattice Ryef, | +- -+ Rye} of (K,3)*. For every g € GL(K,%)
(respectively ¢’ € GL((K,2)*) ), we define

Ay =g(R) x {0}) (respectively Ay =g'({0} xR})),

which is the m-lattice generated by the first m columns of g (respectively the n-lattice

generated by the last n columns of ¢'). For every element g = (g }) € Y, we denote by
"

(u=,g" = (32), z,um) the decomposition of g given by Proposition and by

_ v(deta) _ v(det(d — Ba'y))
lem{m,n} lem{m, n}

ez

(which is indeed an integer since g € % by Equation ) By Equation , we then

have

_ lem{m,n} t
m " Iy 0
z = lem{m,n} t . (28)
0 mT, " I,

To conclude this list of notation for Proposition [2.8] let us define
G ={geU:u €G(0,)}.

Proposition 2.8 For every g € Za, we have

(i) Va,=Va,_ ()8 Vip)r = Vi

(ii) Covol(Ay) = g™ (i)~ Covol((Ag)*) = g, ™"
and if furthermore g € G¥, then

(i) sh(Ag) =sh(gR") (i)™ sh((Ag)") =sh(g R}).

Proof. Let g = (g }) € G\“Z/Cg (that is, let g be an element of G whose upper-left m x m

submatrix is invertible), let u_ = ( 5211 1(31 ) and let t = —lzr(ff;?} e Q, so that these
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two notations coincide with the above ones when g € %z = GN%J. Let us prove that
Assertions (i) l . n ii are actually satisfied under this greater generality on g. Since
we have (5 3) 5a,1 I“ ) for every x € M1 (K, ), we have

Ag = Q(RJ" x {0}) = u”((aR)") x {0}) . (29)
Since « is invertible, we hence have Vi, = u™ (K" x {0}), thus proving |(i
Let &' = 6 —Ba~'y. Since g = u~ (¢ §)u™ by Equation (21)), we have § = u~ (0 ?,)Qﬁ
Note that u*, being lower unipotent by blocks, preserves {0} x R}'. By the last equality
in Equation , we hence have

J_ - - ~ N
(Ag)t = (9B x {0}))” = § (R x {0)* =7 ({0} x R}) = u= ({0} x (VR))) . (30)
Since 0’ is invertible, we thus have Viag )t = I\L:({O} x K') = u Vioyxry = VI;:({O}XRV")’
thereby proving Assertion

By Equations (29), (its left-hand side) and (8)), since we have det(u~) = 1 and by

.. . v(deta) _ log,, |detal
the definition of ¢ = ~Tom{mn} = lcqm{m,n} )

we have
Covol(Ay) = Covol(aR,") = | det o] Covol(R") = qlcm{m’"}t Covol(R,") ,

thus proving E Assertion |(ii)"] n follows from Equation (1
Assume from now on in this proof that g € G Note that by Assertion |(ii)} E the m-

lattice A4 has normalized covolume which is an integral power of ¢,", hence sh(Ay) is well
defined by Equation with & = m. Recall that the shape of a partial lattice of K,d is
invariant by every homothety and by taking the image by any element in GL4(0,). Again

_ v(deta) £(m,n) t

by Equation , since u~ € G(0,) when g€ G, and sinceg =m, " a=m " «
by Equation , we have
sh(Ag) = sh((aR,") x {0}) = sh(aR") = sh(g R)") ,
thus proving Note that g’ € GL} (K,), so that g R™ is a unimodular full R,-lattice
in K"
By Assertion the n-lattice (A,)" has normalized covolume which is an integral
power of ¢}, hence sh((Ag)J-) is well defined by Equation with & = n. As previously,

since u- (which is now upper unipotent by blocks) still belongs to G(&,), and since g is
a scalar multiple of 6’ = § — Ba~ 'y, we have by Equation that

sh((Ag)h) =sh({0} x (F'R,")) = sh(F'R,}) = sh(FR")

thus proving |(iii)~} Note that g R is a unimodular full R,-lattice in K. O

3 Metric measured moduli spaces of partial lattices

In this section, we define the natural measures and distances on the moduli spaces Gry g
(see Subsection, Shl and Sh} (see Subsection, that were introduced in Subsection
and on whose products the equidistribution results of the Introduction will take place.
We introduce (and similarly analyse) in Subsection an avatar Lati.‘n of the product
Latl x Lat! of the spaces (described in Subsection j of m- and n-lattices, on which our
stronger equidistribution result (Theorem 4.7 will take place in the subsequent Section 4 l
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3.1 The Grassmannian spaces

As defined in Subsection , we denote by Grpq = Grp(K,3) the Grassmannian space of
m-dimensional K,-linear subspaces of K,9. Recalling that G = SLq(kK,), we define

Q" ={(5ss)eG:p=0},

which is a nonunimodular closed subgroup of G. It contains the closed and open subgroup
Pt =G"ZU" = {(33) € Q" : v(det(a)) € lem{m,n} Z } with finite index. The compact
metrisable group G(&,) acts continuously and transitively by Lemma on the compact
metrisable space Gry q. The stabilizer of the K, -linear subspace K,™ x {0} of K,d corre-
sponding to the first m coordinates is exactly Q*(&,). Hence the continuous onto orbital
map g — g(K," x {0}) from G(0),) to Gry g induces a continuous bijection

G(ﬁy)/Q+(ﬁu> - Grm,d y

which is hence a homeomorphism by compactness arguments. We identify from now on
G(0,)/Q"(0,) and Gry g by this map.

By the normalisation convention of the Haar measure of the closed subgroups of G
(see Equation ), the Haar measures ug(g,) and pig+g,) are normalized to be prob-
ability measures. We denote by par, , the unique G(&,)-invariant probability mea-
sure on the Grassmannian space Grnq = G(0,)/Q*(0,). This is in accordance with
Weil’s normalization process of measures on homogeneous spaces (see [Weidl §9]). In-
deed, the probability measure p1(¢,) disintegrates with respect to the canonical projection
G(0,) — G(0,)/Q*(0,) over the measure ugr, 4, with conditionnal measures on the fibers
gQ*(0,) the probability pushforward measures g=pQ+(e,): for every f € C(G(0,)), we
have

f £(9) dnco,) = j f F(gh) dpige o, (h) dice, 4 (9QH(6,)) -
9eG(0y) 9Q*t(0,)eGry.a JREQT(OL)

(31)
In particular, we have
|ncrmal =1 (32)

We denote by orby, : #ym(0,) — Gry g the (continuous injective) map defined by
orby : B +— (IE I?,)(Kum X {0}) 5

and by Grild = orby (Mo m(0),)) its image. Every element g = (g 3) € G(0,) such that
det(a) # 0 and Ba™! € My w(0,) belongs to (52‘11 I(L)Q*(@,) by Equation (2I). Con-
versely, if an element g = (g 3) belongs to U~(0,) Q" (0,), then we have det o # 0 and
Ba™l € My w(0,), so that
Griva = U™ (0,)Q7(0,) = U™ (G,) (K" x {0})
o det o
{(5 g) € G(ﬁV) : Ba_lg///jn?(ﬁy)}(KVm X {O}) .

Hence Gr{in q 1s a compact (as the image by the continuous map orby, of the compact space
Myw(0,)) and open subset of the open Bruhat cell U~Q™ of the Grassmannian space
Grp,q (corresponding to the longest element in the Weyl group of SLq(K)). By Equation
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applied with f the characteristic function of the compact subset U~ (0,) Q1 (0),) of
G(0,) for the first equality, by Proposition for the third equality and by the normali-
sation in Equation of the Haar measures for the last equality, we have

HGraa (Gt 4) = 160,y (U (6,) Q¥ (6),)) = u6(U™(6,) G"(6,)UH(6,))
= c1 py- (U (00)) pen (G"(0y ))MU+(U+( v)) =

By the normalization of the Haar measure Haar, n of .4 m(K,) so that its restriction
Pty (0,) YO Mo m(0y) is a probability measure, we hence have

(Otbm) (.t m(6)) = €1 (M) . (3)

In order to be able to define locally constant functions on the Grassmannian space
Gry g for error term estimates, one way is to define an appropriate distance on this space.
The standard construction is the following one. We endow the K -vector space V =
K,2 with the usual norm, the maximum of the absolute values of the coordinates in its
canonical K,-basis (ey,...,eq), and for every k € N\ {0}, its k-th exterior power AFV
with the corresponding norm, the maximum of the absolute values of the coordinates in its
corresponding K,-basis (ej; A -+ A €, )1<ij<--<ip<d- We now endow the projective space
P(V') with its usual distance d defined by d(K,z, K,y) = HHr”AHy”H for all x,y € V ~ {0}, and
Grp,q with its induced distance d by the Pliicker embedding Gry g — P(A™V) defined by
W — K,(by A+« Aby) if (by,...,bn) is any K,-basis of W. Since the linear action of
GLq4q(0,) on V preserves the norm, the exterior action of GL4(&,) on A™V preserves the
norm, hence the projective action of GLq(0,) on P(A™V) preserves the distance. Since
the Pliicker embedding is equivariant with respect to the actions of GLq(&), ), the action
of GL4(0,) on Gry q preserves its distance d.

For all D, D', D" € N~ {0}, we endow the K,-vector space .#p p(K,) with its supre-
mum norm | - | defined, for every element X = (Xj j)1<i<p1<j<p’ € #p p'(K,), by

|1X| = max{|X;;|:1<i<D,1<j<D}eqg?u{0}.

This norm is an ultrametric norm and satisfies the following properties:

e The transposition map A — 'A from #p p/(K,) to #p p(K,) is a linear isometry
for the norms || ||.

e By the ultrametric property of the absolute value, the norm | | is a submultiplicative
norm: For all Ae .#p p(K,) and B € A pr(K,), we have |AB| < ||A| | B||.

o For every Ae #p p(K,), we have |A| < 1if and only if A e #p p/(0,). Hence
the unit ball of | - || is .#Zp p/(0,) and the right and left multiplications by elements of
AMp(0,) and Ap/(0,) are 1-Lipschitz maps on .#p p/(0,) : For all A € .#p(K,) and
Be #pp(0,) and C e Mp(0,), we have [ABC| < |B|. In particular, |[ABC| = |B|
if Ae GLD(ﬁy) and C' € GLD/(ﬁV).

Lemma 3.1 For all 8, € Mywm(0,), we have

d(orbm(B), orbm(8)) = |18 = ]| -

Proof. Every matrix § € .#,wm(0,) will be seen as a linear map from K, x {0} to
{0} x K.}, so that Be; = >}, ;< Bij €irm for every j € [1,m]. A K,-basis of the K,-linear

subspace orby (8) = ( 5 In)(Km x {0}) of K, is hence (e1 + Be1, ..., em + Bem).
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Let zg = (e1 + Be1) A -+ A (em + Bem). We have |zg| = 1 since [leg A -+ Aeq| =1
and since the entries of 3 have absolute value at most 1. For every 3,5 € #ym(0,), we
have 23 A xg = (xg —x5) A xg and xg — g = v1 + V2 + - - - + vy Where, separating the
terms according to the number of occurrences of 8’s in them,

v = Z et A nei 1A (B=BeiAeit A A e,
1<i<m
vy = Z (61/\---/\ei,l/\Bei/\eiﬂ/\--~/\ej,1/\Bej/\ejﬂ/\---/\em
I<i<j<sm
—61/\-~-/\ei_1/\,8/e,-/\ei+1/\-~~/\ej_1Aﬂlej/\ej+1/\~--/\em)

and so on, and vy, = Be; A -+ - A Bem — 'e1 A -+ A Ben. By the ultrametric properties of

the norms, we have |Jvg| < |8 — §| for all k£ = 2 and |jv;| = |8 — f’||. By considering the
elements of the K-basis of A™V involved in the formulation of v, va, ..., vy, and again by
the ultrametric properties of the norms, we hence have |zg—z 4| = |8 —f'|. Furthermore,
the coordinate of xg — xg corresponding to the basis vector e; A -+ A ey is 0 while the
one of xg is 1. Thus |xg A x| = |xg — x| and the result follows. 0

3.2 The spaces of unimodular full lattices

For every unimodular locally compact group H endowed with a Haar measure pg, and
for every discrete subgroup IV of H, we again denote by ppg the unique left H-invariant
measure on H/T” such that the covering map H — H /T locally preserves the measure.
Let k € N\{0}. Note that SLi(K,) is a closed unimodular subgroup of the unimodu-
lar locally compact group GLj(K,), whose Haar measure pgy, Kk,) is normalized so that
psty (k) (SLk(0y)) = 1 (as we did for & = d in Subsection . The restriction to &,*
of the Haar measure of the additive group (K,,+) is a Haar measure p g of the multi-
plicative group (€, x) by Equation . By the normalization of the Haar measure of
(K,,+), we have
HM@’VX | = bk, (O, 60,) =1 - g, (34)

We have a split short exact sequence of locally compact groups
1 — SLy(K,) — GLL(K,) — 0, ,

with section s; : €, — GLL(K,) defined for instance by A ~— (6‘ Ik071 ). We define the
Haar measure pigp1 g, of GLL(K,), for all g € SLi(K,) and A€ 6,°, by

dpigr (i, (55(N)9) = dig x (N) dpsy, (x,)(9) - (35)

In particular, we have
Bl () (GLk()) = 1—q,7" . (36)

After Equation (10)), we identified the space Lat;, = Lat!(K,*) of unimodular full
R,-lattices in K,* with the homogeneous space GL}(K,)/GLy(R,). Since GLi(R,) is
a discrete subgroup of the unimodular group GL,lﬂ(Kl,), we endow Lat,lﬂ with the unique
GL}(K,)-invariant measure fira;: such that the orbital map GLL(K,) — Latj defined by

g — g RF locally preserves the measure.

20



Since the index of SLy(R,) in GLy(R,) is equal to Card(R)) = Card(F ) = ¢—1 (see
the formula on the right in Equation ), and by Equations and , we have

1
HuLat}cH = |\MGL,§(KV)/GLk(RV)’| = ﬁ H/~LGL,1€(KV)/SL;Q(RV)”
1- qyil
= ﬁ \|MSLk(KV)/SLk(Ru)\\ . (37)

Let us apply [Serl, §3] in order to compute the total mass of MLt using boldface letters
in order to denote the notation of this reference, thus facilitating the reference process. Let
L = SLg, which is a simple simply connected split algebraic group defined over the global
field k = K, with relative rank £ = k — 1, and with exponents of its Weyl group m; = ¢
for i € [1,£] (see [Bou, page 251]). Let S = {v = v}, which is a finite nonempty set of
places of k, and note that there are no archimedean places since K is a function field.
The function ring Og defined in [Serl, page 123| is then exactly our function ring R,,, and
Ly = SLj, is a split, simple, simply connected group scheme over Og = R, (as required
in [Serll, page 157]) such that L = Lo ®og k. The zeta function (kg of k related to S
defined in [Serll, page 156] is exactly our zeta function (g, and the S-arithmetic group I'g
defined in [Serll page 157] is exactly our arithmetic group SLi(R,).

Let G = L(k,) = SLi(K,). Motivated by the relationship with the Euler characteris-
tic, Serre defines a canonical signed measure (with constant sign by homogeneity) pug on
G, whose associated positive measure |ug| is a Haar measure on G. We don’t need to
recall its definition, only to understand its normalisation. By the second claim of Theorem
7 (see top of page 151) of [Serl], using when k = 1 the standard convention that an empty
product is equal to 1, and since the order of the residual field of k, = K, is q = q,, we
have

£ k-1
uel(SLe(0,) = [ [(@™ 1) = [J(@ ~1).
i=1 i=1

Since our Haar measure of SL (K} ) is normalized so that ugr, (x,)(SLx(0,)) = 1, we hence
have

k—1
1 .
_ — 1 1 —1 . 38

By, for instance, [LanR] (see also [Wei2, Theo 3.3.1] and [Weill, p. 257]), the Tamagawa
number 7 of L is 1. By the footnote 10 on page 158 of [Serl], we hence have

lpc|(G/T's) = |THCks —m;)| = H Cr (= (39)

Thus, by Equations , and , we have

Le gty (L4
[P, H qK 1) = ¢ (e D(F*—k+1) I;(l) _ (40)
=1 v =1 v

Therefore, by Equation , we have

-1
e H D) (41)

zqu
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3.3 The space of correlated pairs of R, -lattices

We define in this subsection a measured space Lat}n’n of pairs of full R, -lattices in dimen-
sions m and n with correlated normalized covolume, in which a version of the equidistribu-
tion results stronger than the ones stated in the introduction will take place (see Theorem
7).

For every k € N~ {0}, using the canonical K,-basis (e1,...,ex) of V = K}, we identify
the maximal exterior power AV with K, by the map A(e; A --- A ex) = A. Using this
identification, given A € Lat, and an R,-basis (by,...,b;) of A, which is also a K,-basis of
V' and therefore satisfies by A -+ A b # 0, we define

det A =1[by A~ Abp]e KJ/FS,

where the class [by A --- A bg] of b1 A -+ A by modulo multiplication by an element of ¢
does not depend on the choice of the R,-basis of A, since the change of R,-basis matrix
belongs to GLg(R,), hence has determinant in R, = F . Note that the ratio & of
two elements a = AF* and o' = N'F/ of K,/F* is a well-defined element £ = %qu
of K,/F/, and we will also denote by F < the class of 1 in K*/F . For instance,
detRVlC = [61 VANRIMERVAN ek] = qu.
Let us define
det A

Laut%m1 = {(A,A’) e Latl x Lat! : ot qu} .

For instance, (R, R,}') belongs to Latrln’n. We endow the product space Latl x Latl with
the product measure fi 1 ® fig,1 of the measures fig 1 and fiy 41 defined in Section
For every A e 0 )¢, let

sa(N) = (8 1.}, ) € GLa(6,) .

We endow Lat%l,‘1 with the measure i1 defined, for every Borel subset B of Lattln’n, by

:U'Latrlnm (B) = (MLat%1 ® :U’Lat}‘) (Sd(ﬁ'l/>< )B) ’ (42)

which satisfies

I pracs = 1 opas, | #pa | (43)

since sq(0,)°) Lat#’n = Lat), x Lat}.
Recall that g — § = tg~! for every g € GLL(K),) is the standard Cartan involution of
GLL(K,). The group G” = {(gg) : g € GLL(K,), g € GLy(K,), detg detg = 1} acts

continuously on the product space Latrln X Lati by
g0 >
((64) (A A)) = (gA A,
since GLL(K,) preserves the set of unimodular lattices Lat}, for every k € N ~ {0}.

Lemma 3.2 The orbit of (R, R}) by this action of G" is exactly Laty, ,, and the restric-

tion to Latim of the action of G" preserves the measure piy 1 .
’ m,n
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We denote by Ty : G" — Lat,lmn the twisted canonical projection defined by
T (29) = (aR™ORM) . (44)

Since the stabilizer of (R, R,') by the above action of G” is exactly the discrete subgroup
G"(Ry), and since my 4 is the orbital map of the above action at (R, R,}'), we will identify
from now on the quotient space G”/G”(R,) and the subspace Laty, , by the homeomorphism
gG”(Ru) — 71'm,n(g) = g(RVma Ryn)'

Proof. For all ke N\ {0}, g e GLL(K,) and A € Lat}, we have det(gA) = det(g) det(A).
Since det(§) = (det g )™, the action of G” preserves Lat], ..

Conversely, let (A, A") € Lat,lnm. Since the action of GLi(K,) on Lat}, is transitive for
every k € N\ {0} and since the map g — § is an automorphism of GLL (K, ), there exist
g € GLy(K,) and g € GLy(K,) such that A = R and A’ = § R,". Since (A,A’) € Laty, ,,
we have A = detg det g€eF, =R Then themxm diagonal matrix sy (\) with diagonal
entries \,1,...,1 belongs to GLy(R,), and in particular s,(\)"'R™ = R™. Then the
matrix (gs"‘g)_l 2) belongs to G” and maps (R.", R}') to (A, A’). This proves the first
claim of the lemma.

The second claim follows by the invariance of the product measure fuiy 1 ® fig5¢1 under

the product group GLL (K,) x GLL(K,). ]

As for the Grassmannian space Gry g, in order to be able to define locally constant
functions on Latihn for our error term estimates, we now define a natural distance on the
space Lat#’n.

Let k € N\ {0}. Since the supremum norm || || on .#(K,) is a submultiplicative norm
(see above Lemma [3.1]), the map

d: (g,h) = logy, (1 + max{| gh™" — I |, | hg™ = I }) (45)

is well-known to be a distance on the locally compact group GLg(K),) (inducing its topol-
ogy). By construction, this distance is invariant by translations on the right by all elements
of GLi(K,). It is also invariant by translations on the left by the elements of GLg(0,),
since the supremum norm | | on .#(K,) is invariant under conjugation by any element
of GLk(0,). Since the transposition map preserves the supremum norm | | on .#(K,)
and by the symmetry of the distance d on GLg(K), ), the map g — ¢ is an isometry of d.
In particular, for all g € GLg(K,) and p > 0, we have

B(g,p) = B(g,p) -
The following lemma will be needed in Subsection [£.2]
Lemma 3.3 For all h, hy € GLi(K,), we have
[h] < Jholl g™ and |71 < g ] ¢,/ ") .

Proof. Lett = d(h, hy). We have log, (1+ | hhg' —1I)|) < t, hence | hhg' — I, || < ¢! —1,
thus

|2l = ol < Ih = holl = [[(hhg* = I)holl < |hhgt — Ik | [holl < (g — 1)[ho] -
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The first result follows. The second result follows similarly (or since the map g — g is an
isometry and the transposition preserves the supremum norm of matrices). O

We endow every closed subgroup H of GLg (K, ) with the induced distance, and, with
H(R,) = H n GLg(R,) which is a discrete subgroup of H, we endow the quotient space
H/H(R,) with the quotient distance

Vg,heH, dgH(R,) hH(R,)) = min d(g hy).
YEH(Ry)

It is easy to check by Equation (45)) that for all g = (§9), ¢ = (06/ g,) € G”, we have

darg(x,)(9,9") = max{dgr,, (r,) (o, '), dar, (x,)(6,6")} - (46)

The canonical projection H — H/H(R,) is 1-lipschitz and is a local isometry since the
discrete subgroup H(R,) of H acts isometrically by right-translations on H. The action of
H(0,) = H n GLg(0,) by translations on the left on H/H(R,) is isometric. This process
provides the homogeneous spaces Latl, = GL} (K,)/ GLn(R,), Lat, = GLL(K,)/ GLy(R,)
and Lat}n’n = G"/G"(R,) with distances invariant under GLw(0),), GLy(&,) and G"(0,)
respectively, that from now on we will consider on these spaces. In particular, the map
Tmn from G” to Latrlnm defined in Equation is a local isometry.

3.4 The spaces of shapes of unimodular full lattices

Let k € N\{0}. As defined in Subsection the space of shapes of full unimodular R, -
lattices of K ,* is the locally compact metrisable separable (actually discrete and countably
infinite) quotient space

Shi = GLi(0,)\ Lat} = GLi(0,)\ GLL(K,) / GLk(R,) .

We endow Shj. with the unique finite measure fisn such that the left invariant finite
measure fip,1 on the right homogeneous space Lat; = GLi(K,)/GLg(R,) disintegrates
with respect to the proper canonical projection sh : Lat,, — Sh,lg = GLy(0,)\ Latj. over fisp}

with conditional measures on the fibers GLx(&),)A the pushforward measures pqr,, (6,)a Of
the finite Haar measure pqr, (g,) = MGL}C(KVMGL ) of the compact (hence unimodular)
k\Cv

group GLy(&,) by the orbital maps g ~— gA : for every f e CY(Lat}), we have

| 1@ g )
AeLaty,

| | F(9A) dicny(0,)(9) diisyy (GLA(6,)A) .
GLy(0,)AeSh;, JgeGLy(0y)

In particular, using Equation , we have
shy HLat] = ”NGL,C(ﬁ,,)H Hsnl = (1- qu_l) Hshp (47)

and by Equation , we have

Qv ”MLatkH 1 H ! Cre(—
Qv — g—1:71 ¢ —
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With the notation of Equation (that greatly simplifies as indicated below it), we
define a map

@mn: Lath, — Shy xShy = (GLn(6,)\Laty ) x (GLa(&,)\Lat} )
(A,A") — (sh(A),sh(A)) = (GLn(6,)A, GLL(O,)A) .

We summarize its properties in the following lemma, after giving some notation.

Since G”(0),) is compact and open in G”, there exists a maximal py > 0 such that
G"(0,) contains the (closed) ball Bgr (14, po) of center Iq and radius pg for the distance
on G” defined at the end of the previous subsection Thus every map f : La‘c%mn - C

(48)

which is constant on every left G”(&,)-orbit in La‘c,ln’n is po-locally constant, that is constant
on every ball of radius pg in Latim.

For every g € U, if g = uw= ¢’ zu™ with ¢’ = (%2) is its unique writing given by
Proposition we define the correlated pair of lattices [Ag4] associated with g by

[Ag] = Twn(g") = (R GR,) € Laty,, - (49)

Lemma 3.4 The map pmn 15 proper, surjective, and satisfies the following properties.
(1) We have (@m,n)*NLat}m =(1-¢ ") Hsnl, @ Hgp! -

(2) For every g € G* (as defined just above Proposition @), we have

Pmn([Ag]) = (sh(Ag),sh((Ag)™)) -

(3) For all functions f1 : Shl — R and fy : Shl — R with finite support, denoting by
fi x fo : Shl x Shl — R their product map (z,y) — fi1(z)f2(y), the composition
function (f1 x f2) 0 pman : Lat%."n — R is compactly supported and pg-locally constant

with [[(f1 % f2) © pumalloo < 5 [ f1lleo | f2]o0-
Proof. Since the groups GLn(0,) and GL,(0),) are compact, the map ¢y » is proper.
(1) By Equations and for k = m and k = n, the measures (Qmn)sfiry: and

m,n

fight @ pgyt are proportional. The proportionality constant is given by Equations and
)

Let ge Gf. Let u= e U (0,), ¢" = (%2) € G", z€ Z and ut € Ut be such that
g = u~ ¢g"zu™, as in Proposition [2.5l Then by Equation , by the definition of pyn
and by Proposition and K& we have

Pnn([Ag]) = Pun(T R, GR)) = (sh(FR,"), sh(FR,')) = (sh(Ag),sh((Ag)1)) -

Since ¢mq is proper and fi2 = f1 x fa2 compactly supported, the function fi2 0 pmn
is compactly supported. Let us prove that for all points x, 2o € Lat), , at distance at most
po, we have f1 90 SDm,n($) = fi20 @m,n(l‘o)~ Since Hf1,2 © Pmmn o < [|f1]oo [ f2]lo0,
this will prove Assertion .

Recall that by the end of Subsection the distance on Lat}n,rl is the quotient distance
of the distance dg» on G” by the onto map 7, . Let Zop € G” be such that mm o (Zo) = xo.
Since the action by right translations of G” on itself is isometric and since the preimages
of Ty n are the right orbits of G”(R,) in G”, there exists & € G” such that my »(Z) = 2 and
den (T, To) < po. Again since the action by right translations of G” on itself is isometric
and by the definition of pg, we have g = 03! € Bgr(id, pg) = G"(0,). Since mpy is
G"-equivariant, we have g & = T n(92) = Tma(To) = 2. Since @my is constant on the left
orbits of G"(0,), we have Ymn(z) = pmn(x0), therefore fi 20 omn(z) = fi20 @ma(zo). O
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4 Joint equidistribution of primitive partial lattices

4.1 The correspondence between primitive partial lattices and integral
group elements

The aim of this subsection is to naturally and injectively associate elements in the modular
group I' = SLq(R,) of integral points of G = SLq(K,) to primitive m-lattices in R,%. We
start by introducing the subsets of the group G' and of the moduli spaces 222, 4, Grn g,
Lau‘c#’n which will be technically useful.

We fix from now on a compact-open strict fundamental domain & for the action by
translations of R, on K, (for instance d = 7,0, when K = F,(Y') and v = vy), such that
for every x € 2, the (closed) ball B(x,q, ') = x + m,0, in K, is contained in 2. This
is possible since R, n 7,0, = {0} by Equation . We thus have a compact-open strict
fundamental domain

O = {(@ij)1<i<m,1<j<n € Hmn(Ky) :Vie[1L,m], Vje[ln], z;€ 2}

for the action by translations of the R, -lattice 4y n(R,) on the K, -vector space #mn(K,),
for instance [] = My u(m,0,) if K = Fy(Y) and v = vy. We also fix a closed-open strict
fundamental domain Gg for the action by translations on the right of the discrete subgroup
G"(Ry,) on G”, so that we have G" = G7{ G"(R,) with unique writing.

For every r € Z and for all measurable subsets U of .#, n(K,) and .# of G”, we define

Uy ={('s 2)eU™ e}, Ch-Gin7, (50)
1
ZT:{(A(I)mX(}“)EZ:V()‘):CmEnMT} and UE={(IS‘IZ)€U+:7€D}.

Note that Z = | |,., Z» by Equation . As defined just before Proposition let
Gt = {(g }) € G :v(deta) € lem{m,n} Z, Ba~le Mam(0))}

so that the product map (u=,¢", z,ut) — u™ ¢" zu* from U~ (0,) x G" x Z x U* to G*
is a homeomorphism, by Proposition For every closed subgroup H of G, let

H*=HnG". (51)

We also define the corresponding subset of the set 2% g of primitive m-lattices in K, d
by
PLE L =THR! x {0}) .

1

For every measurable subset & of Laty, ,,

in Equation , we define

with the map mmn : G” — Laty, , introduced

~

E=Tan(&) G, (52)

which is a measurable subset of G” invariant by the translations on the right by G”(R,).
For every measurable subset ® of Gr]ﬁ11 4> With orby, : Mam(O)) — Grlﬁ11 q the isometric
map defined in Subsection [3.1 we define

d = orb {(®) © Mam(0O)) (53)

which is a measurable subset of . #, m(0,).
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1

For every r € Z and for all measurable subsets ® of Gr% q and & of Laty, ,,, using the
notation of Equation with O = & and F = & , we finally define
Q=U(6,)Gy ZUY G and Qog, =Us G4 Z, U c Q. (54)

m i 1\2 T i 1\2
Lemma 4.1 With ¢j = (q — 1) g8~ mn g 2mn+2 Hi(:qu(jl{pl) ?:f(:;;q_”l);) , we have

dlem(m,n)r

pe(Qeer) =l g HGrpa(®) Hrag (&) -

Proof. By Proposition [2.5] we have

1 (Qa.er) = c1 p-(Ug) e (G%) po+(Ug) f Xm(2)| 4™ dpz(z) . (55)

2€7,

By Equations , and , and since ¢ Grﬁ1 4 We have
Hu- (U&:) = Haarn,m(‘f)) = Haarym(orby (@) = 1 HGirya (D) - (56)

By Equations and @, we have

pir+ (Uf)) = Haar o () = Covol(R"") = @~ mn (57)

__lem{m,n}

Note that z = ()‘é‘“ /f}n) belongs to Z, if and only if ym(z) = A=m, ™ . Since the
Haar measure uyz is normalized so that pz(Z(0,)) = 1, we have

_lem{m,n}
f z Pm(2)[ 4" dpz (2) = |m T[T = g ety (58)
2e7,

Note that GL; (A) for A = R, 0,, K, is stable by the Cartan involution g — § = ‘g1,
and that this map preserves the Haar measure BGLL(K,) (defined in Subsection of the
selfadjoint unimodular group GLL(K,). For every A € €%, let

s = ((8 1.2, ),In) € GLw(0,) x GL4(6,) .

Let ¢ : G" — GLL(K,) x GLL(K,) be the group morphism defined by (%2) — (9,9)-
Any element of GLL (K,) x GLL(K,) may be written as s/, () ¢(g”) for unique elements
A€ 0 and ¢" € G”. Hence we have a split exact sequence

1— G¢" % GLY(K,)) x GLYK,) — 0) — 1,
which induces two split exact sequences
1— G"(0,) % GLn(0,) x GLy(0,) — 0, — 1,

1— G"(R,) - GLy(R,) x GLy(R,) — R —> 1.
By the normalisation of the measures (see Equations , and ), the Haar measure
BaLl (k) @ Harl(k,) of GLL(K,) x GLL(K,) satisfies
d(pgr (i) ® Bari(x,) (SmMg") = (1= a,7") ducr(9”) dpg x (V) - (59)
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We endow from now on the product space (GLL (K, )/ GLn(R,)) x (GLL(K,)/GLy(R,))
with the product measure P atl Lt (see Subsection for the definition of the measures
firay for ke N~ {0}) and the quotient space G"/G"(R,

that the two canonical projections (that are covering maps)

with the measure pgr/gr(g,) S0

GL;(K,,) x GL#(KV) - (GLEI’I(KI/)/ GLn(Ry)) X (GLi(Ku)/GLn(RV))

and G — G"/G"(R,) locally preserve the measures. Using Equation for the first
equality below, and Equation for the second one, since we have Card R = ¢ — 1 by
Equation and again by Equation , we hence have
(1—gq,")?

I Hratl, = PLatl, @ Hpagl | = Tyl [ Har /G (Ry) I
Since the measures py 1 and pgr/cr(r,) on Labt%l,n = G"/G"(R,) are both G"-invariant
(see Equation for the first one), we thus have Hratl , = é e )1) par/Gr(R,)-  In
particular, we have

pGr(G%) = pgr (G n &) = g jan(r,) (&) = W Hrait, (&) - (60)

Lemma follows from Equation by plugging in the computations of Equations ,
, and , by defining the constant ¢} = ¢ % ¢~ Dmn and by expliciting
c1 using Proposition O

The following result gives a precise 1-to-1 correspondence between partial lattices in
PL ‘ﬁn q = *(R™ x {0}) and appropriate matrices in the discrete group I' = SLq(R,).

Proposition 4.2 The map g — Ay = g(R)" x {0}) from I' n Q to A% md 15 a bijection
such that for every nonzero ideal I of R, for every r € Z and for all measumble subsets
of Grmd and & of Latl . the following two assertions are equivalent

(1) the integral matriz g € T' 0 Q lies in Qg g, N Ty,

(2) the primitive m-lattice Ay € 2L ma satisfies that Ag € Ly a(I) (as defined in the
beginning of Subsection (2.4 W Vi, € ® (as defined in Subsectwn , [Agl € & (as
defined in Equation [9))) and Covol(Ay) = Covol((Ag)t) = g " r,

m,n’

Proof. Since Q < G*, if ge ' n Q, then g € T¥, thus A, = g(R,™ x {0}) € ‘@"%?n,d' Hence
the above map is well defined.

For all g = (g 3) € GFand pt = (C(“)/ g:) e Pt = G"ZU™* < GY, since the first column
of gpt is (gg;), since (Ba’)(aa’)~! = Ba~! and since v(det(aa’)) = v(det a) + v(det o),
we have gp* € G¥. In particular, the action by right translations on T' = SLgq(R,) of its
subgroup P*(R,) defined in Equation (1I)), which satisfies P*(R,) = G"(R,)U"(R,),
preserves I'f = T' n G%. By the identification given just after the statement of Lemma
we thus have

PLE =T PH(R,) . (61)
Let us prove that

G- ] . (62)

veP*(Ry)
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Since P(R,) c T, this will imply that T* = T' n G¥ = ]_[VePJr(RV)(F N Q). By Equation
, this will imply that the map g — Ay = g(R" x {0}) from I' n Q to c@fﬁl’d is a
bijection.

In order to prove Equation , let us fix g € Gf. By Proposition there exist unique
elements u= e U~ (0),), ¢" = (g) €G", ze Zand ut € UT such that g = u~ ¢" zut. By

the definition of the fundamental domain G7%, there exist a unique f” = (g ?) € G and a
unique 7" = (ZS) € G"(R,) such that

fA=9, fy=g and ¢ =jf"9". (63)

Since Z centralizes G”, we have ¢ = u™ f” 29" u". Since G” normalizes U™, and by

the definition of [J, there exist unique elements ui € U and 49 € UT(R,) such that
" ut (v")7 = uf 4. Defining v = 407" € PT(R,), we have

g=u" [ z("ut (")) = u [ zugy (64)

and u™ f” zuf € Q by the definition of  in Equation (54)). Since the writing h = ug~y of
an element h € PT(R,) = U (R,) G"(R,) with ul € UT(R,) and v € G"(R,) is unique,
this proves Equation .

Let us now assume that g € I' n 2. By the uniqueness of the writing in Equation ,
we may uniquely write g = u™ f” zuf with u™ e U™ (0)), f" € Gf, z € Z and uj € Ug.
By the definition of {24 ¢, in Equation , we have g € Qg ¢, if and only if u™ € U&:,
f"e Gg; and z € Z,.

We have u™ € U&: if and only if there exists § € ® with u~ = (Iﬁ“‘ 12 ), hence if and only
if there exists 8 € ® = orby, ~1(®) with orbg(8) = u™ (K™ x {0}) = Vi, by the definition
of orby, in Subsection therefore if and only if Vi, € ® by Proposition

By Equation and by the definition of 7y, in Equation , we have

§ = G med () = {(8y) € G (FRI TR < 6}

Hence by Equation and since f” € G/, we have f” € Gg; if and only if [A,] € &.
_ lem{m,n}

Ty m rIm 0 . .
lem {m,n} , hence if and only if
—_— T

We have z € Z, if and only if z =

T " I,

0
Covol(Ay) = ql,lcm{m’n}r by Proposition [2.8 and by Equation (28]). Note that we have
Covol((Ag)*+) = Covol(A,) by Proposition (ii)

The fact that g € I'y if and only if Ay € P2Z a(I) has been shown in Lemma (1).
This concludes the proof of Proposition [4.2 O

4.2 Counting in well-rounded families

A crucial tool of this paper is a counting result of lattice points by Gorodnik and Nevo
IGN]. In this subsection, after the necessary definitions, we recall from [HP1] an adaptation
of the Gorodnik-Nevo result, and we proceed to the construction of the well-rounded family
of subsets to which we will apply it.
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Let G’ be an absolutely connected and simply connected semi-simple algebraic group
over K, which is almost K,-simple. Let G’ = G/(K,) be the locally compact group of
K,-points of G’. Let I be a nonuniformﬂ lattice in G, and let ug be any (left) Haar
measure of G’. Note that G’ = G and I'' = I'; (defined in Subsection satisfy these
assumptions for every nonzero ideal I of R,.

Let p > 0. Let (#)e=0 be a fundamental system of neighborhoods of the identity in
G’, which

e is symmetric (that is, z € 7/ if and only if 271 € ¥/),

e is nondecreasing with e (that is, 7/ < 7 if e <€), and

e has upper local dimension p, that is, there exist mq, €1 > 0 such that pg/(¥/) = mq €?
for every € € ]0,¢€1] .

Let C' = 0. Let (Z,)nen be a family of measurable subsets of G’. We define

(Z) =2y = | 9% and (2) = () 9Zuh.
g:he?! g,he¥!

The family (Z5)nen is C-Lipschitz well-rounded with respect to (¥)e=o if there exists
€0 > 0 and np € N such that for all € € |0, ¢g[ and n = ng, we have

per((20)7) < (L+C€) per((20)7°) -

We refer to [HP1, Theo. 4.1] for a proof of the following adaptation of results of
Gorodnik-Nevo |GN].

Theorem 4.3 For every p > 0, there exists T(I') € 0, ﬁ] such that for every symmet-
ric nondecreasing fundamental system (¥.)e=o of neighborhoods of the identity in G’ with
upper local dimension p, for every C' = 0, for every family (25,)nen of measurable subsets
of G' that is C-Lipschitz well-rounded with respect to (¥!)e=0, and for every § > 0, we

have that, as n — +00,

Card(Z;, nT') — ] per (2,) =0 (MG'(fn)kT(FI)H) ’

||MG'/F'
where the function O(+) depends only on G',TV,6,C, (¥ )e=0, p- O

We will use, as a fundamental system of neighborhoods of the identity element in G,
a family of compact-open subgroups of G(&),) given by the kernels of the morphisms of

reduction modulo 7, N @, for appropriate N € N. For every € > 0, let N, = [ —log,, eJ SO
that N. > 1 if and only if € < q%. Let Ve = G(0),) if € > q% and otherwise let

¥ = ker(G(0,) — SLa(0, /1, 0,))
= {la+ 7N X: X eta(0,)} nG. (65)

The family (¥%¢)¢~o is indeed nondecreasing and we have (1) -, % = {id}. Note that for all
€1,...,€; > 0, we have

min{Ne,,- -, N, } = min{—log, €1, -+, —log, ex} —1

=
= _1quy(€1 +oeee+ Ek) -1= Nqu(e1+~~-+ek) )

2This implies that G’ is isotropic over K, as part of the assumptions of [GN].
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hence
41/617/62 e %k - /V(]V(61+"'+6k) : (66)

For every subgroup H of G, let ¥ = ¥, n H. The index of ¥ in G(0,) is given by
Lemma 2.6] with N = N..

We denote the operator norm of a linear operator ¢ of the normed K, -algebra .Z4(K,)
(for the supremum norm defined before Lemma by

1] = max { W;(()' X e Ma(K,) — {0}} e qZ U {0},

so that {(A#4(0,)) < Ma(m, 108 4] 0,) if £ is invertible. For every g € G, recall that Ad g
is the linear automorphism x — grg~' of .#q(K,). Also recall that P~ = U~G"Z

Lemma 4.4 For all € € |0, q%] and g € G, we have
979" = Naagle, Ve=7" 27 and ¥ =9V G
Furthermore, the number p = d? — 1 is an upper local dimension of the family (7¢)eso.
Proof. The first claim follows from the fact that
V= (Ig + 7 Negt4(0,)g7") n G
< (Ta+m" M a(0,)) 0 G = aag)

gveg”

Note that ¥ is contained in % (defined in Equation (15)). Indeed, if g = (g i) e
then a € Iy, + ety (0),), hence det(a) € 1 + 7)<0,, so that v(det @) = 0 € lem{m,n}Z
since N, > 1 and therefore g € .

By Proposition we may hence uniquely write any g = (g )eYeasg=u"g"zu
withu” e U™, ¢" € G", 2 € Z and u™ € UT. By Equation and since v(det o) = 0,
we have a € GLw(0,), vt e UX(0,), ¢" € G"(0,) and z = I4. Furthermore, since g € 7,
we have a = I, mod 7V, v = 0 mod m,Ve, B = 0 mod m,Ve and § = I, mod e
Therefore again by Equation (22), we have u™ € ”VGUi and ¢” € #&". This proves the
second and third claims.

In order to prove the last claim, let us apply Lemma with N = N, = [ — log,, eJ,
so that N, — 1 < —log,, €. Since ug(G(0,)) = 1, we hence have

+

_ ne(G(O))) a a1 a
MG(%) - [G(ﬁy) . %] - q Ng 1 d2 D H QV - QV 2 € H - QV
This proves the result. O

We will need the following effective version of the refined LU decomposition by blocks
given in Proposition We denote by ¢ : h — ¢ the continuous function from G to
[0, +0o[ defined by ¢;, = | Adh|| for every h € G.

Lemma 4.5 For all € € ]0, q%], ueU,¢9"€eG", zeZ andu™ e U™", if [xm(2)] = 1 and
g=u"g"zu", then
el U+ +
7/ g 7/ < u a// //ql,(c —gnTe, +)e g” a//q,,(cufgu+cu+)e z %u(cu,g,,-&-%lﬁ)eu :
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Proof. In order to simplify the notation, let p = u~¢” and u = u™, so that g = pzu. If

z = ( ’\6‘“ M(}“ ), as seen in Equation ((19) for the first equality, we have

Z(Im 0 )2:71 = (M)\If'lﬁ 1(1) and 271(181 }YH)Z = (I(T)“ /\7[1“7).

Since |A| = |xm(2)| = 1 and det z = 1 so that |u| = |A| "% <1, for every ¢ > 0, we have
2V eyl and VY ze VT (67)

Using for the following sequence of equalities and inclusions respectively

e the first claim of Lemma for the first inclusion,

e the second and third claims of Lemma [{.4] for the second equality,

e the claim on the left in Equation (67) and the fact that Z centralises G” for the
second inclusion,

e the fact that ¥, is a normal subgroup of G(&,) that contains ¥,V ”//Cf! for the
third inclusion,

e twice the claim on the right in Equation (67)) for the fourth inclusion,

e twice Equation with £ = 2 and k = 3, deﬁmng the constants ¢ = g, (cp + cu)
and ¢§ = g, (¢, + 2¢,) for the fifth inclusion,

e again the third claim of Lemma [1.4] for the sixth equality,

e the fact that G” normalizes U~ and again the first claim of Lemma for the last
inclusion,

we have

”f/eg”f/zpp_l”i/pzu”//u_lu C pVepe 2 Vet = p VL yUT Z”I/U v &y Uty

cpe Cpe cue 7 cye
P~ Ut U G" Ut P~ Ut U™ ~G" U
=p Ve Ve 2Vle 2 2V 0 Vede u pVL Vo Vol Vil 2 Ve,

P~ Ut Ut P~ oy P~ Ut U+ U+
Cp/'//cpe AI/CuE/'I/cpE an/cueu:pqi/cp 7 7 7 /'I/cueu

cu€ “cye Tcp

- - _ + _ + +
o A AR I ST S A A
+ + - +
cp”f/cf ”//cfe “//cge %:;Je ”f/cge ucp“l/{,} z”//g u
_ " 1 " +
—u gV V2V u= T g g ”7/6‘ 2V u

U~ " G’”
cu 7/ //eg 7/ %12/6 Uu

//C

as wanted. ]

Let @ be a closed ball of radius less than 1 in the metric space Gry g, contained in
Grfmd. By Lemma and with the notation of Equation (53), the set ® = orb () is
a closed ball of same radius in 4, n(0,). Let & be a closed ball in Lat%m, small enough
so that there exists a closed ball in the clopen fundameental domain G” which maps
isometrically to & by the locally isometric map mn, : G” — Latiw deﬁned in Equation
(@4). Let & = ﬂnj}n(@@) and let r € N. Using the notation Qg ¢, defined in Equation (54),
the family of Lipschitz well-rounded subsets with respect to (%¢).~o that we will use in
order to apply Theorem is given by the following result.

Proposition 4.6 With ® and & as above, the family (Q‘bv‘g’r)reN 1s 0-Lipschitz well-
rounded with respect to (¥¢)e=o-
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Proof. Recall that Qg s, = Ug G;g Zy Uﬁ with the notation at the beginning of
Subsection We will actually prove (as allowed by the ultrametric situation) the stronger
statement that given ® and & as above, if € is small enough, then for every r € N, we have

(U5 G 2. UR) ™ = Uy G4 2.Ugs = (U G 2, U5) ™
Let

¢ = max {qy max{cgr (cy-gr + Cyt ), Cygr +2¢y+ } 1 u” € Uz, g’ € ;’;, ut e U4}, (68)
which is finite since U(;, G’é and Uﬁ are compact subsets of G. Since ® is a ball of radius
less than 1 in Ay m(Ky), let vg € My m(K,) and k € N\ {0} be such that

P = vy + Wykﬂn,m(ﬁ,,) .

Let rg be the radius of the ball & (satisfying the assumptions of Proposition 4.6). By
Equation and since the map g — § is an isometry of GL,(K),), there exists (%0 0 )eG”
such that B

" ={(8y) € G": max{d(7.5p). d(g,9,)} <7e} - (69)

—max{k, 7.5 +logy,, (7ol 5o~

Let us now consider ¢y = %qy
so that for every € € |0, €g[ , we have

1 —1
)sre+logg, (7 -9, gy~ D} =2 -0,

1 _ 1 _
New > 1+ mase {k, e + Dog,, (— ol [50™'1). 7 + 108y, (—lg, | lg, ')} = 1. (70)

Let us prove that for every € € ]0, [, we have

Us v =Us, GLyE =G% and v U = UG (71)
For all u e Uy and o' € ¥Y, let B, € Mam(0,) be such that u = (, [, )
and v = (ﬂ_VNIan g 12)' Then since N, > k, we have uu’ = (vo ok BIIWUNCE P 1(1 ) € U&:.

Therefore we have U&:”//Cg - < Ux and the opposite inclusion is clear. This proves the

equality on the left-hand side of Formula .
The proof of the equality on the right-hand side is similar. For all u € Uﬁ and v’ € 7/CEU+,

let v € 0 and v/ € M n(0,) be such that u = (IS‘ IZ) and v = (151 Wv];“’Y'). Then since

Nee > 1 and since [ + 7, #mn(0,) = [J by the construction of the fundamental domain

2 at the beginning of Subsection H we have v/u = (Ién “f+7TIvN“7’) € UZ. Therefore we

n

have “//CLJ* Uﬁ c Uﬁ and the opposite inclusion is clear.
Let g = (%g) € G’é. For every ¢’ = (%/i) e 7S there exist o € M (0,) and
d € M, (0),) such that

g =In+m,) “a and iz[n+wVN655.

We have g9’ = (gogl gogi’> € G". Let us prove that d(gg’, gy) < re. A similar proof gives
that d(gg/, 9g,) < &, thus proving that G’é A GZE by Equation (69). The opposite

ce

inclusion being clear, this proves the middle equality of Formula .
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By the submultiplicativity of the supremum norm, since o € .#y(0,) so that |af < 1
by Lemma since g € B(gy,r¢) and by Equation , we have

_ — - — re
|, g gl el g0~ | < @™ 1gol 9o I < W
v

gagy | <q, N

We also have, by the ultrametric triangle inequality,
199G = Inll = | 9(Im + 7, ) Go ™" = Inl = 950" — In + 7,V GGy
<max{|gg, " — Inl, |7,V gag, I} -
Thus since g € B(gy,res) and In(1 + t) < ¢ for every ¢t = 0, we have

log,, (1 + 199 G0 — In|) < max{re,log,, (1 + . )} <re.

v
Since N = 1, the standard formula for the inverse of I, + X when | X | < 1 gives that there
exists o/ € #,(0,) such that E o m + mNeca/. A proof similar to the one above thus
gives that log, (1+[go(g¢' ) ' —In H) < rg, which proves as wanted that d(gg’, gy) < 7e-
This concludes the proof of Formula .
Now, for every r € N, we have by Lemma and by Equations and that

(U G% 2, UB)™ = ¥Us G% 2, U e
c Uz 7Y Gy 2,0 Ul = Us G2, U

Since the converse inclusion is immediate, we have (U(; GZS Zy U&')Jre = U‘g G’é Zy Uﬁ.
Since ¥, being a subgroup, is stable by g — ¢!, this implies that g Uf G’LZ Uﬁ h

contains U~ G” Z U for all g, h € ¥, so that (U~ G” Zy UD) ) U~ G” Z Uﬁ Since
the converse 1nclu510n is immediate, this concludes the proof of Proposmon Il

4.3 The main statement and its proof

Error terms in equidistribution results usually require smoothness properties on test func-
tions. The appropriate smoothness regularity of functions defined on ultrametric spaces
as Gryq and La‘cmn is the locally constant one. The locally constant regularity on such
homogeneous spaces of totally discontinuous groups could be defined (as for instance in
[AtGP], [KPS, §4.3]) by using the familly of small compact-open subgroups (%¢)cejo,1] of
G defined in Subsection and by defining an e-locally constant map on Latrlmn to be a
map which is constant on every orbit of ¥, n G” on Latiw. But it turns out to be more
convenient in this paper to use a general purely metric definition. For every ultrametric
space E and € € ]0,1], a bounded map f : E — R is e-locally constant if it is constant on
every closed ball of radius € in E. With || f|x = sup,eg |f(x)| the supremum norm of f,
the e-locally constant norm of f is ||f|e = %

The key result of this paper is the following one. Let ¢ = lcm(m,n). For every nonzero
ideal I of R, let ﬁ.ﬁfgndg) = F%(RV‘“ x {0}) (see Subsection for the definition of 'y

and Equation for the one of I’ﬁf) and
Cf = (72)
h@dsiomn) (g4 )2 T (g7 1) Ce(6) N(D™ [T,y [T, Ve e

(q - 1) %/2mu+2 H?Ll(q,} - 1)2 H?:Z(Qz/ - 1)
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Theorem 4.7 For every nonzero ideal I of Ry, for the weak-star convergence of Borel
measures on the locally compact space Grfnd X Lat#,n, we have

. Cr
T 2 Avy @A) = HGrmaiet  ®brart,, - (73)
Y Aeph ((1):Covol A=gf ’

Furthermore, there exists T € 10, 5uz] such that for all § € 10, 7[ and € € ]0,1], there is an
additive error term of the form O, 1 (qfdz(_ﬂré) Ifllelgle) in the above equidistribution
claim when evaluated on pairs (f,q) for all compactly supported e-locally constant maps

f:Gr&deR andg:Lat#mHR: as © — 400, we have

s N (V) g(IA])

q — .
v Ae?)ff?ﬂ a(I) : Covol A=g,f?

(], fnona)(] | 9diag,) + Ouss (0! e Lgll)

1
rm,d atm,n

Proof. Let A € @Zﬁld. Then there exists g € ' (thus g € %g) such that we have
A=Ay =g(R)x{0}),sothat if g = u~ ¢” zu™ is the decomposition given by Proposition

then u~ € U7 (0,). Hence by Proposition we have
Vi =Va, =Va,_ €GCrh g = U (6,)Vinx) -

Furthermore, we have [A] € Lat}mn by Equation , so that the statement of Theorem
[4.7 is well defined.

Let I be a nonzero ideal of R,. Let 7 = 7(I'y) € ]0, ﬁ] be as in Theorem applied
with G’ = G, with IV = T'; and with the family (¥/)e=0 = (% )e=0 given by Equation (65)),
which has an upper local dimension p = d? — 1 according to the final claim of Lemma

Let ¢ € ]0, 7[.
L
Let ® be a closed ball in Gry g of radius ro € 0,¢,™"], where ¢; < 1 is given by
Proposition . Besides, we assume that ® is contained in Grrlﬁ11 4- BY Lemma and with

the notation of Equation (53], it follows that d = orb 1(®) is a closed ball of radius re
in Aom(0,). Let xo be the characteristic function of ®, which is re-locally constant with
Ix®lre = i > 1. By Equation (56, we have

1 ~ 1
,uGrm’d(‘l)) = — Haarqn(®) = —rg' " <1,
C1 C1
so that, since 7 < ﬁ < ﬁ, we have
HGrna(®) T < G o (®) 7T = O xalrs) - (74)

Let & be a closed ball in Lat%l’n of radius r¢ € ]0, 1] small enough so that pi 1 (&) <1

and there exists a closed ball &) in G mapping isometrically to & by mmn : G — Latrlnm.
Let & = mua (&) = Llyeqr(r,) €07~ Let xs be the characteristic function of &, which is
rg-locally constant with || x|, = é > 1. By Equation and by the Alhfors regularity
of the homogeneous measure pgr of the group G” with dimension dim G” < m? 4+ n? < 2d?
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for the distance d defined in Section (see in particular Equation ), there exists a
constant ¢ > 0 such that

qy — 1 2 qv — 1 2 ~ : " 2
’uLatrln,n(éD) = (((111—1)6)12 MG”(G;) = ((qy 1);2 MG//(éoo) = CT‘/dlmG = C’I“2d N
so that, since T < 51y and Hragl (&) <1, we have
—746
prat, (€)= O xélre) - (75)

m,n

For every r € N, let us define
PLE (1,8,8,7) = {Ae L% (I): Ve ®, [A] e &, Covol A = ¢,f"}

Using respectively
e Proposition [A.9] for the first equality,

e Theorem applied to the family (2 = Qg £, )ren (Where the set Qg ¢, is defined
in Equation which is 0-Lipschitz well-rounded with respect to (%;).~o by Proposition
for the second equality,

e Lemma [4.1] for the third equality,

e Equations and for the last equality (and the fact that pay, 4 and PLath
are finite measures), ’
we have

Card 2L% 4(1,®,&,r) = Card(Qe.s, N 1)

1 —T
= uc(Qaosr)(1+0 (ue(Qas,) 7))
lpecr, |
‘ quZT r(—7 —T -7
e @ iy )1+ O (G377 (B (6)7)
lpar, | ’ ,
Cll qdfr
= = (Iu’Grm,d (q)) ILLLat%,‘ n(éa) + O (q
|, | :

SO | yaln el ) (76)

Let cr = H#G{FI | _ ] l,'“G/FH. With the value of [I' : T's] given by Lemma [2.3] (2), the

C C

1 1
value of |ugr| given by Equation with £ = d and the value of ¢] given in Lemma
we have

A [Ty T Mgy g @D I e

=1 g1
B " (g -2 (gi—1)2 ’
— 1) gle—1)mn ,2mn+2 [t (1) H'L—l(qu
(4=1g aw (4017 1T (- D2
as wanted in Equation . Note that every compactly supported e-locally constant map
on an ultrametric space is a finite linear combination of characteristic functions of balls of

radius €. By a finite bilinearity argument, Theorem follows from Equation . Il

cr =

Corollary 4.8 For every nonzero ideal I of R,, for the weak-star convergence of Borel

measures on the locally compact space Gry g % Shﬁ1 X Shi, we have

o 1y—2

T q,tdi

Ay, ® Agna) ® Agy(at)
AePLy a(I) : Covol A=g,ti

= [1Grpa ® Hgpl @ gt - (77)
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Furthermore, there exists T € 10, 5uz] such that for all § € 10, 7[ and € € ]0,1], there is an

additive error term of the form O, s 1 (qfdZ (=7+9) HfH | f1lloll f2]l0) in the above equidistri-

bution claim when evaluated on (f, f1, f2) for every compactly Supported e-locally constant
map f : Grma — R and for all finitely supported maps fi : Sh — R and fo: Sh1 — R :
as i — +00, we have

Cr (1 - QV_I)_Q 1
i > F(Va) fi(sh(A)) fa(sh(AL))

£ Ae %fm,d (I) : Covol A =gt

= (J deGrm,d f fi dMShl J f2 d:“Sh1>
Gryp,aq . " Shy "
+ Ousr (4 VT fle i lool fallo) -

Theorem in the Introduction follows from the first claim of this corollary by taking
I =R,

Proof. Step 1. We first prove the result with Gr]ﬁnd instead of Gry g and t@.f?nd(l)
instead of 2Ly a(1). 7 ’
Since the map ¢m n (defined in Equation ) is proper by Lemma the pushforward
map (@mun)s of Borel measures by ¢y » is linear and weak-star continuous. Hence applying
the map (id x¢mn)« to Equation , using Lemma on the left hand side of
Equation , and Lemma on the right hand side of Equation , we have

cr
A, g 2 Avy ® Auna) @ Aan(a)
Y Aeph (1) :Covol A=gfi

= (1 -q, ) :uGlFm,d|G,rti a ®'uSh.ln ®/’LSh|11 ’

It follows from Lemma and from the error term in Theorem applied with the

compactly supported po-locally constant function g = (f1 X f2) © ¢mn that we have an

additive error term of the form O, s s (qyéd o) Hf” | f1]leo f2lloo) in this equidistribution

claim when evaluated on (f, fi, f2) for every compactly supported e-locally constant map
f: Grfn a4 — R and for all finitely supported maps f : Sh1 — R and f5: Sh1 —-R.

Step 2. We now explaln how to deduce Corollary [1.§| from the equidistribution of
(Va,sh(A),sh(A1)) in Grf md X Shl x Shl when A varies in @Z «a(I) with the appropriate
covolume. The key technlcal lemma is the following one.

Let us denote by Wq the Weyl subgroup of GLq(K),) consisting in the permutation
matrices of the canonical basis of K,4. Note that Wy is contained in GLg(R,) n GLq(0,).

Lemma 4.9 For every g € GLq(K,), there exists o € Wq such that if og = (g }) with
a € Mu(K,), then a € GLn(K,) and Ba™t € Mym(0,).

Proof. For every g € .#4(K,), we denote by gy the submatrix of g consisting of its first
m columns. For all o € #,(K,) and j, k € [1,m], we denote by s g the submatrix of «
where the j-th row and k-th column have been removed. Recall that the (j, k) coefficient
of the comatrix Comm(a) of a is Comm(a);x = (—1)7+* det as 7.

Note that the statement of Lemma [£.9]is invariant by multiplication of the left of g
by an element of Wq. Since multiplying on the left ¢ by an element of Wq amounts to
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permuting the rows of g, up to such a multiplication, we may assume that the absolute
value of the upper-left m x m minor of g, (hence of g) is maximal over the absolute values
of all m x m minors of gy . Let us then prove that if g = ) with a € Ay (K),), then
a€ GLy(K,) and fa~t e Mum(0,), which proves Lemma by taking o = id.

Since g is invertible, the rank of its submatrix gy is m. Hence gy has at least one
nonzero m X m minor, so that | det a| # 0 by the above maximality property.

For all i € [1,n] and j € [1,m], let us prove that the (i, j)-coefficient (Ba™1);; of the
matrix Ba~! € Mym(K,) has absolute value at most 1, which proves Lemma 4.9, We
denote by A(i,j) € Mn(K,) the matrix o where its j-th row has been replaced by the
(¢ +m)-th row of gy. By the above maximality property and since det A(4, j) is an m x m
minor of gy, we have

|det A(4, )| < |det ] .
1

Since the i-th row of 3 is the (i + m)-th row of gy, since a™" = = 4 'Comm(a), and by

the Laplace expansion formula for the determinant of A(i, j) with respect to its j-th row,
we have

m
_ _ 1

(Ba™Nij = Y, Bikla iy = Tota Y. Givmk Comm()

k=1 k=1
1 , det A(3, §)
= —1 Jtk i detarr = ———— 277,
det v kgl( V7 giem de Yk det o
Therefore |(Ba™1);;| < 1, as wanted. O

The linear action of an element o of the Weyl group Wq on an element A € % 4
satisfies the following properties.
e Since o € GLq(R,), the m-lattice oA is primitive, and by Equation , we have

Covol(gA) = Covol(A) .

e We have V 5 = oV by the left hand side of Equation .

e Since 0 € GL4q(0,), and by the construction of the shape map sh in and above
Equation , we have sh(gA) = sh(A).

e Let RS™ be the standard full R,-lattice of the dual space of K,9, Wthh is invariant
under the dual action of o since § = ‘o~ € GLgq(R,). As seen in Equation (12)), we have
(oA)* = F(AL). Hence sh((oA)) = sh(A') since & € GLq(0,).

e By the GLq(0),)-invariance of the probability measure jiqr,, 4 (see Subsection ,
and since o € GLq(0,), we have OsllGryq = HGry.q-

e Since 0 € GLq(0),), the left action of o on Gry g is isometric for the distance d on
Gry,q constructed in Subsection

By Lemma 4.9 for every A € ,@.ﬁfmd\@fﬁ a with Covol(A) € ¢f”%, there exists

o € Wq such that O'A e P4 md and Vyp = oV € Grmd Furthermore, ¢ maps a small

ball centered at Vi contained in Gry g Gr md to a ball contained in Gr* md centered at
Vya of the same radius, by the last point above Hence the equ1dlstr1but10n with error
term as i — +00 of (Vi,sh(A),sh(At)) in Gryg x Shy x Shl when A varies in 2L a(I)
with Covol(A) = ¢f? follows from the equidistribution with error term as i — +oo of
(Va,sh(A),sh(A1)) in Grlﬁn?d x Shl x Shl when A varies in ‘@Z?n,d(l) with Covol(A) = ¢,*
]
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We conclude this paper with a proof of Corollary [T.1]in the introduction.
Proof that Theorem implies Corollary [1.1, For k = m,n, with Iy = GLi(Ry),

let us consider the map ¢ : D — D! defined in the Introduction from the discrete set
Shi = GLy(60,)\ GLL(K,) /T to the discrete set Tx\Vo-#, 1 = 'y \ GLL(K,)/ GLi(5,).
By Equation , this map satisfies

-1
Lebignl = Harl (k) (GLe(0))) B \Vos x = (1-gq, )ka\voyuyk :

Let ¢ : Grypg ¥ Shl x Shl — l:m\Vo,ﬂy,m X fn\Vofun be the continuous map defined by
(z,y,2) — (y~%, 271). Since Grp g is compact, this map ¢’ is proper, and the pushforward
map ¢}, of Borel measures by ¢’ is linear and weak-star continuous. With ¢ = lem(m,n),
the image by ¢/, of the left hand side of Equation is hence

/N

. C
Jm T 2 Ash(a)-1 @ Agn(at)-1 -
Y AePZLy.a : Covol(A)=q!?

Since ||pGr, 4/l = 1 by Equation , the image by ¢/, of the right hand side of Equation

C/l

is (1 —q,1)? HE A\ Vo T ® b v o Hence with ¢ = g T 28 given in Corollary
[I.1] Theorem [I.2] does imply Corollary [I.1] O

Remark. Proceeding as in the proof of Corollary for every nonzero ideal I of R,
we have the following version with error term and congruences of Corollary : There
exists 7 € |0, ﬁ] such that for all finitely supported maps fi : fm\Vof,jym — R and
fo: fn\Vofl,m — R and for every ¢ € ]0, 7[, we have

< 5 fu(sh(A)1) fa(sh(AL)D)

v AePZLm.a(I) : Covol A=gq,ti

- (Jfl dufm\%v@mﬂ) (JfQ dﬂf‘n\VOﬂu,n) + OV?‘;’I (ql’gdi(iﬂdré) HleoonQHoo) : (78)

A Dual and factor partial lattices

Let V be a K,-vector space with finite dimension D > 2 endowed with an ultrametric norm
| |- Let k€ [[1,D — 1] and let W be a k-dimensional K, -vector subspace of V', endowed
with the restriction norm. We endow the quotient (D — k)-dimensional K,-vector space
V /W with the quotient norm. We denote by 7 : V' — V /W the canonical projection. Then
the Haar measures py, pw and py sy on respectively V, W, V/W, normalized by these
choices of norms as explained in Subsection [2.2] satisfy the following Weil’s normalization
process (see [Weid, §9]). For allz € V/W and z € V such that 7(x) =T, let p-1(z) be the
measure on the K,-affine subspace 771 (Z) = +W such that the translation 7, : y — z+v,
which is a homeomorphism from W to 7~1(Z), satisfies (7;)spw = Pr—1(z) (this does not
depend on the choice of z in 771(Z)). Then Weil’s normalisation is asking that we have
the following disintegration property of the measure py over the measure py y by

iy = | iy di () (79)
zeV /W
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This formula implies that the normalizations of py and py uniquely determine the normal-
ization of py . In order to check that this normalization coincides with the one coming
from the quotient norm on V /W, we apply the above formula on By (0,1), noting that
m(Bv(0,1)) = Byw(0,1) and that, by the ultrametric property, for every z € By (0, 1),
we have —x + By (0,1) n (x + W) = By (0,1).

Let A be a k-lattice in V. Its dual lattice is the R,-submodule of the dual K,-vector
space Vy defined by
N ={{eVi:Vaxel, lz)eR,}.

Lemma A.1 The dual lattice A* is a full R,-lattice in V}*, we have (A*)* = A and
Covol(A*) Covol(A) = q%(g*l) ‘

Proof. Let (by,...,b;) be an Ry,-basis of A. Then (by,...,by) is a K,-basis in Vj, and
we denote by (b],...,b}) its dual basis in V. A linear form ¢ = Zle Aib} € Vi takes
integral values on all elements of A if and only if it takes integral values on by, ..., b, that
is, if and only if its coordinates Ay, ..., Ap are integral. Thus A* = Ei—)leRyb;“, which is a

k-lattice in the k-dimensional vector space V. Since the dual basis in (V)* = V) of the
K,-basis (b,...,b;) of V¥ is the K,-basis (b1, ...,bx) of Vi, we have (A*)* = A.

The duality pairing V x VA — K, defined by (¢,z) — £(x), which sends A* x A to R,
induces a K,-linear isomorphism V§ x Vy — K,%* that sends the full R,-lattice A* x A
to R,%* and the supremum product norm of the norm on Vi and of its dual norm on Vi
to the standard supremum norm on K, 2. Hence, using Equation @D for the last equality,
we have

Covol(A*) Covol(A) = Covol(A* x A) = Covol(R, %) = ¢?*=1) . O

Assume that V' is also endowed with an integral structure Vg,. Let A be a primitive
k-lattice in the integral K,-space V. The factor lattice of A is the R,-submodule A™ of
the quotient K,-vector space V /V) which is the image of Vi, by the canonical projection
m: V> V/Vj.

Lemma A.2 The factor lattice AT is a full R, -lattice in V /V. The canonical K, -linear
isomorphism V /Vy — (Vi5)* maps A™ to (AY)*. We have

Covol(A™) = Covol((A1)*) and  Covol(A™) Covol(A) = Covol(Vg,)

Proof. Since the k-lattice A is primitive, there exists an R,-basis (b1,...,bp) of Vg, such
that (by1,...,b) is an R,-basis of A, hence a K -basis of V. Then (7w (b; + 1),...,7(bp))
is a K -basis of V/Vj, and an R,-basis of A™ by definition. Hence A™ is a (D — k)-lattice
in the (D — k)-dimensional vector space V /Vj.

Identifying a K,-vector space W with its bidual (W*)* by the map x — (£ — £(x))
as usual, the map eV - (VAL)* defined by z +— Tyt induces a K, -linear isomorphism
Q" : V/Vy — (Vib)*. With (by,...,bp) as above, we have seen in the proof of Proposition
that (bj,,,...,b}) is an R,-basis of At hence a K,-basis of Vi1 = Vi'. As seen in
the proof of Lemma the dual K -basis (b}, ,*,...,05%) of (b}, 4,...,b}) is an R,-
basis of (A+)*. But (b, ,*,...,b5%) is exactly (0" (7(bg41)),...,0"(m(brs1))). Hence
O"(A™) = (A1)*.
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When V/V} is endowed with the quotient norm, and (Vi)* with the dual norm of
the restriction to Vi of the dual norm on V*, the above map ©” is an isometry. Hence
Covol(A™) = Covol((A+)*).

Let F' be a clopen strict fundamental domain for the action of R, on K,. The formula
Covol(Vg, ) = Covol(A) Covol(A™) follows by integrating Equation with W =V on
the strict fundamental domain F'by + --- + F bp of Vg,. O

Proof of Equation (13). Under its assumptions, we may assume that V = K,P and
Vg, = R, P and that the norm of V is the standard supremum norm of K ,P. We then have
Covol(Vg,) = ¢P@=1) by Equation @D Hence respectively by Lemma (recalling that
At is a (D — k)-lattice), by the first equality in Lemma and by the second equality
in Lemma [A22] we have

Covol(At) = g2P=RE=D Covol((A+)*) ! = 2P=RE=D Covol(A™) 7!
= PR Covol(A)g P = Covol(A) ¢P~2R)e=1)

as wanted. ]
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