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Abstract

Let ν be a place of a global function field K over a finite field, with associated
affine function ring Rν and completion Kν , and let 1 ď m ă d. The aim of this
paper is to prove an effective triple joint equidistribution result for primitive partial
Rν-lattices Λ of rank m in K d

ν as their covolume tends to infinity: of their Kν-linear
span VΛ in the rank-m Grassmannian space of K d

ν ; of their shape in the modular
quotient by PGLmpRνq of the Bruhat-Tits buildings of PGLmpKνq; and of the shape
of ΛK in the similar quotient for PGLd´mpKνq, where ΛK is the orthogonal partial
Rν-lattice of rank d´m in the dual space of K d

ν . The main tools are a new refined LU
decomposition by blocks of elements of SLdpKνq, techniques of Gorodnik and Nevo
for counting integral points in well-rounded families of subsets of algebraic groups,
and computations of volumes of various homogeneous spaces associated with partial
Rν-lattices. 1

1 Introduction

We fix throughout the paper three positive integers m, n, d such that d “ m ` n. A
primitive integral vector in Rd is an element of Zd with coprimes componants, so that
the cyclic group it generates is a free abelian factor of rank 1 of Zd. More generally, a
primitive m-lattice in Rd is a free abelian factor of rank m in Zd. The distribution problems
of primitive integral vectors and of primitive m-lattices have first been studied by Linnik
and Maass (see for instance [Lin] and [Maa]), and have given rise to a huge amount of works
using various tools, see for instance [Sch1, Sch2, Duk1, Duk2, Mar, ElMV, EiMSS, HK1].

Let us define the covolume CovolpΛq of a primitive m-lattice Λ in Rd as the Lebesgue
volume of the parallelepided generated by any Z-basis of Λ, and its shape shpΛq as its equiv-
alence class modulo rotations and homotheties (or its “similarity class” with the terminology
of [Sch2]), which belongs to the double coset space PShm “ PSOpmqzPGLmpRq{PGLmpZq.
Let us denote by VΛ the R-linear subspace of Rd generated by Λ, which belongs to the
Grassmannian space Grm,d of m-dimensional R-linear subspaces of Rd. Schmidt in [Sch3]
proved that the pairs pVΛ, shpΛqq equidistribute in Grm,d ˆPShm (towards the natural
product measure) as the covolumes of the primitive m-lattices Λ tend to infinity in aver-
age. Without average, stronger equidistribution results have been obtained when fixing
the covolume of the primitive m-lattices and letting it go to 8 (possibly requiring some
congruence properties), see for instance [AES1, AES2, EiRW] when m “ 1, [AEW] when

1Keywords: primitive lattice, equidistribution, positive characteristic, function fields, homogeneous
spaces. AMS codes: 11N45, 37A44, 20G30, 22F30, 14G17, 11H99, 28C10, 11G35
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m “ n “ 2, and [Ber]. Schmidt’s result in average was strengthen (with an effective
version) in [HK2], by adding in the third factor Grm,d ˆPShm ˆPShn the equidistribu-
tion of the shapes of the orthogonal n-lattices ΛK “ V K

Λ X ZD of the primitive m-lattices
Λ. Removing the average aspect and under appropriate congruence conditions, this triple
equidistribution result has been extended in [AMW].

In this paper, replacing Q by any global function field over a finite field Fq (not only
the field FqpY q of rational fractions, though already new and interesting), and Z by the
corresponding affine ring for any fixed choice of place at infinity (not only the polynomial
ring FqrY s), we give the first complete treatment of the triple equidistribution of primitive
partial lattices in positive characteristic. Our results are effective and allow versions with
congruences. Since this affine ring is no longer principal in general, we will need to adapt
our tools. Our result is not a result in average, we will also fix the covolume of the
primitive m-lattices and let it go to 8 (also requiring an appropriate congruence properties).
This is a major extension of the case d “ 2 considered in [HP1], since only a double
equidistribution makes sense in this dimension, and many moduli spaces constructions and
volumes computations where not available. We refer to [HP2] for the consequences of this
work purely in terms of equidistribution of rational points in the Grassmannian spaces
(and in particular to Frobenius numbers). Class number issues prevent the correspondence
between primitive partial lattices and rational points, that was satisfied in the real field
case, to take place. An analogous (though different) study of the distribution of the rational
points just in the Grassmannian spaces over some function fields had been considered in
[Thu].

More precisely, referring to [Gos, Ros] and Subsection 2.1 for definitions and com-
plements, we fix a global function field K of genus g over a finite field Fq of order q, a
(discrete normalized) valuation ν of K and a uniformizer πν of ν. We denote by ζK the
Dedekind zeta function of K, by Kν the associated completion of K, by Oν its valuation
ring, by qν the order of its residual field, by | ¨ | “ q

´νp ¨ q
ν its (normalized) absolute value,

and by Rν the affine function ring associated with ν (for instance, K “ FqpY q, g “ 0,
νpP {Qq “ degQ ´ degP for all P,Q P FqrY s, Oν “ FqrrY ´1ss, qν “ q and Rν “ FqrY s).

We endow K d
ν with the supremum norm, and any Kν-linear subspace of K d

ν with its
induced norm and with its associated normalized Haar measure (giving mass one to its
closed unit ball), see Subsection 2.2. A partial Rν-lattice Λ of rank m (or m-lattice for
short) in K d

ν is a discrete free Rν-submodule of rank m generating a m-dimensional Kν-
vector subspace VΛ of K d

ν . We denote by CovolpΛq the covolume of Λ in VΛ. We say that
Λ is primitive if it is a free direct factor of R d

ν . Among all the definitions of primitiveness
that were equivalent for partial Z-lattices in Rn and non longer are, this turns out to be
the appropriate one. We denote by PL m,d the set of primitive m-lattices in K d

ν .

Our first result is a joint equidistribution result in modular quotients of Bruhat-Tits
buildings. For k “ m, n, let Iν,k be the Bruhat-Tits building of the simple algebraic
group PGLk over the local field Kν (see for instance [BrT]). Its PGLkpKνq-homogeneous
set of vertices VIν,k is the (discrete) set of K ˆ

ν -homothety classes rLs of Oν-lattices L of
K k

ν . The unimodular group GL1
kpKνq “ tg P GLkpKνq : | det g| “ 1u acts projectively

on VIν,k with finitely many orbits. We denote by V0Iν,k the orbit by GL1
kpKνq of the

vertex rO k
ν s P VIν,k, identified with GL1

kpKνq{ GLkpOνq. The action of the modular group
rΓk “ GLkpRνq on VIν,k is proper (with finite stabilisers rΓk,x of every vertex x P VIν,k)
with (discrete) infinite quotient rΓkzVIν,k. See for instance [Ser2] [BrPP, §15.2] when k “ 2
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and [Sou] when g “ 0 for the structure of the quotient complex of groups (in the sense of
[BrH]) rΓkzzIν,k. The measure on rΓkzV0Iν,k induced by the counting measure on V0Iν,k

is the finite measure
µ
rΓkzV0Iν,k

“
ÿ

rxsPrΓkzV0Iν,k

1

Card rΓk,x

∆rxs

(see [BaL, §1.5] when n “ 2). We identify the quotient space rΓkzV0Iν,k with the double
coset space Sh1k “ GLkpOνq zGL1

kpKνq { rΓk by the map induced by g ÞÑ g´1 on double
cosets, that we also denote by D ÞÑ D´1.

Let Λ P PL m,d be such that there exists i P Z with CovolpΛq

Covol pR m
ν q “ q

lcmpm,nq i
ν and

g P GLdpOνq sending VΛ to K m
ν ˆ t0u (so that gΛ becomes a full Rν-lattice of K m

ν ). We
define (see Equation (27)) the shape of Λ as the class of the m-lattice Λ modulo scaling
and the maximal compact subgroup action, that is,

shpΛq “ GLmpOνqπ
´

lcmpm,nq

m
i

ν gΛ P Sh1m .

Contrarily to the real field case, the rescaling process is much harder when the absolute
value is discrete, hence the above restriction on the covolumes. We also define the orthog-
onal Rν-lattice ΛK of the primitive m-lattice Λ (which is a primitive n-lattice in the dual
space pK d

ν q˚ of K d
ν , see Subsection 2.3) by ΛK “ VΛ

K X R d,˚
ν , where VΛ

K is the sub-
space of pK d

ν q˚ consisting in the Kν-linear forms on K d
ν vanishing on VΛ and R d,˚

ν is the
standard Rν-lattice in pK d

ν q˚ generated by the dual basis of the canonical basis of K d
ν .

The following joint equidistribution result of the pairs of shapes of primitive m-lattices
and their orthogonal n-lattices as their covolume tends to infinity, in the product of the
quotients of the Bruhat-Tits buildings Iν,m and Iν,n by their modular groups rΓm and rΓn,
is a corollary of Theorem 1.2, see the end of Subsection 4.3 for its proof.

Corollary 1.1 With c1 “
q pg´1qpd2´d`1´mnq pq d

ν ´1q2
śd

i“2ppq i´1
ν ´1q ζKpiqq

pq´1q q 2mn´2
ν pqν´1q2

śm
i“1pq i

ν ´1q2
śn

i“1pq i
ν ´1q2

, for the weak-star

convergence on the (discrete) locally compact space rΓmzV0Iν,m ˆ rΓnzV0Iν,n, we have

lim
iÑ`8

c1

q
lcmpm,nqd i
ν

ÿ

ΛPPL m,d : CovolpΛq

CovolpR m
ν q

“q
lcmpm,nq i
ν

∆shpΛq´1 b ∆shpΛKq´1

“ µ
rΓmzV0Iν,m

b µ
rΓnzV0Iν,n

.

We refer to Equation (78) for error terms and for versions with congruences of this
corollary. The main result of this paper is the following triple joint equidistribution theo-
rem. We endow the unimodular group GL1

mpKνq with its Haar measure giving mass 1 to
its maximal compact subgroup GLmpOνq and the (discrete, infinite) double quotient Sh1m
with its induced measure µSh1m

, which is finite (see Subsection 3.4). We denote by Grm,d

the compact Grassmannian space of m-dimensional Kν-linear subspaces of K d
ν , and by

µGrm,d
its GLdpOνq-invariant probability measure.
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Theorem 1.2 With c2 “
q pg´1qpd2´d`1´mnq pq d

ν ´1q2
śd

i“2ppq i´1
ν ´1q ζKpiqq

pq´1q q 2mn
ν

śm
i“1pq i

ν ´1q2
śn

i“1pq i
ν ´1q2

, for the weak-star

convergence of Borel measures on the locally compact space Grm,d ˆSh1m ˆSh1n, we have

lim
iÑ`8

c2

q
lcmtm,nud i
ν

ÿ

ΛPPL m,d : CovolpΛq

CovolpR m
ν q

“q
lcmtm,nu i
ν

∆VΛ
b ∆shpΛq b ∆shpΛKq

“ µGrm,d
b µSh1m

b µSh1n
. (1)

We refer to Corollary 4.8 for error terms and for versions with congruences of this
theorem. We will actually prove in Theorem 4.7 a much stronger (albeit more technical)
equidistribution result. We will define in Subsection 3.3 a (non discrete) moduli space
Lat1m,n of pairs pL,L1q P GL1

mpKνq{GLmpRνq ˆ GL1
npKνq{GLnpRνq of unimodular m- and

n-lattices with an appropriate correlation on the determinant of any of their Rν-basis.
Using a refined LU decomposition of elements of SLdpKνq introduced in Subsection 2.5,
we will associate such a pair JΛK P Lat1m,n to any primitive m-lattice Λ, under a restriction
that the linear subspace VΛ of the primitive m-lattices Λ belongs to the unit ball Gr7

m,d of
the lower maximal Bruhat cell of the Grassmannian space Grm,d (see Subsection 3.1 for
more details). We will then prove in Theorem 4.7 the equidistribution of the pairs pVΛ, JΛKq

in Gr7

m,d ˆLat1m,n for the primitive m-lattices Λ whose covolume is fixed (satisfying some
congruence property) and tends to `8. Theorem 1.2 will follow by a tricky consideration
of compound matrices.

We refer to Subsection 2.4 for the description of the appropriate congruence subgroup of
SLdpKνq that we will use for the version with congruences of our theorems. A major part of
the paper consists of a fine study of the homogeneous measures on the various homogeneous
spaces Grm,d (see Subsection 3.1), Lat1m,n (see Subsections 3.2 and 3.3), and on the double
coset spaces Sh1k for k “ m, n (see Subsection 3.4), besides the precise disintegration of the
Haar measure of SLdpKνq by the refined LU decomposition in Subsection 2.5. A key tool of
this paper is the counting result in well-rounded sets of integral points of algebraic groups
over K by Gorodnik and Nevo [GN]. A long study is necessary in order to introduce the
appropriate well-rounded sets, to prove that they are indeed well-rounded, and to compute
their measures: see Subsection 4.1 which gives a precise relationship between primitive
m-lattices in K d

ν and integral matrices in SLdpRνq, and Subsection 4.2.

Acknowledgements: The first author thanks the Laboratoire de mathématique d’Orsay for visiting
financial support, and the second author thanks the ETH for visiting financial support.

2 Background definitions and notation

2.1 On global function fields

We refer for instance to [Gos, Ros] and [BrPP, Chap. 14] for the content of this Section.
Let Fq be a finite field of order q, where q is a positive power of a positive prime. Let K

be a (global) function field over Fq, that is, the function field of a geometrically connected
smooth projective curve C over Fq, or equivalently an extension of Fq of transcendence
degree 1, in which Fq is algebraically closed. We denote by g the genus of the curve C.

There is a bijection between the set of closed points of C and the set of (normalized
discrete) valuations ν of its function field K, where the valuation of a given element f P K
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is the order of the zero or the opposite of the order of the pole of f at the given closed
point. We fix such a valuation ν from now on.

We denote by Kν the completion of K for the valuation ν, and by

Oν “ tx P Kν : νpxq ě 0u

the valuation ring of (the unique extension to Kν) of ν. Let us fix a uniformiser πν P K of
ν, that is, an element in K with νpπνq “ 1. We denote by qν the order of the residual field
Oν{πνOν of ν, which is a (possibly proper) power of q. We normalize the absolute value
associated with ν as usual: for every x P Kν , we have the equality

|x | “ q ´νpxq
ν .

Finally, let Rν denote the affine algebra of the affine curve C ´ tνu, consisting of the
elements of K whose only poles (if any) are at the closed point ν of C. It is a Dedeking
ring and its field of fractions is equal to K. Note that (see for instance [BrPP, Eq. (14.2)
and (14.3)]

Rν X Oν “ Fq and R ˆ
ν “ Fˆ

q Ă O ˆ
ν . (2)

The Dedekind zeta function of K is (see for instance [Ros, §5]) defined if Re s ą 1 by

ζKpsq “
ÿ

I

1

NpIqs
,

where the summation is over the nonzero ideals I of Rν , with norm NpIq “ rRν : Is.
By [Ros, Theo. 5.9]), it is a rational function of q´s and has an analytic continuation on
C∖t0, 1u with simple poles at s “ 0, s “ 1. Furthermore, it has positive values at s “ ´i
for all i P N∖t0u, since by the functional equation of ζK (see loc. cit.), we have

ζKp´iq “ qpg´1qp1`2 iqζKp1 ` iq ą 0 . (3)

The simplest example corresponds to C “ P1 (so that g “ 0) and ν “ ν8 the valuation
associated with the point at infinity r1 : 0s. Then

‚ K “ FqpY q is the field of rational functions in one variable Y over Fq,
‚ ν8 is the valuation defined, for all P,Q P FqrY s, by

ν8pP {Qq “ degQ ´ degP .

‚ Rν8 “ FqrY s is the (principal) ring of polynomials in one variable Y over Fq,
‚ Kν8 “ FqppY ´1qq is the field of formal Laurent series in one variable Y ´1 over Fq,
‚ Oν8 “ FqrrY ´1ss is the ring of formal power series in one variable Y ´1 over Fq,

πν8 “ Y ´1 is the usual choice of a uniformizer, and qν8 “ q.

2.2 Partial lattices

Let V be a Kν-vector space with finite dimension D ě 1 endowed with an ultrametric norm
} }, and let k P J1, DK. We denote by BV p0, 1q the closed unit ball of V . We endow V with
the unique Haar measure µV of the abelian locally compact topological group pV,`q such
that µV pBV p0, 1qq “ 1. This measure scales as follows under linear maps: for all x P V
and g P GLpV q, we have

dµV pgxq “ |det g| dµV pxq . (4)
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When V “ K d
ν with its canonical basis pe1, . . . , edq, we will take the supremum norm

}λ1e1 ` ¨ ¨ ¨ ` λded} “ max
1ďiďd

|λi|. The Haar measure of K d
ν is then normalized so that

µK d
ν

pO d
ν q “ 1. On the dual Kν-vector space V ˚, we will consider the dual norm. When

V “ K d
ν , the dual norm on V ˚ is then the supremum norm with respect to the dual basis

pe˚
1 , . . . , e

˚
dq of pe1, . . . , edq.

Recall that for every g P GLpV q, its (left) action qg : ℓ ÞÑ ℓ ˝ g´1 on the dual space V ˚

satisfies, for every Kν-basis B of V with dual Kν-basis B˚ of V ˚, that

MatB˚pqgq “ tMatBpgq ´1 . (5)

For every Kν-vector subspace W of V , its orthogonal space is the Kν-vector subspace WK

of the dual Kν-vector space V ˚ defined by

WK “ tℓ P V ˚ : @x P W, ℓpxq “ 0u .

It is well-known that dimpWKq “ D ´ dimpW q, that pWKqK “ W and that for every
g P GLpV q, we have pgW qK “ qg pWKq.

A partial Rν-lattice Λ of rank k in V , or k-lattice for short, is a discrete free Rν-sub-
module of rank k generating a k-dimensional Kν-vector subspace VΛ of V . When k “ D,
we say that Λ is full Rν-lattice. We endow VΛ with the restriction of the norm of V ,
hence with its unique Haar measure µVΛ

such that µVΛ
pBV p0, 1q X VΛq “ 1. We define the

covolume CovolpΛq of Λ as the total mass of the induced measure (again denoted by µVΛ
)

on the quotient space VΛ{Λ, that is,

CovolpΛq “ µVΛ
pVΛ{Λq . (6)

The set LatkpV q of k-lattices in V is invariant under the linear action of the linear group
GLpV q. This action of GLpV q on LatkpV q is transitive, by taking an Rν-basis in two k-
lattices, by completing them to two Kν-basis B and B1 of V , and by taking the Kν-linear
map sending B to B1. For all g P GLpV q and Λ P LatkpV q, we have

VgΛ “ gVΛ and CovolpgΛq “
dg˚µVΛ

dµVgΛ

CovolpΛq . (7)

In particular, for every λ P Kν , we have CovolpλΛq “ |λ|k CovolpΛq and if k “ D, then

CovolpgΛq “ | det g| CovolpΛq . (8)

An integral structure (or Rν-structure) on V is the choice of a full Rν-lattice in V .
Alternatively, it is the choice of an equivalence class of Kν-basis of V , where two Kν-
bases are equivalent if their transition matrix belongs to GLDpRνq. These two definitions
agree by identifying the equivalence class of a Kν-basis pb1, . . . , bDq with the Rν-lattice
Rν b1 ` ¨ ¨ ¨ ` Rν bD it generates. An integral Kν-space is a finite dimensional Kν-vector
space W endowed with an integral structure, denoted by WRν . We denote by GLpWRν q the
subgroup of GLpW q preserving the integral structure WRν of W . The dual Kν-vector space
W ˚ will be endowed with the dual integral structure (see the appendix A for developments),
denoted by W ˚

Rν
and defined by

W ˚
Rν

“ tℓ P W ˚ : @ x P WRν , ℓpxq P Rνu .
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Equivalently, W ˚
Rν

is the integral structure on W ˚ whose equivalence class of Rν-bases
is the set of the dual Kν-bases of the elements in the equivalence class of the Rν-bases
for WRν . This is well defined by Equation (5) since GLdpRνq is stable by inversion and
transposition. Note that W ˚˚

Rν
= WRν .

For instance, we will endow the product Kν-vector space K d
ν with its integral structure

R d
ν (or equivalently with the equivalence class of its canonical basis pe1, . . . , edq). By for

instance [BrPP, Lem. 14.4)], we have

CovolpR d
ν q “ pCovolpRνqqd “ qpg´1qd . (9)

We will endow the dual Kν-vector space pK d
ν q˚ with the equivalence class of the dual

basis pe˚
1 , . . . , e

˚
dq of pe1, . . . , edq (or with the full Rν-lattice Rν e

˚
1 ` ¨ ¨ ¨ `Rν e

˚
d). For every

k-lattice Λ in V , the pair pVΛ,Λq is an integral Kν-space with pVΛqRν “ Λ.

Since the standard Rν-lattice R d
ν in K d

ν does not have covolume 1 (contrarily to the
case of the real field), we define the normalized covolume of an Rν-lattice Λ in V by

CovolpΛq “
CovolpΛq

CovolpR d
ν q

.

Let V be an integral Kν-space with finite dimension D, and k P J1, DK. A k-lattice in
V is

‚ unimodular if its normalized covolume CovolpΛq is equal to 1;
‚ rational if it is contained in the K-vector space VK “ VRν b K generated by the

integral structure VRν of V ;
‚ integral if it is contained in VRν ;
‚ primitive if it is integral and satisfies one of the following equivalent properties:

(1) the Rν-module Λ is a free direct factor of VRν (or equivalently, there exists an Rν-basis
pb1 . . . , bDq of VRν such that pb1 . . . , bkq is an Rν-basis of Λ),

(2) the Rν-module VRν {Λ is a free Rν-module of rank D ´ k.
Note that this definition is appropriate in the setting where Rν is not necessarily princi-

pal, and that definitions that were equivalent in the case of pR,Q,Zq instead of pKν ,K,Rνq

no longer are. For instance, if Λ is a primitive k-lattice, then VΛ determines Λ, with

Λ “ VΛ X VRν .

But this equality is no longer sufficient for an integral k-lattice Λ to be primitive.
Note that an integral k-lattice is a rational k-lattice. By taking an Rν-basis in two

rational k-lattices, by completing them to two K-bases B and B1 of VK , and by taking
the K-linear map sending B to B1, we see that the linear group GLpVKq acts transitively
on the set of rational k-lattices in V .

Let Lat1pV q be the space of unimodular full Rν-lattices in V . The closed unimodular
subgroup

GL1pV q “ tg P GLpV q : | det g | “ 1u (10)

acts transitively on the set of (partial) k-lattices if k ă D. It also acts transitively
on Lat1pV q (the determinant of every element g P GLpV q mapping a unimodular full
Rν-lattice to another one has absolute value 1 by Equation (8)). Note that the dis-
crete group GLpVRν q is contained in GL1pV q, and is exactly the stabilizer in GL1pV q
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of the full Rν-lattice VRν . We hence identify from now on the set GL1pV q{GLpVRν q with
Lat1pV q by the map gGLpVRν q ÞÑ gVRν . In particular, we identify Lat1D “ Lat1pK D

ν q

with GL1
DpKνq{GLDpRνq (by taking the matrix of a linear automorphism of K D

ν in the
canonical basis of K D

ν ).
Let PL kpV q be the set of primitive k-lattices in V , and PL m,d “ PL mpK d

ν q. This
set can be described as a (discrete) homogeneous space as follows. For every commutative
ring A and for all k, k1 P N ∖ t0u, we denote by Mk,k1pAq (and by MkpAq when k “ k1)
the A-module of k ˆ k1 matrices with coefficients in A. Let

P`pRνq “

!

` α γ
0 δ

˘

: α P GLmpRνq, δ P GLnpRνq, γ P Mm,npRνq, detpαqdetpδq “ 1
)

.

(11)

Lemma 2.1 The group Γ “ SLdpRνq acts transitively on PL m,d.

The validity of this lemma is one of the main reasons for our definition of primitive m-
lattices, and could be no longer true with other definitions. Since the stabilizer in SLdpRνq

of the first coordinates primitive m-lattice R m
ν ˆ t0u is equal to P`pRνq, we will from now

on, as we may, identify the quotient Γ{P`pRνq and PL m,d by the map

gP`pRνq ÞÑ Λg “ gpR m
ν ˆ t0uq .

Proof. Let Λ P PL m,d. By the definition of a primitive m-lattice in K d
ν , there exists an

Rν-basis pb1, . . . , bdq of R d
ν such that pb1, . . . , bmq is an Rν-basis of Λ. Let g be the transition

matrix from the canonical basis of R d
ν to pb1, . . . , bdq. Note that a priori g P GLdpRνq,

but since det g P R ˆ
ν , up to replacing bd by λ bd for some λ P R ˆ

ν , which does not change
Λg since m ă d, we may assume that g P SLdpRνq. Then Λg “ Λ, and the map g ÞÑ Λg is
indeed onto. l

2.3 Orthogonal primitive partial lattices

Let V be an integral Kν-space with finite dimension D, and let k P J1, D ´ 1K. Let Λ be a
primitive k-lattice in V .

The orthogonal pD´kq-lattice of Λ is the Rν-submodule of the dual integral Kν-vector
space V ˚ defined by

ΛK “ VΛ
K X V ˚

Rν
.

For instance, if V is K d
ν with its canonical basis pe1, . . . , edq (defining its integral structure)

and its dual basis pe˚
1 , . . . , e

˚
dq, if Λ “ ‘1ďiďmRνei, that we have already denoted by

R m
ν ˆ t0u, then ΛK “ ‘m`1ďiďdRνe

˚
i , that we will also denote by t0u ˆ R n

ν .

Proposition 2.2 The Rν-submodule ΛK of V ˚ is a primitive pD ´ kq-lattice in V ˚. For
every g P GLpVRν q, we have

VΛK “ pVΛqK, Λ “ pΛKqK and pgΛqK “ qgΛK . (12)

Furthermore, if we endow V with the supremum norm associated with any Rν-basis of VRν

and V ˚ with its dual norm, then Λ and ΛK have the same normalized covolume:

CovolpΛKq “
CovolpΛKq

CovolpR D´k
ν q

“
CovolpΛq

CovolpR k
ν q

“ CovolpΛq . (13)
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Proof. Since the k-lattice Λ is primitive, there exists an Rν-basis pb1, . . . , bDq of VRν

such that pb1, . . . , bkq is an Rν-basis of Λ. The dual Kν-basis pb˚
1 , . . . , b

˚
Dq of pb1, . . . , bDq

is also an Rν-basis of the integral structure V ˚
Rν

of V ˚. We have VΛ “ ‘1ďiďkKνbi, hence
VΛ

K “ ‘k`1ďiďDKνb
˚
i . Therefore ΛK “ VΛ

K X V ˚
Rν

“ ‘k`1ďiďDRνb
˚
i is an integral and

primitive pD ´ kq-lattice in V ˚. Moreover, we have VΛK “ ‘k`1ďiďDKνb
˚
i “ VΛ

K, and
pΛKqK “ ‘1ďiďkRνbi “ Λ.

For every g P GLpV q, we have

pgΛqK “ pVgΛqK X V ˚
Rν

“ pgVΛqK X V ˚
Rν

“ qg pVΛqK X V ˚
Rν

.

In particular, if g P GLpVRν q, then qg P GLpV ˚
Rν

q and we do have pgΛqK “ qgΛK.
For a proof of Equation (13), we refer to the end of the appendix A. l

2.4 Congruence properties on primitive partial lattices

In this subsection, we fix a nonzero ideal I of the Dedekind ring Rν , and we define a class
of primitive partial lattices in K d

ν that have specific congruence properties modulo the
ideal I.

A primitive partial lattice Λ in K d
ν is said to be horizontal modulo I if Λ Ă R m

ν ˆ In,
as for instance R m

ν ˆ t0u. We will denote by PL m,dpIq the set of primitive partial lattices
in K d

ν that are horizontal modulo I. If I “ Rν , then PL m,dpIq “ PL m,d.
Let Γ “ SLdpRνq. We consider the following Hecke congruence subgroup by blocks :

ΓI “ t
` α γ
β δ

˘

P Γ : β P Mn,mpIqu .

Note that ΓRν “ Γ and P`pRνq Ă ΓI where P`pRνq is defined in Equation (11).
The first assertion of the following lemma is a congruence version of Lemma 2.1, and

implies that the map gP`pRνq ÞÑ Λg “ gpR m
ν ˆ t0uq for g P ΓI identifies ΓI{P`pRνq with

PL m,dpIq. The second one is exactly [BrPP, Lem. 16.5] when d “ 2 and m “ 1.

Lemma 2.3 (1) The group ΓI acts transitively on PL m,dpIq. Furthermore, for every
g P Γ, we have Λg “ gpR m

ν ˆ t0uq P PL m,dpIq if and only if g P ΓI .
(2) We have

rΓ : ΓIs “ NpIqmn
ź

p |I

m
ź

i“1

Nppqi ´ Nppq´n

Nppqi ´ 1
,

where the first product ranges over the prime factors p of the ideal I.

Proof. (1) Let g “
` α γ
β δ

˘

P Γ with β an n ˆ m matrix, so that

Λg “ gpR m
ν ˆ t0uq “ tpαx, βxq : x P R m

ν u .

Then Λg P PL m,dpIq if and only if βx P In for every x P R m
ν , which occurs if and only if

β P Mn,mpIq, that is, when g P ΓI .

(2) We denote by |E| the cardinality of a finite set E. For every commutative ring A
with finite group of invertible elements Aˆ and for every ℓ P N∖ t0u, it is well known that
rGLℓpAq : SLℓpAqs “ |Aˆ| and that if A is a finite field, then

|GLℓpAq| “ |A|
ℓpℓ´1q

2

ℓ
ź

i“1

p|A|i ´ 1q .

9



The group morphism of reduction modulo I from SLmpRνq to SLmpRν{Iq is onto, by
an argument of further reduction to the various prime power factors of I and of lifting
elementary matrices. The order of the upper triangular subgroup by blocks

Tm,dpIq “ t
` α γ
0 δ

˘

P SLdpRν{Iq : α P MmpRν{Iqu

of SLdpRν{Iq is |pRν{Iqˆ|´1|GLmpRν{Iq| |GLnpRν{Iq| |Rν{I|mn. Hence

rΓ : ΓIs “
| SLdpRν{Iq|

|Tm,dpIq|
“

|GLdpRν{Iq|

|GLmpRν{Iq| |GLnpRν{Iq| |Rν{I|mn
. (14)

By the multiplicativity of the norm and by the Chinese remainder theorem, the result
reduces to the case when I “ pk is the k-th power of a fixed prime ideal p, where k P N.
Let N “ Nppq so that NpIq “ |Rν{I| “ Nk, and note that Rν{p is a field of order N . For
every ℓ P N∖ t0u, the kernel of the morphism of reduction modulo p from GLℓpRν{pkq to
GLℓpRν{pq has order N ℓ2pk´1q. Hence

|GLℓpRν{Iq| “ N ℓ2pk´1q`
ℓpℓ´1q

2

ℓ
ź

i“1

pN i ´ 1q .

Therefore, by Equation (14), we have after simplifications

rΓ : ΓIs “ Nmnpk´1q

m
ź

i“1

N i`n ´ 1

N i ´ 1
“ NpIqmn

m
ź

i“1

Nppqi ´ Nppq´n

Nppqi ´ 1
.

This proves the result. l

2.5 Refined LU decomposition by blocks

Let G “ SLdpKνq, which is a unimodular totally disconnected locally compact topological
group. In this subsection, we define some closed subgroups of G and we study their Haar
measures. We will denote an element g P G by blocks as g “

` α γ
β δ

˘

with α an m ˆ m
matrix. For every k P N∖ t0u, let Ik be the identity k ˆ k matrix.

We will consider throughout this paper the following subgroups of G. Let

U´ “
␣`

Im 0
β In

˘

: β P Mn,mpKνq
(

and U` “
␣`

Im γ
0 In

˘

: γ P Mm,npKνq
(

be the lower and upper unipotent triangular subgroups by blocks of the matrix group G.
For every k P N ∖ t0u, we define GL1

kpKνq “ tg P GLkpKνq : | det g| “ 1u, which is a split
extension of its normal closed subgroup SLkpKνq by the compact group t

`

a 0
0 Ik´1

˘

: a P

O ˆ
ν u. Let

G2 “
␣`

α 0
0 δ

˘

: α P GL1
mpKνq, δ P GL1

npKνq, detα det δ “ 1
(

be the intersection with G of the product group GL1
mpKνqˆGL1

npKνq diagonally embedded
by blocks in GLdpKνq. Note that U´, G2, U` are closed unimodular subgroups of G, and
that G2 normalizes U´ and U`. Let

Z “
␣` π r

ν Im 0
0 π s

ν In

˘

: r, s P Z, mr ` ns “ 0
(

,
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which is a discrete abelian subgroup of G that centralises G2 (actually G2 is the centralizer
of Z in G), and normalizes U´ and U`.

Let Z 1 “

!

ˆ

π i
ν 0 0
0 Id´2 0

0 0 π ´i
ν

˙

: 0 ď i ď lcmtm, nu ´ 1
)

which is a finite subset of order

lcmtm, nu of G (not a subgroup). Let

UG “
␣ ` α γ

β δ

˘

P G : νpdetpαqq P lcmtm, nu Z
(

(15)

and U 0
G “

␣ ` α γ
β δ

˘

P G : detpαq “ 0
(

, which are disjoint closed subsets of G (not
subgroups), with UG open in G, such that

G “ U 0
G \

ğ

z1PZ1

z1 UG “ U 0
G \

ğ

z1PZ1

UG z1

is a finite disjoint union of U 0
G and finitely many left (or right) translates of UG. Let S ˘

d

be the subgroup of G consisting in the elements of G that act by a permutation and a
possible change of sign on the elements of the canonical basis of K d

ν (in order for their
determinant to be 1). Multiplying on the left an element g P G by an element in S ˘

d

amounts to permuting the rows of g by the inverse of the associated permutation and
possibly changing their sign. Since the rank of the submatrix of any invertible matrix
consisting of the first m columns is m, we have U 0

G Ă S ˘
d pG∖ U 0

Gq.
For every closed subgroup H of G, we denote by HpOνq the compact-open subgroup

H X GLmpOνq of H, and by µH the left Haar measure of H normalized so that

µHpHpOνqq “ 1 . (16)

In particular, GpOνq “ SLdpOνq and µGpGpOνqq “ 1. Note that GL1
dpOνq “ GLdpOνq

by Lemma 2.7 and similarly GL1
dpRνq “ GLdpRνq. For all k, k1 P N ∖ t0u, we endow the

locally compact additive group Mk,k1pKνq with its Haar measure Haark,k1 normalized so
that

Haark,k1pMk,k1pOνqq “ 1 .

The group GLkpKνq ˆ GLk1pKνq acts linearly on the Kν-vector space Mk,k1pKνq by the
action ϕpg, hq : x ÞÑ gxh´1 for all x P Mk,k1pKνq and pg, hq P GLkpKνq ˆ GLk1pKνq. The
following claim is well-known.

Lemma 2.4 This action scales the Haar measure Haark,k1 as follows:

@ pg, hq P GLkpKνq ˆ GLk1pKνq, ϕpg, hq˚ Haark,k1 “ |det g |k
1

| deth |´k Haark,k1 . (17)

Proof. For every pg, hq P GLkpKνq ˆ GLk1pKνq, we have ϕpg, hq “ ϕpg, idq ˝ ϕpid, hq, and
ϕpg, idq acts on x P Mk,k1pKνq by the diagonal linear action of g on the k1 columns of x,
and ϕpid, hq acts on x P Mk,k1pKνq by the transpose of the diagonal linear action by the
transpose-inverse of h on the k columns of tx, since tpxh´1q “ th´1 tx. The result hence
follows from Equation (4) and a diagonal by block computation of determinants. l

The maps u´ : Mn,mpKνq Ñ U´ and u` : Mm,npKνq Ñ U` defined respectively by
β ÞÑ

`

Im 0
β In

˘

and γ ÞÑ
`

Im γ
0 In

˘

are topological group isomorphisms, satisfying

u´
˚ Haarn,m “ µU´

and u`
˚ Haarm,n “ µU`

. (18)
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We denote by χm (respectively χn) the characters from Z to K ˆ
ν sending

`

λIm 0
0 µIn

˘

to
λ (respectively µ). Note that χm

m χn
n is the trivial character. For all z P Z, β P Mn,mpKνq

and γ P Mm,npKνq, we have

z u´pβq z´1 “ u´p pχnpzqInqβ pχmpzqImq´1q . (19)

The Haar measure µZ on Z is exactly the counting measure, since ZpOνq “ tImu :

µZ “
ÿ

zPZ

∆z . (20)

The next result gives a refined LU decomposition by blocks of G and the corresponding
decomposition of its Haar measure.

Proposition 2.5 The product map pu´, g2, z, u`q ÞÑ u´ g2 z u` from U´ ˆ G2 ˆ Z ˆ U`

to UG is a homeomorphism and if

c1 “
q mn
ν

śm
i“1pq i

ν ´ 1q
śn

i“1pq i
ν ´ 1q

śd
i“1pq i

ν ´ 1q
ď 1 ,

then
dµGpu´ g2 z u`q “ c1 |χmpzq|dm dµU´pu´q dµG2pg2q dµZpzq dµU`pu`q .

Proof. For every g “
` α γ
β δ

˘

P G such that detα ‰ 0 (which is the case if g P UG), we
have

g “
` Im 0
βα´1 In

˘` α γ
0 δ´βα´1γ

˘

“
` Im 0
βα´1 In

˘` α 0
0 δ´βα´1γ

˘`

Im α´1γ
0 In

˘

. (21)

In particular, the matrix δ ´ βα´1γ is invertible, and detpαq detpδ ´ βα´1γq “ 1, so that
νpdetpδ ´ βα´1γqq “ ´νpdetpαqq. Thus if g P UG, then νpdetpαqq is divisible by m and
νpdetppδ ´ βα´1γqq is divisible by n. Furthermore,

| detpπ
´

νpdetαq

m
ν αq| “ |π ´νpdetαq

ν | |detα| “ q νpdetαq
ν |detα| “ |detα|´1 | detα| “ 1 .

Consider the map Ξ from UG to U´ ˆG2 ˆZˆU` which to g “
` α γ
β δ

˘

P UG associates

ˆ

u´ “

ˆ

Im 0
βα´1 In

˙

, g2 “

¨

˝

π
´

νpdetαq

m
ν α 0

0 π
´

νpdetpδ´βα´1γqq

n
ν pδ ´ βα´1γq

˛

‚

z “

¨

˝

π
νpdetαq

m
ν Im 0

0 π
νpdetpδ´βα´1γqq

n
ν In

˛

‚, u` “

ˆ

Im α´1γ
0 In

˙˙

, (22)

which is well defined as we just checked. Let us prove that Ξ is onto. Let

u´ “
` Im 0
β1 In

˘

P U´, g2 “
`

α1 0
0 δ1

˘

P G2, z “
` π r

ν Im 0
0 π s

ν

˘

P Z, u` “
`

Im γ1

0 In

˘

P U` .

Let α “ π r
ν α

1, β “ β1α, γ “ γ1α and δ “ π s
ν δ

1 ` βα´1γ. The equality m r ` n s “ 0
implies by Gauss Lemma that n

gcdtm,nu
divides r, hence that lcmtm, nu “ mn

gcdtm,nu
divides

m r. Since α1 P GL1
mpKνq, we have

νpdetαq “ νppπ r
ν qm detα1q “ m r ` νpdetα1q “ m r P lcmtm, nuZ . (23)
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Thus g “
` α γ
β δ

˘

belongs to UG and by construction Ξpgq “ pu´, g2, z, u`q. It is immediate
to see that Ξ is continuous on UG and is the inverse of the continuous multiplication map
pu´, g2, z, u`q ÞÑ u´ g2 z u`.

Let P´ “ U´G2Z, which is a closed subgroup of G, since Z centralises G2 and G2Z
normalizes U´, so that UG “ P´U`. By [LanS, §III.1], since G and U` are unimodular,
there exists a constant c2 ą 0 such that the restriction to the open set UG of the Haar
measure of G satisfies dµGpp´u`q “ c2 dµP´pp´q dµU`pu`q for (almost) all p´ P P´ and
u` P U`.

For all g2 “
`

α 0
0 δ

˘

P G2 and β P Mn,mpKνq, we have g2u´pβqg2´1
“ u´pδβα´1q.

Therefore, with ιg2 the conjugation map x ÞÑ g2 x g2´1 by g2 on U´, by Equation (18), by
Equation (17) with k “ n and k1 “ m, and since | detα| “ |det δ| “ 1, we have

pιg2q˚µU´ “ pιg2 ˝ u´q˚ Haarn,m “ pu´ ˝ ϕpδ, αqq˚ Haarn,m

“ pu´q˚ Haarn,m “ µU´ . (24)

Let z P Z. By the relation between the two characters χm et χn of Z, we have

| detpχnpzqInq|m |detpχmpzqImq|´n “ |χnpzqn|m |χmpzqm|´n

“ |χmpzq´m|m |χmpzq|´mn “ |χmpzq|´dm .

Therefore, with ιz the conjugation map by z on U´, by Equation (18), by Equation (17)
with k “ n and k1 “ m, we have

pιzq˚µU´ “ pιz ˝ u´q˚ Haarn,m “ pu´ ˝ ϕpχnpzqIn, χmpzqImqq˚ Haarn,m

“ |χmpzq|´mdµU´ . (25)

The product in the group P´ “ U´G2Z may be written as follows: for all pu´, g2, zq

and ppu´, pg 2, pzq in U´ ˆ G2 ˆ Z, we have

pu´ g2 zq ppu´
pg 2

pz q “
`

u´ p g2 pz pu´ z´1q g2´1
q
˘ `

g2
pg 2

˘`

z pz
˘

.

By Equations (25) and (24), the image of the measure

|χmpzq|md dµU´pu´q dµG2pg2q dµZpzq

on U´ ˆG2 ˆZ by the product map pu´, g2, zq ÞÑ u´ g2 z is hence a left Haar measure on
P´. Therefore there exists a constant c3 ą 0 such that, for (almost) all u´ P U´, g2 P G2

and z P Z, we have

|χmpzq|md dµU´pu´q dµG2pg2q dµZpzq “ c3 dµP´pu´g2zq .

Therefore, with c1 “ c2c
´1
3 , we have

dµGpu´ g2 z u`q “ c1 |χmpzq|dm dµU´pu´q dµG2pg2q dµZpzq dµU`pu`q . (26)

In order to compute the constant c1, we evaluate the measures on both sides of Equation
(26) on the compact-open subgroup

H “

!

` α γ
β δ

˘

P GpOνq :
α P Im ` πνMmpOνq, δ P In ` πνMnpOνq,
β P πνMn,mpOνq, γ P πνMm,npOνq

)

.

We are going to need the following well-known result.
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Lemma 2.6 For every N P N, let HN be the kernel of the morphism from GpOνq to
SLdpOν{πN

ν Oνq of reduction modulo πN
ν Oν . Then

rGpOνq : HN s “ q
Npd2´1q´

dpd`1q

2
`1

ν

d
ź

i“2

pq i
ν ´ 1q .

Proof. The reduction morphism GLdpOνq Ñ GLdpOν{πN
ν Oνq is onto, and the reduction

morphism SLdpOνq Ñ SLdpOν{πN
ν Oνq is hence also onto. By for instance [Han, Theo. 2.7]

(applied with k “ N to the finite local commutative ring R “ Oν{π k
ν Oν with maximal

ideal P “ πνOν{π k
ν Oν), we have

|GLdpOν{πN
ν Oνq| “ |πνOν{πN

ν Oν |d
2

|GLdpOν{πνOνq| “ q pN´1qd2

ν

d´1
ź

i“0

pq d
ν ´ q i

ν q

“ q
Nd2´

dpd`1q

2
ν

d
ź

i“1

pq i
ν ´ 1q .

The index of SLdpOν{π N
ν Oνq in GLdpOν{π N

ν Oνq is equal to |pOν{πN
ν Oνqˆ| “ q N´1

ν pqν´1q.
The result follows. l

Since µGpGpOνqq “ 1 and by Lemma 2.6 with N “ 1, the group H has Haar measure

µGpHq “
µGpGpOνqq

rGpOνq : Hs
“

1

q
dpd´1q

2
ν

śd
i“2pq i

ν ´ 1q

.

The group H X U´ “
␣`

Im 0
β In

˘

: β P πνMn,mpOνq
(

has index q mn
ν in U´pOνq, and so

does H X U` “
␣`

Im γ
0 In

˘

: γ P πνMm,npOνq
(

in U`pOνq. Hence

µU´pH X U´q “ µU`pH X U`q “
1

q mn
ν

.

We have H X Z “ tIdu, hence
ş

HXZ |χmpzq|dm dµZpzq “ 1 by Equation (20).

The index of the subgroup H XG2 “

!

`

α 0
0 δ

˘

:
α P Im ` πνMmpOνq,
δ P In ` πνMnpOνq,

detα det δ “ 1
)

in the group G2pOνq “
␣`

α 0
0 δ

˘

: α P GLmpOνq, δ P GLnpOνq, detα det δ “ 1
(

is equal to
1

|Fˆ
qν |

p|GLmpFqν q| ˆ |GLnpFqν q|q. Since µG2pG2pOνqq “ 1, we hence have

µG2pH X G2q “
pqν ´ 1q

q
mpm´1q

2
ν

śm
i“1pq i

ν ´ 1q q
npn´1q

2
ν

śn
i“1pq i

ν ´ 1q

.

Note that H is contained in UG since for every
` α γ
β δ

˘

P H, we have νpdetpαqq “ 0 as
detα ” det Im ” 1 mod πν . We then also have νpdetpδ ´ βα´1αqq “ 0. It follows from
Equation (22) that the product map pu´, g2, z, u`q ÞÑ u´ g2 z u` from U´ ˆG2 ˆZ ˆU`

to UG induces a homeomorphism from pH X U´q ˆ pH X G2q ˆ pH X Zq ˆ pH X U`q to
H. By Equation (26) and the above computations, we thus have

c1 “
µGpHq

µU´pH X U´q µG2pH X G2q µU`pH X U`q

“
q mn
ν

śm
i“1pq i

ν ´ 1q
śn

i“1pq n
ν ´ 1q

śd
i“1pq i

ν ´ 1q
.

Note that c1 “
śm

i“1
q i`n
ν ´ q n

ν

q i`n
ν ´ 1

ď 1. This concludes the proof of Proposition 2.5. l
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2.6 Refined LU decomposition by blocks and partial lattices

Let V be a Kν-vector space with finite dimension D ě 1, and let k P J1, DK. We denote by
GrkpV q the Grassmannian space of k-dimensional Kν-linear subspaces of V (endowed with
the compact metrisable Chabauty topology, see Subsection 3.1 for its measure theoretic
and metric aspects). We define Grm,d “ GrmpK d

ν q.
An Oν-structure on V is the choice of a finitely generated Oν-submodule VOν generating

V as a Kν-vector space, or equivalently an equivalence class of Kν-basis of V , where two
Kν-bases are equivalent if their transition matrix belongs to GLDpOνq. For instance, we
endow K D

ν and pK D
ν q˚ with the Oν-structure defined by their canonical basis and its dual

basis, respectively. We denote by GLpVOν q the subgroup of GLpV q preserving VOν , and we
define SLpVOν q “ GLpVOν q X SLpV q. The following claim is well-known.

Lemma 2.7 The group GLpVOν q is contained in GL1pV q and acts transitively on the
Grassmannian space GrkpV q. If k ă D, then SLpVOν q also acts transitively on GrkpV q.

Proof. The first claim follows from the fact that the determinant of a matrix in GLpVOν q,
being an element of O ˆ

ν , has absolute value 1. By for instance [Wei4, Theo. 1], every
complete flag pV1, . . . , VDq of V admits a Kν-basis px1, . . . , xDq which is both adapted to
this flag (that is, Vi “ Kνx1 ` ¨ ¨ ¨ ` Kνxi for every i P J1, DK) and is an Oν-basis of
VOν . Hence every k-dimensional Kν-linear subspace of V admits a Kν-basis that can be
completed to an Oν-basis of VOν . Since GLpVOν q acts transitively on the set of Oν-bases
of VOν , the second claim follows. The last claim when k ă D follows by multiplying the
last element of the above Oν-basis by an appropriate element of O ˆ

ν . l

Assume that V is endowed with a Kν-basis pf1, . . . , fDq defining both an Rν-structure
VRν “ Rνf1 ` ¨ ¨ ¨ ` RνfD, an Oν-structure VOν “ Oνf1 ` ¨ ¨ ¨ ` OνfD and an ultrametric
norm }x1f1 ` ¨ ¨ ¨ ` xDfD} “ max

1ďiďD
|xi| whose (closed) unit ball is VOν . For instance, V

could be K D
ν with its canonical basis, or its dual space pK D

ν q˚ with its dual basis, or
Kν-linear subspaces of them generated by basis elements. We denote the space of shapes
of unimodular full Rν-lattices of V by

Sh1pV q “ GLpVOν qzLat1pV q “ GLpVOν qzGL1pV q{GLpVRν q ,

endowed with the quotient topology (see Subsection 3.4 for its measure theoretic aspects).
For simplicity, we denote Sh1D “ Sh1pK D

ν q.
The shape map of k-lattices of V is the map

sh :
␣

Λ P LatkpV q : CovolpΛq P q kZ
ν

(

Ñ Sh1k

defined as follows. Let Λ P LatkpV q. By Lemma 2.7, choose an element g P GLpVOν q such
that we have gVΛ “ Kνf1 ` ¨ ¨ ¨ ` Kνfk. Note that g preserves the covolume of partial
lattices, since it maps the unit ball VΛ X VOν of VΛ to the unit ball Oνf1 ` ¨ ¨ ¨ ` Oνfk
of Kνf1 ` ¨ ¨ ¨ ` Kνfk. Let Θ : Kνf1 ` ¨ ¨ ¨ ` Kνfk Ñ K k

ν be the isometric (hence Haar
measure preserving) Kν-linear isomorphism mapping pf1, . . . , fkq to the canonical basis of
K k

ν , that preserves the covolume of full Rν-lattices. We define

shpΛq “ GLkpOνqπ
1
k
logqν CovolpΛq

ν ΘpgΛq . (27)
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Note that π
1
k
logqν CovolpΛq

ν Λ is a unimodular k-lattice in V , and that homotheties and linear
maps commute. Furthermore, the shape shpΛq of Λ does not depend on the choice of g
as above, since given two choices g1 and g2, the linear maps Θ ˝ g1 and Θ ˝ g2 differ by
multiplication on the left by an element of GLkpOνq. Note that when Λ is a unimodular
full Rν-latice in the product space V “ K k

ν , then Equation (27) greatly simplifies to

shpΛq “ GLkpOνqΛ ,

since we can take pf1, . . . , fkq to be the canonical basis of V and g “ Θ to be the identity
map of V .

The next result gives the relationship between the refined LU decomposition by blocks
of elements of UG and the partial lattices generated by their first m columns. Let us first
give the notation that will be used. For every D P N∖t0u, we identify GLpK D

ν q and
GLDpKνq (respectively GLppK D

ν q˚q and GLDpKνq) by taking matrices of linear automor-
phisms in the canonical basis pe1, . . . , eDq of K D

ν (respectively its dual basis pe˚
1 , . . . , e

˚
Dq

of pK D
ν q˚). Recall that the map h ÞÑ qh “ th´1 is a group isomorphism from GLpK d

ν q to
GLppK d

ν q˚q. For practical reasons, we denote by R m
ν ˆ t0u the m-lattice Rνe1 ` ¨ ¨ ¨ `Rνem

of K d
ν and by t0uˆR n

ν the n-lattice Rνe
˚
m`1`¨ ¨ ¨`Rνe

˚
d of pK d

ν q˚. For every g P GLpK d
ν q

(respectively g1 P GLppK d
ν q˚q ), we define

Λg “ gpR m
ν ˆ t0uq (respectively Λg1 “ g1pt0u ˆ R n

ν q q ,

which is the m-lattice generated by the first m columns of g (respectively the n-lattice
generated by the last n columns of g1). For every element g “

` α γ
β δ

˘

P UG, we denote by
pu´, g2 “

` g 0
0 g

˘

, z, u`q the decomposition of g given by Proposition 2.5, and by

t “ ´
νpdetαq

lcmtm, nu
“

νpdetpδ ´ βα´1γqq

lcmtm, nu
P Z

(which is indeed an integer since g P UG by Equation (15)). By Equation (22), we then
have

z “

¨

˝

π
´

lcmtm,nu

m
t

ν Im 0

0 π
lcmtm,nu

n
t

ν In

˛

‚ . (28)

To conclude this list of notation for Proposition 2.8, let us define

G7 “ tg P UG : u´ P GpOνqu .

Proposition 2.8 For every g P UG, we have
(i) VΛg “ VΛu´

(i)K VpΛgqK “ VΛ
}u´

(ii) CovolpΛgq “ q
lcmtm,nu t
ν (ii)K CovolppΛgqKq “ q

lcmtm,nu t
ν

and if furthermore g P G7, then
(iii) shpΛgq “ shp g R m

ν q (iii)K shppΛgqKq “ shp qg R n
ν q.

Proof. Let g “
` α γ
β δ

˘

P G∖U 0
G (that is, let g be an element of G whose upper-left m ˆ m

submatrix is invertible), let u´ “
` Im 0
βα´1 In

˘

and let t “ ´
νpdetαq

lcmtm,nu
P Q, so that these

16



two notations coincide with the above ones when g P UG Ă G∖U 0
G . Let us prove that

Assertions (i), (i)K, (ii), (ii)K are actually satisfied under this greater generality on g. Since
we have

` α γ
β δ

˘`

x
0

˘

“
` Im 0
βα´1 In

˘`

αx
0

˘

for every x P Mm,1pKνq, we have

Λg “ gpR m
ν ˆ t0uq “ u´ppαR m

ν q ˆ t0uq . (29)

Since α is invertible, we hence have VΛg “ u´pK m
ν ˆ t0uq, thus proving (i).

Let δ1 “ δ´βα´1γ. Since g “ u´
`

α 0
0 δ1

˘

u` by Equation (21), we have qg “ |u´
`

qα 0
0 qδ1

˘

|u`.

Note that |u`, being lower unipotent by blocks, preserves t0u ˆ R n
ν . By the last equality

in Equation (12), we hence have

pΛgqK “
`

gpR m
ν ˆ t0uq

˘K
“ qg pR m

ν ˆ t0uqK “ qg pt0u ˆ R n
ν q “ |u´pt0u ˆ pqδ1R n

ν qq . (30)

Since qδ1 is invertible, we thus have VpΛgqK “ |u´pt0u ˆ K n
ν q “ |u´ Vt0uˆR n

ν
“ V

|u´pt0uˆR n
ν q

,

thereby proving Assertion (i)K.
By Equations (29), (7) (its left-hand side) and (8), since we have detpu´q “ 1 and by

the definition of t “ ´
νpdetαq

lcmtm,nu
“

logqν |detα|

lcmtm,nu
, we have

CovolpΛgq “ CovolpαR m
ν q “ | detα|CovolpR m

ν q “ q lcmtm,nu t
ν CovolpR m

ν q ,

thus proving (ii). Assertion (ii)K follows from Equation (13).
Assume from now on in this proof that g P G7. Note that by Assertion (ii), the m-

lattice Λg has normalized covolume which is an integral power of q m
ν , hence shpΛgq is well

defined by Equation (27) with k “ m. Recall that the shape of a partial lattice of K d
ν is

invariant by every homothety and by taking the image by any element in GLdpOνq. Again

by Equation (29), since u´ P GpOνq when g P G7, and since g “ π
´

νpdetαq

m
ν α “ π

ℓpm,nq

m
t

ν α
by Equation (22), we have

shpΛgq “ shppαR m
ν q ˆ t0uq “ shpαR m

ν q “ shp g R m
ν q ,

thus proving (iii). Note that g 1 P GL1
mpKνq, so that g R m

ν is a unimodular full Rν-lattice
in K m

ν .
By Assertion (ii)K, the n-lattice pΛgqK has normalized covolume which is an integral

power of q n
ν , hence shppΛgqKq is well defined by Equation (27) with k “ n. As previously,

since |u´ (which is now upper unipotent by blocks) still belongs to GpOνq, and since g is
a scalar multiple of δ1 “ δ ´ βα´1γ, we have by Equation (30) that

shppΛgqKq “ shpt0u ˆ p qδ1R n
ν qq “ shp qδ1R n

ν q “ shpqg R n
ν q ,

thus proving (iii)K. Note that qg R n
ν is a unimodular full Rν-lattice in K n

ν . l

3 Metric measured moduli spaces of partial lattices

In this section, we define the natural measures and distances on the moduli spaces Grm,d

(see Subsection 3.1), Sh1m and Sh1n (see Subsection 3.4), that were introduced in Subsection
2.6 and on whose products the equidistribution results of the Introduction will take place.
We introduce (and similarly analyse) in Subsection 3.3 an avatar Lat1m,n of the product
Lat1m ˆLat1n of the spaces (described in Subsection 3.2) of m- and n-lattices, on which our
stronger equidistribution result (Theorem 4.7) will take place in the subsequent Section 4.
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3.1 The Grassmannian spaces

As defined in Subsection 2.6, we denote by Grm,d “ GrmpK d
ν q the Grassmannian space of

m-dimensional Kν-linear subspaces of K d
ν . Recalling that G “ SLdpKνq, we define

Q` “
␣` α γ

β δ

˘

P G : β “ 0
(

,

which is a nonunimodular closed subgroup of G. It contains the closed and open subgroup
P` “ G2ZU` “

␣` α γ
β δ

˘

P Q` : νpdetpαqq P lcmtm, nuZ u with finite index. The compact
metrisable group GpOνq acts continuously and transitively by Lemma 2.7 on the compact
metrisable space Grm,d. The stabilizer of the Kν-linear subspace K m

ν ˆ t0u of K d
ν corre-

sponding to the first m coordinates is exactly Q`pOνq. Hence the continuous onto orbital
map g ÞÑ gpK m

ν ˆ t0uq from GpOνq to Grm,d induces a continuous bijection

GpOνq{Q`pOνq Ñ Grm,d ,

which is hence a homeomorphism by compactness arguments. We identify from now on
GpOνq{Q`pOνq and Grm,d by this map.

By the normalisation convention of the Haar measure of the closed subgroups of G
(see Equation (16)), the Haar measures µGpOνq and µQ p̀Oνq are normalized to be prob-
ability measures. We denote by µGrm,d

the unique GpOνq-invariant probability mea-
sure on the Grassmannian space Grm,d “ GpOνq{Q`pOνq. This is in accordance with
Weil’s normalization process of measures on homogeneous spaces (see [Wei3, §9]). In-
deed, the probability measure µGpOνq disintegrates with respect to the canonical projection
GpOνq Ñ GpOνq{Q`pOνq over the measure µGrm,d

, with conditionnal measures on the fibers
g Q`pOνq the probability pushforward measures g˚µQ p̀Oνq: for every f P C0pGpOνqq, we
have
ż

gPGpOνq

fpgq dµGpOνq “

ż

g Q p̀OνqPGrm,d

ż

hPQ p̀Oνq

fpghq dµQ p̀Oνqphq dµGrm,d
pg Q`pOνqq .

(31)
In particular, we have

}µGrm,d
} “ 1 . (32)

We denote by orbm : Mn,mpOνq Ñ Grm,d the (continuous injective) map defined by

orbm : β ÞÑ
`

Im 0
β In

˘

pK m
ν ˆ t0uq ,

and by Gr7

m,d “ orbmpMn,mpOνqq its image. Every element g “
` α γ
β δ

˘

P GpOνq such that
detpαq ‰ 0 and βα´1 P Mn,mpOνq belongs to

` Im 0
βα´1 In

˘

Q`pOνq by Equation (21). Con-
versely, if an element g “

` α γ
β δ

˘

belongs to U´pOνqQ`pOνq, then we have detα ‰ 0 and
βα´1 P Mn,mpOνq, so that

Gr7

m,d “ U´pOνqQ`pOνq “ U´pOνqpK m
ν ˆ t0uq

“
␣` α γ

β δ

˘

P GpOνq : detα‰0
βα´1PMn,mpOνq

(

pK m
ν ˆ t0uq .

Hence Gr7

m,d is a compact (as the image by the continuous map orbm of the compact space
Mn,mpOνq) and open subset of the open Bruhat cell U´Q` of the Grassmannian space
Grm,d (corresponding to the longest element in the Weyl group of SLdpKνq). By Equation
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(31) applied with f the characteristic function of the compact subset U´pOνqQ`pOνq of
GpOνq for the first equality, by Proposition 2.5 for the third equality and by the normali-
sation in Equation (16) of the Haar measures for the last equality, we have

µGrm,d
pGr7

m,dq “ µGpOνqpU
´pOνqQ`pOνqq “ µGpU´pOνqG2pOνqU`pOνqq

“ c1 µU´pU´pOνqqµG2pG2pOνqqµU`pU`pOνqq “ c1 .

By the normalization of the Haar measure Haarn,m of Mn,mpKνq so that its restriction
µMn,mpOνq to Mn,mpOνq is a probability measure, we hence have

porbmq˚pµMn,mpOνqq “ c1 pµGrm,d
q

|Gr7

m,d
. (33)

In order to be able to define locally constant functions on the Grassmannian space
Grm,d for error term estimates, one way is to define an appropriate distance on this space.
The standard construction is the following one. We endow the Kν-vector space V “

K d
ν with the usual norm, the maximum of the absolute values of the coordinates in its

canonical Kν-basis pe1, . . . , edq, and for every k P N∖t0u, its k-th exterior power k̂V
with the corresponding norm, the maximum of the absolute values of the coordinates in its
corresponding Kν-basis pei1 ^ ¨ ¨ ¨ ^ eikq1ďi1ă¨¨¨ăikďd. We now endow the projective space
PpV q with its usual distance d defined by dpKνx,Kνyq “

}x^y}

}x} }y}
for all x, y P V ∖ t0u, and

Grm,d with its induced distance d by the Plücker embedding Grm,d Ñ Pp m̂V q defined by
W ÞÑ Kνpb1 ^ ¨ ¨ ¨ ^ bmq if pb1, . . . , bmq is any Kν-basis of W . Since the linear action of
GLdpOνq on V preserves the norm, the exterior action of GLdpOνq on m̂V preserves the
norm, hence the projective action of GLdpOνq on Pp m̂V q preserves the distance. Since
the Plücker embedding is equivariant with respect to the actions of GLdpOνq, the action
of GLdpOνq on Grm,d preserves its distance d.

For all D,D1, D2 P N∖ t0u, we endow the Kν-vector space MD,D1pKνq with its supre-
mum norm } ¨ } defined, for every element X “ pXi,jq1ďiďD,1ďjďD1 P MD,D1pKνq, by

}X} “ maxt|Xi,j | : 1 ď i ď D, 1 ď j ď D1u P q Z
ν Y t0u .

This norm is an ultrametric norm and satisfies the following properties:
‚ The transposition map A ÞÑ tA from MD,D1pKνq to MD1,DpKνq is a linear isometry

for the norms } }.
‚ By the ultrametric property of the absolute value, the norm } } is a submultiplicative

norm: For all A P MD,D1pKνq and B P MD1,D2pKνq, we have }AB} ď }A} }B}.
‚ For every A P MD,D1pKνq, we have }A} ď 1 if and only if A P MD,D1pOνq. Hence

the unit ball of } ¨ } is MD,D1pOνq and the right and left multiplications by elements of
MDpOνq and MD1pOνq are 1-Lipschitz maps on MD,D1pOνq : For all A P MDpKνq and
B P MD,D1pOνq and C P MD1pOνq, we have }ABC} ď }B}. In particular, }ABC} “ }B}

if A P GLDpOνq and C P GLD1pOνq.

Lemma 3.1 For all β, β1 P Mn,mpOνq, we have

dporbmpβq, orbmpβ1qq “ }β ´ β1} .

Proof. Every matrix β P Mn,mpOνq will be seen as a linear map from K m
ν ˆ t0u to

t0u ˆK n
ν , so that βej “

ř

1ďiďn βi,j ei`m for every j P J1,mK. A Kν-basis of the Kν-linear
subspace orbmpβq “

`

Im 0
β In

˘

pK m
ν ˆ t0uq of K d

ν is hence pe1 ` βe1, . . . , em ` βemq.
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Let xβ “ pe1 ` βe1q ^ ¨ ¨ ¨ ^ pem ` βemq. We have }xβ} “ 1 since }e1 ^ ¨ ¨ ¨ ^ em} “ 1
and since the entries of β have absolute value at most 1. For every β, β1 P Mn,mpOνq, we
have xβ ^ xβ1 “ pxβ ´ xβ1q ^ xβ1 and xβ ´ xβ1 “ v1 ` v2 ` ¨ ¨ ¨ ` vm where, separating the
terms according to the number of occurrences of β’s in them,

v1 “
ÿ

1ďiďm

e1 ^ ¨ ¨ ¨ ^ ei´1 ^ pβ ´ β1qei ^ ei`1 ^ ¨ ¨ ¨ ^ em ,

v2 “
ÿ

1ďiăjďm

`

e1 ^ ¨ ¨ ¨ ^ ei´1 ^ βei ^ ei`1 ^ ¨ ¨ ¨ ^ ej´1 ^ βej ^ ej`1 ^ ¨ ¨ ¨ ^ em

´ e1 ^ ¨ ¨ ¨ ^ ei´1 ^ β1ei ^ ei`1 ^ ¨ ¨ ¨ ^ ej´1 ^ β1ej ^ ej`1 ^ ¨ ¨ ¨ ^ em
˘

and so on, and vm “ βe1 ^ ¨ ¨ ¨ ^ βem ´ β1e1 ^ ¨ ¨ ¨ ^ β1em. By the ultrametric properties of
the norms, we have }vk} ď }β ´ β1} for all k ě 2 and }v1} “ }β ´ β1}. By considering the
elements of the Kν-basis of m̂V involved in the formulation of v1, v2, . . . , vm, and again by
the ultrametric properties of the norms, we hence have }xβ ´xβ1} “ }β´β1}. Furthermore,
the coordinate of xβ ´ xβ1 corresponding to the basis vector e1 ^ ¨ ¨ ¨ ^ em is 0 while the
one of xβ1 is 1. Thus }xβ ^ xβ1} “ }xβ ´ xβ1} and the result follows. l

3.2 The spaces of unimodular full lattices

For every unimodular locally compact group H endowed with a Haar measure µH , and
for every discrete subgroup Γ1 of H, we again denote by µH the unique left H-invariant
measure on H{Γ1 such that the covering map H Ñ H{Γ1 locally preserves the measure.

Let k P N∖t0u. Note that SLkpKνq is a closed unimodular subgroup of the unimodu-
lar locally compact group GL1

kpKνq, whose Haar measure µSLkpKνq is normalized so that
µSLkpKνqpSLkpOνqq “ 1 (as we did for k “ d in Subsection 2.5). The restriction to O ˆ

ν

of the Haar measure of the additive group pKν ,`q is a Haar measure µO ˆ
ν

of the multi-
plicative group pO ˆ

ν ,ˆq by Equation (4). By the normalization of the Haar measure of
pKν ,`q, we have

}µO ˆ
ν

} “ µKν pOν∖πνOνq “ 1 ´ q ´1
ν . (34)

We have a split short exact sequence of locally compact groups

1 ÝÑ SLkpKνq ÝÑ GL1
kpKνq ÝÑ O ˆ

ν ,

with section sk : O ˆ
ν Ñ GL1

kpKνq defined for instance by λ ÞÑ
`

λ 0
0 Ik´1

˘

. We define the
Haar measure µGL1

kpKνq of GL1
kpKνq, for all g P SLkpKνq and λ P O ˆ

ν , by

dµGL1
kpKνqpskpλqgq “ dµO ˆ

ν
pλq dµSLkpKνqpgq . (35)

In particular, we have
µGL1

kpKνqpGLkpOνqq “ 1 ´ q ´1
ν . (36)

After Equation (10), we identified the space Lat1k “ Lat1pK k
ν q of unimodular full

Rν-lattices in K k
ν with the homogeneous space GL1

kpKνq{GLkpRνq. Since GLkpRνq is
a discrete subgroup of the unimodular group GL1

kpKνq, we endow Lat1k with the unique
GL1

kpKνq-invariant measure µLat1k
such that the orbital map GL1

kpKνq Ñ Lat1k defined by
g ÞÑ g R k

ν locally preserves the measure.
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Since the index of SLkpRνq in GLkpRνq is equal to CardpR ˆ
ν q “ CardpFˆ

q q “ q´1 (see
the formula on the right in Equation (2)), and by Equations (35) and (34), we have

}µLat1k
} “ }µGL1

kpKνq{GLkpRνq} “
1

q ´ 1
}µGL1

kpKνq{SLkpRνq}

“
1 ´ q ´1

ν

q ´ 1
}µSLkpKνq{SLkpRνq} . (37)

Let us apply [Ser1, §3] in order to compute the total mass of µLat1k
, using boldface letters

in order to denote the notation of this reference, thus facilitating the reference process. Let
L “ SLk, which is a simple simply connected split algebraic group defined over the global
field k “ K, with relative rank ℓ “ k ´ 1, and with exponents of its Weyl group mi “ i
for i P J1, ℓK (see [Bou, page 251]). Let S “ tv “ νu, which is a finite nonempty set of
places of k, and note that there are no archimedean places since K is a function field.
The function ring OS defined in [Ser1, page 123] is then exactly our function ring Rν , and
L0 “ SLk is a split, simple, simply connected group scheme over OS “ Rν (as required
in [Ser1, page 157]) such that L “ L0 bOS

k. The zeta function ζk,S of k related to S
defined in [Ser1, page 156] is exactly our zeta function ζK , and the S-arithmetic group ΓS

defined in [Ser1, page 157] is exactly our arithmetic group SLkpRνq.
Let G “ Lpkvq “ SLkpKνq. Motivated by the relationship with the Euler characteris-

tic, Serre defines a canonical signed measure (with constant sign by homogeneity) µG on
G, whose associated positive measure |µG| is a Haar measure on G. We don’t need to
recall its definition, only to understand its normalisation. By the second claim of Theorem
7 (see top of page 151) of [Ser1], using when k “ 1 the standard convention that an empty
product is equal to 1, and since the order of the residual field of kv “ Kν is q “ qν , we
have

|µG|pSLkpOνqq “

ℓ
ź

i“1

pqmi ´ 1q “

k´1
ź

i“1

pq i
ν ´ 1q .

Since our Haar measure of SLkpKνq is normalized so that µSLkpKνqpSLkpOνqq “ 1, we hence
have

µSLkpKνq “
1

|µG|pSLkpOνqq
|µG| “

k´1
ź

i“1

pq i
ν ´ 1q´1|µG| . (38)

By, for instance, [LanR] (see also [Wei2, Theo 3.3.1] and [Wei1, p. 257]), the Tamagawa
number τ of L is 1. By the footnote 10 on page 158 of [Ser1], we hence have

|µG|pG{ΓSq “
ˇ

ˇτ
ℓ
ź

i“1

ζk,Sp´miq
ˇ

ˇ “

k´1
ź

i“1

ζKp´iq . (39)

Thus, by Equations (38), (39) and (3), we have

}µSLkpKνq{SLkpRνq} “

k´1
ź

i“1

ζKp´iq

q i
ν ´ 1

“ q pg´1qpk2´k`1q

k´1
ź

i“1

ζKp1 ` iq

q i
ν ´ 1

. (40)

Therefore, by Equation (37), we have

}µLat1k
} “

qν ´ 1

qνpq ´ 1q

k´1
ź

i“1

ζKp´iq

q i
ν ´ 1

. (41)
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3.3 The space of correlated pairs of Rν-lattices

We define in this subsection a measured space Lat1m,n of pairs of full Rν-lattices in dimen-
sions m and n with correlated normalized covolume, in which a version of the equidistribu-
tion results stronger than the ones stated in the introduction will take place (see Theorem
4.7).

For every k P N∖t0u, using the canonical Kν-basis pe1, . . . , ekq of V “ K k
ν , we identify

the maximal exterior power k̂V with Kν by the map λpe1 ^ ¨ ¨ ¨ ^ ekq ÞÑ λ. Using this
identification, given Λ P Lat1k and an Rν-basis pb1, . . . , bkq of Λ, which is also a Kν-basis of
V and therefore satisfies b1 ^ ¨ ¨ ¨ ^ bk ‰ 0, we define

detΛ “ rb1 ^ ¨ ¨ ¨ ^ bks P K ˆ
ν {F ˆ

q ,

where the class rb1 ^ ¨ ¨ ¨ ^ bks of b1 ^ ¨ ¨ ¨ ^ bk modulo multiplication by an element of Fˆ
q

does not depend on the choice of the Rν-basis of Λ, since the change of Rν-basis matrix
belongs to GLkpRνq, hence has determinant in R ˆ

ν “ F ˆ
q . Note that the ratio a

a1 of
two elements a “ λF ˆ

q and a1 “ λ1F ˆ
q of K ˆ

ν {F ˆ
q is a well-defined element a

a1 “ λ
λ1 F ˆ

q

of K ˆ
ν {F ˆ

q , and we will also denote by F ˆ
q the class of 1 in K ˆ

ν {F ˆ
q . For instance,

detR k
ν “ re1 ^ ¨ ¨ ¨ ^ eks “ F ˆ

q .
Let us define

Lat1m,n “

!

pΛ,Λ1q P Lat1m ˆLat1n :
det Λ

detΛ1
“ Fˆ

q

)

.

For instance, pR m
ν , R n

ν q belongs to Lat1m,n. We endow the product space Lat1m ˆLat1n with
the product measure µLat1m

b µLat1n
of the measures µLat1m

and µLat1n
defined in Section 3.2.

For every λ P O ˆ
ν , let

sdpλq “
`

λ 0
0 Id´1

˘

P GLdpOνq .

We endow Lat1m,n with the measure µLat1m,n
defined, for every Borel subset B of Lat1m,n, by

µLat1m,n
pBq “ pµLat1m

b µLat1n
q
`

sdpO ˆ
ν qB

˘

, (42)

which satisfies
}µLat1m,n

} “ }µLat1m
} }µLat1n

} (43)

since sdpO ˆ
ν qLat1m,n “ Lat1m ˆLat1n.

Recall that g ÞÑ qg “ tg´1 for every g P GL1
npKνq is the standard Cartan involution of

GL1
npKνq. The group G2 “

␣` g 0
0 g

˘

: g P GL1
mpKνq, g P GL1

npKνq, det g det g “ 1
(

acts
continuously on the product space Lat1m ˆLat1n by

`` g 0
0 g

˘

, pΛ,Λ1q
˘

ÞÑ p gΛ,qgΛ1q ,

since GL1
kpKνq preserves the set of unimodular lattices Lat1k for every k P N∖ t0u.

Lemma 3.2 The orbit of pR m
ν , R n

ν q by this action of G2 is exactly Lat1m,n, and the restric-
tion to Lat1m,n of the action of G2 preserves the measure µLat1m,n

.
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We denote by πm,n : G
2 Ñ Lat1m,n the twisted canonical projection defined by

πm,n :
`

α 0
0 δ

˘

ÞÑ pαR m
ν , qδR n

ν q . (44)

Since the stabilizer of pR m
ν , R n

ν q by the above action of G2 is exactly the discrete subgroup
G2pRνq, and since πm,n is the orbital map of the above action at pR m

ν , R n
ν q, we will identify

from now on the quotient space G2{G2pRνq and the subspace Lat1m,n by the homeomorphism
g G2pRνq ÞÑ πm,npgq “ gpR m

ν , R n
ν q.

Proof. For all k P N∖ t0u, g P GL1
kpKνq and Λ P Lat1k, we have detpgΛq “ detpgqdetpΛq.

Since detpqg q “ pdet g q´1, the action of G2 preserves Lat1m,n.
Conversely, let pΛ,Λ1q P Lat1m,n. Since the action of GL1

kpKνq on Lat1k is transitive for
every k P N ∖ t0u and since the map g ÞÑ qg is an automorphism of GL1

kpKνq, there exist
g P GL1

mpKνq and g P GL1
npKνq such that Λ “ g R m

ν and Λ1 “ qg R n
ν . Since pΛ,Λ1q P Lat1m,n,

we have λ “ det g det g P F ˆ
q “ R ˆ

ν . Then the mˆm diagonal matrix smpλq with diagonal
entries λ, 1, . . . , 1 belongs to GLmpRνq, and in particular smpλq´1R m

ν “ R m
ν . Then the

matrix
` g smpλq´1 0

0 g

˘

belongs to G2 and maps pR m
ν , R n

ν q to pΛ,Λ1q. This proves the first
claim of the lemma.

The second claim follows by the invariance of the product measure µLat1m
bµLat1n

under
the product group GL1

mpKνq ˆ GL1
npKνq. l

As for the Grassmannian space Grm,d, in order to be able to define locally constant
functions on Lat1m,n for our error term estimates, we now define a natural distance on the
space Lat1m,n.

Let k P N∖t0u. Since the supremum norm } } on MkpKνq is a submultiplicative norm
(see above Lemma 3.1), the map

d : pg, hq ÞÑ logqν p1 ` maxt} gh´1 ´ Ik }, }hg´1 ´ Ik }uq (45)

is well-known to be a distance on the locally compact group GLkpKνq (inducing its topol-
ogy). By construction, this distance is invariant by translations on the right by all elements
of GLkpKνq. It is also invariant by translations on the left by the elements of GLkpOνq,
since the supremum norm } } on MkpKνq is invariant under conjugation by any element
of GLkpOνq. Since the transposition map preserves the supremum norm } } on MkpKνq

and by the symmetry of the distance d on GLkpKνq, the map g ÞÑ qg is an isometry of d.
In particular, for all g P GLkpKνq and ρ ą 0, we have

­Bpg, ρq “ Bp qg, ρq .

The following lemma will be needed in Subsection 4.2.

Lemma 3.3 For all h, h0 P GLkpKνq, we have

}h} ď }h0} q dph, h0q
ν and }h´1} ď }h ´1

0 } q dph, h0q
ν .

Proof. Let t “ dph, h0q. We have logqν p1`}hh´1
0 ´Ik }q ď t, hence }hh´1

0 ´Ik } ď q t
ν ´1,

thus

}h} ´ }h0} ď }h ´ h0} “ }phh´1
0 ´ Ikqh0} ď }hh´1

0 ´ Ik} }h0} ď pq t
ν ´ 1q}h0} .
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The first result follows. The second result follows similarly (or since the map g ÞÑ qg is an
isometry and the transposition preserves the supremum norm of matrices). l

We endow every closed subgroup H of GLkpKνq with the induced distance, and, with
HpRνq “ H X GLkpRνq which is a discrete subgroup of H, we endow the quotient space
H{HpRνq with the quotient distance

@ g, h P H, dpg HpRνq, hHpRνqq “ min
γPHpRνq

dpg, hγq .

It is easy to check by Equation (45) that for all g “
`

α 0
0 δ

˘

, g1 “
`

α1 0
0 δ1

˘

P G2, we have

dGLdpKνqpg, g
1q “ maxtdGLmpKνqpα, α

1q, dGLnpKνqpδ, δ
1qu . (46)

The canonical projection H Ñ H{HpRνq is 1-lipschitz and is a local isometry since the
discrete subgroup HpRνq of H acts isometrically by right-translations on H. The action of
HpOνq “ H XGLkpOνq by translations on the left on H{HpRνq is isometric. This process
provides the homogeneous spaces Lat1m “ GL1

mpKνq{GLmpRνq, Lat1n “ GL1
npKνq{GLnpRνq

and Lat1m,n “ G2{G2pRνq with distances invariant under GLmpOνq, GLnpOνq and G2pOνq

respectively, that from now on we will consider on these spaces. In particular, the map
πm,n from G2 to Lat1m,n defined in Equation (44) is a local isometry.

3.4 The spaces of shapes of unimodular full lattices

Let k P N∖t0u. As defined in Subsection 2.6, the space of shapes of full unimodular Rν-
lattices of K k

ν is the locally compact metrisable separable (actually discrete and countably
infinite) quotient space

Sh1k “ GLkpOνqzLat1k “ GLkpOνqzGL1
kpKνq {GLkpRνq .

We endow Sh1k with the unique finite measure µSh1k
such that the left invariant finite

measure µLat1k
on the right homogeneous space Lat1k “ GL1

kpKνq{GLkpRνq disintegrates
with respect to the proper canonical projection sh : Lat1k Ñ Sh1k “ GLkpOνqzLat1k over µSh1k
with conditional measures on the fibers GLkpOνqΛ the pushforward measures µGLkpOνqΛ of
the finite Haar measure µGLkpOkq “ µGL1

kpKνq|GLkpOνqq
of the compact (hence unimodular)

group GLkpOνq by the orbital maps g ÞÑ gΛ : for every f P C0pLat1kq, we have
ż

ΛPLat1k

fpΛq dµLat1k
pΛq

“

ż

GLkpOνqΛPSh1k

ż

gPGLkpOνq

fpgΛq dµGLkpOνqpgq dµSh1k
pGLkpOνqΛq .

In particular, using Equation (36), we have

sh˚ µLat1k
“ }µGLkpOνq} µSh1k

“ p1 ´ q ´1
ν q µSh1k

, (47)

and by Equation (41), we have

}µSh1k
} “

qν }µLat1k
}

qν ´ 1
“

1

q ´ 1

k´1
ź

i“1

ζKp´iq

q i
ν ´ 1

.
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With the notation of Equation (27) (that greatly simplifies as indicated below it), we
define a map

φm,n : Lat1m,n Ñ Sh1m ˆSh1n “
`

GLmpOνqzLat1m
˘

ˆ
`

GLnpOνqzLat1n
˘

pΛ,Λ1q ÞÑ pshpΛq, shpΛ1qq “ pGLmpOνqΛ, GLnpOνqΛ1q .
(48)

We summarize its properties in the following lemma, after giving some notation.
Since G2pOνq is compact and open in G2, there exists a maximal ρ0 ą 0 such that

G2pOνq contains the (closed) ball BG2pId, ρ0q of center Id and radius ρ0 for the distance
on G2 defined at the end of the previous subsection 3.3. Thus every map f : Lat1m,n Ñ C
which is constant on every left G2pOνq-orbit in Lat1m,n is ρ0-locally constant, that is constant
on every ball of radius ρ0 in Lat1m,n.

For every g P UG, if g “ u´ g2 z u` with g2 “
` g 0
0 g

˘

is its unique writing given by
Proposition 2.5, we define the correlated pair of lattices JΛgK associated with g by

JΛgK “ πm,npg2q “ p g R m
ν , qg R n

ν q P Lat1m,n . (49)

Lemma 3.4 The map φm,n is proper, surjective, and satisfies the following properties.
(1) We have pφm,nq˚µLat1m,n

“ p1 ´ q ´1
ν q2 µSh1m

b µSh1n
.

(2) For every g P G7 (as defined just above Proposition 2.8), we have

φm,npJΛgKq “ pshpΛgq, shppΛgqKqq .

(3) For all functions f1 : Sh1m Ñ R and f2 : Sh1n Ñ R with finite support, denoting by
f1 ˆ f2 : Sh1m ˆSh1n Ñ R their product map px, yq ÞÑ f1pxqf2pyq, the composition
function pf1 ˆ f2q ˝ φm,n : Lat

1
m,n Ñ R is compactly supported and ρ0-locally constant

with }pf1 ˆ f2q ˝ φm,n}ρ0 ď 1
ρ0

}f1}8 }f2}8.

Proof. Since the groups GLmpOνq and GLnpOνq are compact, the map φm,n is proper.

(1) By Equations (42) and (47) for k “ m and k “ n, the measures pφm,nq˚µLat1m,n
and

µSh1m
bµSh1n

are proportional. The proportionality constant is given by Equations (43) and
(47).

(2) Let g P G7. Let u´ P U´pOνq, g2 “
` g 0
0 g

˘

P G2, z P Z and u` P U` be such that
g “ u´ g2 z u`, as in Proposition 2.5. Then by Equation (49), by the definition of φm,n

and by Proposition 2.8 (iii) and (iii)K, we have

φm,npJΛgKq “ φm,np g R m
ν , qg R n

ν q “ pshp g R m
ν q, shpqg R n

ν qq “ pshpΛgq, shppΛgqKqq .

(3) Since φm,n is proper and f1,2 “ f1 ˆ f2 compactly supported, the function f1,2 ˝ φm,n

is compactly supported. Let us prove that for all points x, x0 P Lat1m,n at distance at most
ρ0, we have f1,2 ˝ φm,npxq “ f1,2 ˝ φm,npx0q. Since }f1,2 ˝ φm,n}8 “ }f1,2}8 ď }f1}8 }f2}8,
this will prove Assertion (3).

Recall that by the end of Subsection 3.3, the distance on Lat1m,n is the quotient distance
of the distance dG2 on G2 by the onto map πm,n. Let rx0 P G2 be such that πm,nprx0q “ x0.
Since the action by right translations of G2 on itself is isometric and since the preimages
of πm,n are the right orbits of G2pRνq in G2, there exists rx P G2 such that πm,nprxq “ x and
dG2prx, rx0q ď ρ0. Again since the action by right translations of G2 on itself is isometric
and by the definition of ρ0, we have g “ rx0 rx

´1 P BG2pid, ρ0q Ă G2pOνq. Since πm,n is
G2-equivariant, we have g x “ πm,npg rxq “ πm,npĂx0q “ x0. Since φm,n is constant on the left
orbits of G2pOνq, we have φm,npxq “ φm,npx0q, therefore f1,2 ˝ φm,npxq “ f1,2 ˝ φm,npx0q. l
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4 Joint equidistribution of primitive partial lattices

4.1 The correspondence between primitive partial lattices and integral
group elements

The aim of this subsection is to naturally and injectively associate elements in the modular
group Γ “ SLdpRνq of integral points of G “ SLdpKνq to primitive m-lattices in R d

ν . We
start by introducing the subsets of the group G and of the moduli spaces PL m,d, Grm,d,
Lat1m,n which will be technically useful.

We fix from now on a compact-open strict fundamental domain D for the action by
translations of Rν on Kν (for instance d “ πνOν when K “ FqpY q and ν “ ν8), such that
for every x P D , the (closed) ball Bpx, q ´1

ν q “ x ` πνOν in Kν is contained in D . This
is possible since Rν X πνOν “ t0u by Equation (2). We thus have a compact-open strict
fundamental domain

l “
␣

pxi,jq1ďiďm,1ďjďn P Mm,npKνq : @ i P J1,mK, @ j P J1, nK, xi,j P D
(

for the action by translations of the Rν-lattice Mm,npRνq on the Kν-vector space Mm,npKνq,
for instance l “ Mm,npπνOνq if K “ FqpY q and ν “ ν8. We also fix a closed-open strict
fundamental domain G2

♢ for the action by translations on the right of the discrete subgroup
G2pRνq on G2, so that we have G2 “ G2

♢ G2pRνq with unique writing.
For every r P Z and for all measurable subsets Ψ of Mn,mpKνq and F of G2, we define

U´
Ψ “

!

`

Im 0
β In

˘

P U´ : β P Ψ
)

, G2
F “ G2

♢ X F , (50)

Zr “

!

`

λIm 0
0 λ1In

˘

P Z : νpλq “
lcmtm, nu

m
r
)

and U`
l “

!

`

Im γ
0 In

˘

P U` : γ P l

)

.

Note that Z “
Ů

rPZ Zr by Equation (23). As defined just before Proposition 2.8, let

G7 “ t
` α γ
β δ

˘

P G : νpdetαq P lcmtm, nu Z, βα´1 P Mn,mpOνqu ,

so that the product map pu´, g2, z, u`q ÞÑ u´ g2 z u` from U´pOνq ˆ G2 ˆ Z ˆ U` to G7

is a homeomorphism, by Proposition 2.5. For every closed subgroup H of G, let

H7 “ H X G7 . (51)

We also define the corresponding subset of the set PL m,d of primitive m-lattices in K d
ν

by
PL 7

m,d “ Γ7pR m
ν ˆ t0uq .

For every measurable subset E of Lat1m,n, with the map πm,n : G
2 Ñ Lat1m,n introduced

in Equation (44), we define
rE “ π ´1

m,n pE q Ă G2 , (52)

which is a measurable subset of G2 invariant by the translations on the right by G2pRνq.
For every measurable subset Φ of Gr7

m,d, with orbm : Mn,mpOνq Ñ Gr7

m,d the isometric
map defined in Subsection 3.1, we define

rΦ “ orb´1
m pΦq Ă Mn,mpOνq , (53)

which is a measurable subset of Mn,mpOνq.
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For every r P Z and for all measurable subsets Φ of Gr7

m,d and E of Lat1m,n, using the
notation of Equation (50) with Ψ “ rΦ and F “ rE , we finally define

Ω “ U´pOνq G2
♢ Z U`

l Ă G7 and ΩΦ,E ,r “ U´
rΦ
G2

rE
Zr U

`
l Ă Ω . (54)

Lemma 4.1 With c1
1 “ pq ´ 1q qpg´1qmn q 2mn`2

ν

śm
i“1pq i

ν ´1q2
śn

i“1pq i
ν ´1q2

pqν´1q2
śd

i“1pq i
ν ´1q2

, we have

µGpΩΦ,E ,rq “ c1
1 q

d lcmpm,nq r
ν µGrm,d

pΦq µLat1m,n
pE q .

Proof. By Proposition 2.5, we have

µGpΩΦ,E ,rq “ c1 µU´pU´
rΦ

q µG2pG2
rE
q µU`pU`

l q

ż

zPZr

|χmpzq|dm dµZpzq . (55)

By Equations (18), (53) and (33), and since Φ Ă Gr7

m,d, we have

µU´pU´
rΦ

q “ Haarn,mprΦq “ Haarn,mporb ´1
m pΦqq “ c1 µGrm,d

pΦq . (56)

By Equations (18) and (9), we have

µU`pU`
l q “ Haarm,nplq “ CovolpR mn

ν q “ qpg´1qmn . (57)

Note that z “
`

λIm 0
0 µIn

˘

belongs to Zr if and only if χmpzq “ λ “ π
´

lcmtm,nu

m
r

ν . Since the
Haar measure µZ is normalized so that µZpZpOνqq “ 1, we have

ż

zPZr

|χmpzq|dmdµZpzq “ |π
´

lcmtm,nu

m
r

ν |dm “ q d lcmpm,nq r
ν . (58)

Note that GL1
npAq for A “ Rν ,Oν ,Kν is stable by the Cartan involution g ÞÑ qg “ tg´1,

and that this map preserves the Haar measure µGL1
npKνq (defined in Subsection 3.2) of the

selfadjoint unimodular group GL1
npKνq. For every λ P O ˆ

ν , let

s1
mpλq “

``

λ 0
0 Im´1

˘

, In
˘

P GLmpOνq ˆ GLnpOνq .

Let ι : G2 Ñ GL1
mpKνq ˆ GL1

npKνq be the group morphism defined by
` g 0
0 g

˘

ÞÑ p g,qg q.
Any element of GL1

mpKνq ˆ GL1
npKνq may be written as s1

mpλq ιpg2q for unique elements
λ P O ˆ

ν and g2 P G2. Hence we have a split exact sequence

1 ÝÑ G2 ι
ÝÑ GL1

mpKνq ˆ GL1
npKνq ÝÑ O ˆ

ν ÝÑ 1 ,

which induces two split exact sequences

1 ÝÑ G2pOνq
ι

ÝÑ GLmpOνq ˆ GLnpOνq ÝÑ O ˆ
ν ÝÑ 1 ,

1 ÝÑ G2pRνq
ι

ÝÑ GLmpRνq ˆ GLnpRνq ÝÑ R ˆ
ν ÝÑ 1 .

By the normalisation of the measures (see Equations (36), (16) and (34)), the Haar measure
µGL1

mpKνq b µGL1
npKνq of GL1

mpKνq ˆ GL1
npKνq satisfies

dpµGL1
mpKνq b µGL1

npKνqqps1
mpλqιpg2qq “ p1 ´ q ´1

ν q dµG2pg2q dµO ˆ
ν

pλq . (59)
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We endow from now on the product space pGL1
mpKνq{GLmpRνqq ˆ pGL1

npKνq{GLnpRνqq

with the product measure µLat1m
bµLat1n

(see Subsection 3.2 for the definition of the measures
µLat1k

for k P N∖t0u) and the quotient space G2{G2pRνq with the measure µG2{G2pRνq so
that the two canonical projections (that are covering maps)

GL1
mpKνq ˆ GL1

npKνq Ñ pGL1
mpKνq{GLmpRνqq ˆ pGL1

npKνq{GLnpRνqq

and G2 Ñ G2{G2pRνq locally preserve the measures. Using Equation (43) for the first
equality below, and Equation (59) for the second one, since we have Card R ˆ

ν “ q ´ 1 by
Equation (2) and again by Equation (34), we hence have

}µLat1m,n
} “ }µLat1m

b µLat1n
} “

p1 ´ q ´1
ν q2

q ´ 1
}µG2{G2pRνq } .

Since the measures µLat1m,n
and µG2{G2pRνq on Lat1m,n “ G2{G2pRνq are both G2-invariant

(see Equation (42) for the first one), we thus have µLat1m,n
“

pqν´1q2

q 2
ν pq´1q

µG2{G2pRνq. In
particular, we have

µG2pG2
rE
q “ µG2pG2

♢ X rE q “ µG2{G2pRνqpE q “
pq ´ 1q q 2

ν

pqν ´ 1q2
µLat1m,n

pE q . (60)

Lemma 4.1 follows from Equation (55) by plugging in the computations of Equations (56),
(60), (57) and (58), by defining the constant c1

1 “ c 2
1

pq´1q q 2
ν

pqν´1q2
qpg´1qmn and by expliciting

c1 using Proposition 2.5. l

The following result gives a precise 1-to-1 correspondence between partial lattices in
PL 7

m,d “ Γ7pR m
ν ˆ t0uq and appropriate matrices in the discrete group Γ “ SLdpRνq.

Proposition 4.2 The map g ÞÑ Λg “ gpR m
ν ˆ t0uq from Γ X Ω to PL 7

m,d is a bijection
such that for every nonzero ideal I of Rν , for every r P Z and for all measurable subsets Φ
of Gr7

m,d and E of Lat1m,n, the following two assertions are equivalent
(1) the integral matrix g P Γ X Ω lies in ΩΦ,E ,r X ΓI ,
(2) the primitive m-lattice Λg P PL 7

m,d satisfies that Λg P PL m,dpIq (as defined in the
beginning of Subsection 2.4), VΛg P Φ (as defined in Subsection 2.2), JΛgK P E (as
defined in Equation (49)) and CovolpΛgq “ CovolppΛgqKq “ q

lcmtm,nur
ν .

Proof. Since Ω Ă G7, if g P Γ X Ω, then g P Γ7, thus Λg “ gpR m
ν ˆ t0uq P PL 7

m,d. Hence
the above map is well defined.

For all g “
` α γ
β δ

˘

P G7 and p` “
`

α1 γ1

0 δ1

˘

P P` “ G2ZU` Ă G7, since the first column
of g p` is

`

αα1

βα1

˘

, since pβα1qpαα1q´1 “ βα´1 and since νpdetpαα1qq “ νpdetαq ` νpdetα1q,
we have g p` P G7. In particular, the action by right translations on Γ “ SLdpRνq of its
subgroup P`pRνq defined in Equation (11), which satisfies P`pRνq “ G2pRνqU`pRνq,
preserves Γ7 “ Γ X G7. By the identification given just after the statement of Lemma 2.1,
we thus have

PL 7

m,d “ Γ7{P`pRνq . (61)

Let us prove that
G7 “

ž

γPP`pRνq

Ω γ . (62)
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Since P`pRνq Ă Γ, this will imply that Γ7 “ Γ X G7 “
š

γPP`pRνqpΓ X Ωqγ. By Equation
(61), this will imply that the map g ÞÑ Λg “ gpR m

ν ˆ t0uq from Γ X Ω to PL 7

m,d is a
bijection.

In order to prove Equation (62), let us fix g P G7. By Proposition 2.5, there exist unique
elements u´ P U´pOνq, g2 “

` g 0
0 g

˘

P G2, z P Z and u` P U` such that g “ u´ g2 z u`. By

the definition of the fundamental domain G2
♢, there exist a unique f2 “

` f 0
0 f

˘

P G2
♢ and a

unique γ2 “
` γ 0
0 γ

˘

P G2pRνq such that

f γ “ g, f γ “ g and g2 “ f2 γ2 . (63)

Since Z centralizes G2, we have g “ u´ f2 z γ2 u`. Since G2 normalizes U`, and by
the definition of l, there exist unique elements u`

0 P U`
l and γ0 P U`pRνq such that

γ2 u`pγ2q´1 “ u`
0 γ0. Defining γ “ γ0γ

2 P P`pRνq, we have

g “ u´ f2 z pγ2 u`pγ2q´1q γ2 “ u´ f2 z u`
0 γ (64)

and u´ f2 z u`
0 P Ω by the definition of Ω in Equation (54). Since the writing h “ u`

0 γ of
an element h P P`pRνq “ U`pRνqG2pRνq with u`

0 P U`pRνq and γ P G2pRνq is unique,
this proves Equation (62).

Let us now assume that g P Γ X Ω. By the uniqueness of the writing in Equation (64),
we may uniquely write g “ u´ f2 z u`

0 with u´ P U´pOνq, f2 P G2
♢, z P Z and u`

0 P U`
l .

By the definition of ΩΦ,E ,r in Equation (54), we have g P ΩΦ,E ,r if and only if u´ P U´
rΦ

,
f2 P G2

rE
and z P Zr.

We have u´ P U´
rΦ

if and only if there exists β P rΦ with u´ “
`

Im 0
β In

˘

, hence if and only

if there exists β P rΦ “ orbm
´1pΦq with orbmpβq “ u´pK m

ν ˆ t0uq “ VΛu´
by the definition

of orbm in Subsection 3.1, therefore if and only if VΛg P Φ by Proposition 2.8 (i).
By Equation (52) and by the definition of πm,n in Equation (44), we have

G2
rE

“ G2
♢ X π ´1

m,n pE q “
␣` g 0

0 g

˘

P G2
♢ : p g R m

ν , qg R n
ν q P E

(

.

Hence by Equation (49) and since f2 P G2
♢, we have f2 P G2

rE
if and only if JΛgK P E .

We have z P Zr if and only if z “

¨

˝

π
´

lcmtm,nu

m
r

ν Im 0

0 π
lcmtm,nu

n
r

ν In

˛

‚, hence if and only if

CovolpΛgq “ q
lcmtm,nu r
ν by Proposition 2.8 (ii) and by Equation (28). Note that we have

CovolppΛgqKq “ CovolpΛgq by Proposition 2.8 (ii)K.
The fact that g P ΓI if and only if Λg P PL m,dpIq has been shown in Lemma 2.3 (1).

This concludes the proof of Proposition 4.2. l

4.2 Counting in well-rounded families

A crucial tool of this paper is a counting result of lattice points by Gorodnik and Nevo
[GN]. In this subsection, after the necessary definitions, we recall from [HP1] an adaptation
of the Gorodnik-Nevo result, and we proceed to the construction of the well-rounded family
of subsets to which we will apply it.
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Let G1 be an absolutely connected and simply connected semi-simple algebraic group
over Kν , which is almost Kν-simple. Let G1 “ G1pKνq be the locally compact group of
Kν-points of G1. Let Γ1 be a nonuniform2 lattice in G1, and let µG1 be any (left) Haar
measure of G1. Note that G1 “ G and Γ1 “ ΓI (defined in Subsection 2.4) satisfy these
assumptions for every nonzero ideal I of Rν .

Let ρ ą 0. Let pV 1
ϵ qϵą0 be a fundamental system of neighborhoods of the identity in

G1, which
‚ is symmetric (that is, x P V 1

ϵ if and only if x´1 P V 1
ϵ ),

‚ is nondecreasing with ϵ (that is, V 1
ϵ Ă V 1

ϵ1 if ϵ ď ϵ1), and
‚ has upper local dimension ρ, that is, there exist m1, ϵ1 ą 0 such that µG1pV 1

ϵ q ě m1 ϵ
ρ

for every ϵ P s0, ϵ1r .
Let C ě 0. Let pZnqnPN be a family of measurable subsets of G1. We define

pZnq`ϵ “ V 1
ϵ ZnV 1

ϵ “
ď

g,hPV 1
ϵ

gZnh and pZnq´ϵ “
č

g,hPV 1
ϵ

gZnh .

The family pZnqnPN is C-Lipschitz well-rounded with respect to pV 1
ϵ qϵą0 if there exists

ϵ0 ą 0 and n0 P N such that for all ϵ P s0, ϵ0r and n ě n0, we have

µG1ppZnq`ϵq ď p1 ` C ϵq µG1ppZnq´ϵq .

We refer to [HP1, Theo. 4.1] for a proof of the following adaptation of results of
Gorodnik-Nevo [GN].

Theorem 4.3 For every ρ ą 0, there exists τpΓ1q P s0, 1
2p1`ρq

s such that for every symmet-
ric nondecreasing fundamental system pV 1

ϵ qϵą0 of neighborhoods of the identity in G1 with
upper local dimension ρ, for every C ě 0, for every family pZnqnPN of measurable subsets
of G1 that is C-Lipschitz well-rounded with respect to pV 1

ϵ qϵą0, and for every δ ą 0, we
have that, as n Ñ `8,

ˇ

ˇ

ˇ
CardpZn X Γ1q ´

1

}µG1{Γ1}
µG1pZnq

ˇ

ˇ

ˇ
“ O

`

µG1pZnq1´τpΓ1q`δ
˘

,

where the function Op¨q depends only on G1,Γ1, δ, C, pV 1
ϵ qϵą0, ρ. l

We will use, as a fundamental system of neighborhoods of the identity element in G,
a family of compact-open subgroups of GpOνq given by the kernels of the morphisms of
reduction modulo π N

ν Oν for appropriate N P N. For every ϵ ą 0, let Nϵ “
X

´ logqν ϵ
\

so
that Nϵ ě 1 if and only if ϵ ď 1

qν
. Let Vϵ “ GpOνq if ϵ ą 1

qν
and otherwise let

Vϵ “ kerpGpOνq Ñ SLdpOν{π Nϵ
ν Oνqq

“
␣

Id ` π Nϵ
ν X : X P MdpOνq

(

X G . (65)

The family pVϵqϵą0 is indeed nondecreasing and we have
Ş

ϵą0 Vϵ “ tidu. Note that for all
ϵ1, . . . , ϵk ą 0, we have

mintNϵ1 , ¨ ¨ ¨ , Nϵku ě mint´ logqν ϵ1, ¨ ¨ ¨ ,´ logqν ϵku ´ 1

ě ´ logqν pϵ1 ` ¨ ¨ ¨ ` ϵkq ´ 1 ě Nqνpϵ1`¨¨¨`ϵkq ,

2This implies that G1 is isotropic over Kν , as part of the assumptions of [GN].

30



hence
Vϵ1Vϵ2 ¨ ¨ ¨ Vϵk Ă Vqνpϵ1`¨¨¨`ϵkq . (66)

For every subgroup H of G, let V H
ϵ “ Vϵ X H. The index of Vϵ in GpOνq is given by

Lemma 2.6 with N “ Nϵ.

We denote the operator norm of a linear operator ℓ of the normed Kν-algebra MdpKνq

(for the supremum norm defined before Lemma 3.1) by

}ℓ} “ max
!

}ℓpXq}

}X}
: X P MdpKνq ´ t0u

)

P q Z
ν Y t0u ,

so that ℓpMdpOνqq Ă Mdpπ
´ logqν }ℓ}
ν Oνq if ℓ is invertible. For every g P G, recall that Ad g

is the linear automorphism x ÞÑ gxg´1 of MdpKνq. Also recall that P´ “ U´G2Z.

Lemma 4.4 For all ϵ P s0, 1
qν

s and g P G, we have

g Vϵ g
´1 Ă V}Ad g } ϵ , Vϵ “ V P´

ϵ V U`

ϵ and V P´

ϵ “ V U´

ϵ V G2

ϵ .

Furthermore, the number ρ “ d2 ´ 1 is an upper local dimension of the family pVϵqϵą0.

Proof. The first claim follows from the fact that

g Vϵ g
´1 “

`

Id ` π Nϵ
ν gMdpOνqg´1

˘

X G

Ă
`

Id ` π
Nϵ´logqν }Ad g }
ν MdpOνq

˘

X G “ Vϵ }Ad g } .

Note that Vϵ is contained in UG (defined in Equation (15)). Indeed, if g “
` α γ
β δ

˘

P Vϵ

then α P Im ` πNϵ
ν MmpOνq, hence detpαq P 1 ` πNϵ

ν Oν , so that νpdetαq “ 0 P lcmtm, nuZ
since Nϵ ě 1 and therefore g P UG.

By Proposition 2.5, we may hence uniquely write any g “
` α γ
β δ

˘

P Vϵ as g “ u´ g2 z u`

with u´ P U´, g2 P G2, z P Z and u` P U`. By Equation (22) and since νpdetαq “ 0,
we have α P GLmpOνq, u˘ P U˘pOνq, g2 P G2pOνq and z “ Id. Furthermore, since g P Vϵ,
we have α “ Im mod π Nϵ

ν , γ “ 0 mod π Nϵ
ν , β “ 0 mod π Nϵ

ν and δ “ In mod π Nϵ
ν .

Therefore again by Equation (22), we have u˘ P V U˘

ϵ and g2 P V G2

ϵ . This proves the
second and third claims.

In order to prove the last claim, let us apply Lemma 2.6 with N “ Nϵ “
X

´ logqν ϵ
\

,
so that Nϵ ´ 1 ď ´ logqν ϵ. Since µGpGpOνqq “ 1, we hence have

µGpVϵq “
µGpGpOνqq

rGpOνq : Vϵs
“

qν ´ 1

q
pNϵ´1qpd2´1q
ν

d´1
ź

i“0

pq d
ν ´ q i

ν q´1 ě ϵd
2´1pqν ´ 1q

d´1
ź

i“0

pq d
ν ´ q i

ν q´1 .

This proves the result. l

We will need the following effective version of the refined LU decomposition by blocks
given in Proposition 2.5. We denote by c : h ÞÑ ch the continuous function from G to
r0,`8r defined by ch “ }Adh } for every h P G.

Lemma 4.5 For all ϵ P s0, 1
qν

s, u´ P U´, g2 P G2, z P Z and u` P U`, if |χmpzq| ě 1 and
g “ u´ g2 z u`, then

Vϵ g Vϵ Ă u´ V U´

cg2qνpcu´g2 `cu` q ϵ g
2 V G2

qνpcu´g2 `cu` q ϵ z V U`

qνpcu´g2 `2cu` q ϵ u
` .
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Proof. In order to simplify the notation, let p “ u´g2 and u “ u`, so that g “ pzu. If
z “

`

λIm 0
0 µIn

˘

, as seen in Equation (19) for the first equality, we have

z
`

Im 0
β In

˘

z´1 “
` Im 0
µλ´1β In

˘

and z´1
`

Im γ
0 In

˘

z “
`

Im λ´1µγ
0 In

˘

.

Since |λ| “ |χmpzq| ě 1 and det z “ 1 so that |µ| “ |λ|´
m
n ď 1, for every ϵ1 ą 0, we have

z V U´

ϵ1 z´1 Ă V U´

ϵ1 and z´1 V U`

ϵ1 z Ă V U`

ϵ1 . (67)

Using for the following sequence of equalities and inclusions respectively
‚ the first claim of Lemma 4.4 for the first inclusion,
‚ the second and third claims of Lemma 4.4 for the second equality,
‚ the claim on the left in Equation (67) and the fact that Z centralises G2 for the

second inclusion,
‚ the fact that Vcuϵ is a normal subgroup of GpOνq that contains V U´

cuϵ V G2

cuϵ for the
third inclusion,

‚ twice the claim on the right in Equation (67) for the fourth inclusion,
‚ twice Equation (66) with k “ 2 and k “ 3, defining the constants c2

1 “ qνpcp ` cuq

and c2
2 “ qνpcp ` 2cuq for the fifth inclusion,

‚ again the third claim of Lemma 4.4 for the sixth equality,
‚ the fact that G2 normalizes U´ and again the first claim of Lemma 4.4 for the last

inclusion,
we have

Vϵ g Vϵ “ p p´1Vϵ p z uVϵ u
´1 u Ă pVcpϵ z Vcuϵ u “ pV P´

cpϵ V U`

cpϵ z V U´

cuϵ V G2

cuϵ V U`

cuϵ u

“ pV P´

cpϵ V U`

cpϵ z V U´

cuϵ z´1 z V G2

cuϵ V U`

cuϵ u Ă pV P´

cpϵ V U`

cpϵ V U´

cuϵ V G2

cuϵ z V U`

cuϵ u

Ă pV P´

cpϵ Vcuϵ V U`

cpϵ z V U`

cuϵ u “ pV P´

cpϵ V P´

cuϵ V U`

cuϵ V U`

cpϵ z V U`

cuϵ u

“ pV P´

cpϵ V P´

cuϵ z z´1 V U`

cuϵ z z´1 V U`

cpϵ z V U`

cuϵ u

Ă pV P´

cpϵ V P´

cuϵ z V U`

cuϵ V U`

cpϵ V U`

cuϵ u Ă pV P´

c2
1ϵ

z V U`

c2
2ϵ

u

“ u´ g2 V U´

c2
1ϵ

V G2

c2
1ϵ

z V U`

c2
2ϵ

u “ u´ g2 V U´

c2
1ϵ

g2´1
g2 V G2

c2
1ϵ

z V U`

c2
2ϵ

u

Ă u´ V U´

cg2c2
1ϵ

g2 V G2

c2
1ϵ

z V U`

c2
2ϵ

u ,

as wanted. l

Let Φ be a closed ball of radius less than 1 in the metric space Grm,d, contained in
Gr7

m,d. By Lemma 3.1 and with the notation of Equation (53), the set rΦ “ orb ´1
m pΦq is

a closed ball of same radius in Mn,mpOνq. Let E be a closed ball in Lat1m,n, small enough
so that there exists a closed ball in the clopen fundameental domain G2

♢ which maps
isometrically to E by the locally isometric map πm,n : G2 Ñ Lat1m,n defined in Equation
(44). Let rE “ π´1

m,npE q and let r P N. Using the notation ΩΦ,E ,r defined in Equation (54),
the family of Lipschitz well-rounded subsets with respect to pVϵqϵą0 that we will use in
order to apply Theorem 4.3 is given by the following result.

Proposition 4.6 With Φ and E as above, the family
`

ΩΦ,E ,r

˘

rPN is 0-Lipschitz well-
rounded with respect to pVϵqϵą0.
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Proof. Recall that ΩΦ,E ,r “ U´
rΦ

G2
rE
Zr U`

l with the notation at the beginning of
Subsection 4.1. We will actually prove (as allowed by the ultrametric situation) the stronger
statement that given Φ and E as above, if ϵ is small enough, then for every r P N, we have

`

U´
rΦ
G2

rE
Zr U

`
l

˘´ϵ
“ U´

rΦ
G2

rE
Zr U

`
l “

`

U´
rΦ
G2

rE
Zr U

`
l

˘`ϵ
.

Let

c “ max
␣

qν maxtcg2pcu´g2 ` cu`q, cu´g2 ` 2 cu`u : u´ P U´
rΦ
, g2 P G2

rE
, u` P U`

l

(

, (68)

which is finite since U´
rΦ

, G2
rE

and U`
l are compact subsets of G. Since rΦ is a ball of radius

less than 1 in Mn,mpKνq, let v0 P Mn,mpKνq and k P N∖t0u be such that

rΦ “ v0 ` π k
ν Mn,mpOνq .

Let rE be the radius of the ball E (satisfying the assumptions of Proposition 4.6). By
Equation (46) and since the map g ÞÑ qg is an isometry of GLnpKνq, there exists

` g0 0
0 g

0

˘

P G2

such that
G2

rE
“
␣` g 0

0 g

˘

P G2 : maxtdpg, g0q, dpg, g
0
qu ď rE

(

. (69)

Let us now consider ϵ0 “ 1
c q

´maxtk, rE `logqν p 1
rE

}g0} }g0
´1}q, rE `logqν p 1

rE
}g

0
} }g

0
´1}qu´2

ν ą 0,
so that for every ϵ P s0, ϵ0r , we have

Ncϵ ą 1 ` max
␣

k, rE ` logqν
` 1

rE
}g0} }g0

´1}
˘

, rE ` logqν
` 1

rE
}g

0
} }g

0
´1}

˘(

ě 1 . (70)

Let us prove that for every ϵ P s0, ϵ0r , we have

U´
rΦ

V U´

cϵ “ U´
rΦ
, G2

rE
V G2

cϵ “ G2
rE

and V U`

cϵ U`
l “ U`

l . (71)

For all u P U´
rΦ

and u1 P V U´

cϵ , let β, β1 P Mn,mpOνq be such that u “
` Im 0
v0`π k

ν β In

˘

and u1 “
` Im 0

π Ncϵ
ν β1 In

˘

. Then since Ncϵ ą k, we have uu1 “
` Im 0

v0`π k
ν β`π Ncϵ

ν β1 In

˘

P U´
rΦ

.

Therefore we have U´
rΦ

V U´

cϵ Ă U´
rΦ

and the opposite inclusion is clear. This proves the
equality on the left-hand side of Formula (71).

The proof of the equality on the right-hand side is similar. For all u P U`
l and u1 P V U`

cϵ ,
let γ P l and γ1 P Mm,npOνq be such that u “

`

Im γ
0 In

˘

and u1 “
`

Im π Ncϵ
ν γ1

0 In

˘

. Then since
Ncϵ ą 1 and since l ` πνMm,npOνq “ l by the construction of the fundamental domain
D at the beginning of Subsection 4.1, we have u1u “

`

Im γ`π Ncϵ
ν γ1

0 In

˘

P U`
l . Therefore we

have V U`

cϵ U`
l Ă U`

l and the opposite inclusion is clear.

Let g “

´

g 0
0 g

¯

P G2
rE
. For every g1 “

´

g1 0
0 g1

¯

P V G2

cϵ , there exist α P MmpOνq and
δ P MnpOνq such that

g1 “ Im ` π Ncϵ
ν α and g1 “ In ` π Ncϵ

ν δ .

We have gg1 “

´

g g1 0
0 g g1

¯

P G2. Let us prove that dpg g1, g0q ď rE . A similar proof gives

that dpg g1, g
0
q ď rE , thus proving that G2

rE
V G2

cϵ Ă G2
rE

by Equation (69). The opposite
inclusion being clear, this proves the middle equality of Formula (71).
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By the submultiplicativity of the supremum norm, since α P MmpOνq so that }α} ď 1,
by Lemma 3.3 since g P Bpg0, rE q and by Equation (70), we have

}π Ncϵ
ν g α g0

´1} ď q ´Ncϵ
ν }g} }α} }g0

´1} ď q ´Ncϵ`rE
ν }g0} }g0

´1} ď
rE

qν
.

We also have, by the ultrametric triangle inequality,

} g g1 g0
´1 ´ Im} “ } gpIm ` π Ncϵ

ν αq g0
´1 ´ Im} “ } g g0

´1 ´ Im ` π Ncϵ
ν g α g0

´1}

ď maxt} g g0
´1 ´ Im}, }π Ncϵ

ν g α g0
´1}u .

Thus since g P Bpg0, rE q and lnp1 ` tq ď t for every t ě 0, we have

logqν p1 ` } g g1 g0
´1 ´ Im}q ď maxtrE , logqν p1 `

rE

qν
qu ď rE .

Since Ncϵ ě 1, the standard formula for the inverse of Im`X when }X} ă 1 gives that there
exists α1 P MnpOνq such that g1

´1
“ Im ` π Ncϵ

ν α1. A proof similar to the one above thus
gives that logqν p1` } g0p g g1 q´1 ´ Im}q ď rE , which proves as wanted that dpg g1, g0q ď rE .
This concludes the proof of Formula (71).

Now, for every r P N, we have by Lemma 4.5 and by Equations (68) and (71) that
`

U´
rΦ
G2

rE
Zr U

`
l

˘`ϵ
“ Vϵ U

´
rΦ
G2

rE
Zr U

`
l Vϵ

Ă U´
rΦ

V U´

cϵ G2
rE
V G2

cϵ Zr V U`

cϵ U`
l “ U´

rΦ
G2

rE
Zr U

`
l .

Since the converse inclusion is immediate, we have
`

U´
rΦ
G2

rE
Zr U

`
l

˘`ϵ
“ U´

rΦ
G2

rE
Zr U

`
l .

Since Vϵ, being a subgroup, is stable by g ÞÑ g´1, this implies that g U´
rΦ
G2

rE
Zr U

`
l h

contains U´
rΦ
G2

rE
Zr U

`
l for all g, h P Vϵ, so that

`

U´
rΦ
G2

rE
Zr U

`
l

˘´ϵ
Ą U´

rΦ
G2

rE
Zr U

`
l . Since

the converse inclusion is immediate, this concludes the proof of Proposition 4.6. l

4.3 The main statement and its proof

Error terms in equidistribution results usually require smoothness properties on test func-
tions. The appropriate smoothness regularity of functions defined on ultrametric spaces
as Grm,d and Lat1m,n is the locally constant one. The locally constant regularity on such
homogeneous spaces of totally discontinuous groups could be defined (as for instance in
[AtGP], [KPS, §4.3]) by using the familly of small compact-open subgroups pVϵqϵ P s0,1s of
G defined in Subsection 4.2, and by defining an ϵ-locally constant map on Lat1m,n to be a
map which is constant on every orbit of Vϵ X G2 on Lat1m,n. But it turns out to be more
convenient in this paper to use a general purely metric definition. For every ultrametric
space E and ϵ P s0, 1s, a bounded map f : E Ñ R is ϵ-locally constant if it is constant on
every closed ball of radius ϵ in E. With }f}8 “ supxPE |fpxq| the supremum norm of f ,
the ϵ-locally constant norm of f is }f}ϵ “

}f}8

ϵ .

The key result of this paper is the following one. Let ℓ “ lcmpm, nq. For every nonzero
ideal I of Rν , let PL 7

m,dpIq “ Γ7

IpR m
ν ˆ t0uq (see Subsection 2.4 for the definition of ΓI

and Equation (51) for the one of Γ7

I) and

cI “ (72)

q pg´1qpd2´d`1´mnq pq d
ν ´ 1q2

śd
i“2ppq i´1

ν ´ 1q ζKpiqqNpIqmn
ś

p |I

śm
i“1

Nppqi´Nppq´n

Nppqi´1

pq ´ 1q q 2mn`2
ν

śm
i“1pq i

ν ´ 1q2
śn

i“2pq i
ν ´ 1q2

.
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Theorem 4.7 For every nonzero ideal I of Rν , for the weak-star convergence of Borel
measures on the locally compact space Gr7

m,d ˆLat1m,n, we have

lim
iÑ`8

cI
q ℓd i
ν

ÿ

ΛPPL 7

m,dpIq : Covol Λ“ q ℓ i
ν

∆VΛ
b ∆JΛK “ µGrm,d |Gr7

m,d

b µLat1m,n
. (73)

Furthermore, there exists τ P s0, 1
2d2 s such that for all δ P s0, τ r and ϵ P s0, 1s, there is an

additive error term of the form Oν,δ,I

`

q
ℓd ip´τ`δq
ν }f}ϵ }g}ϵ

˘

in the above equidistribution
claim when evaluated on pairs pf, gq for all compactly supported ϵ-locally constant maps
f : Gr7

m,d Ñ R and g : Lat1m,n Ñ R : as i Ñ `8, we have

cI
q ℓd i
ν

ÿ

ΛPPL 7

m,dpIq : Covol Λ“ q ℓ i
ν

fpVΛq gpJΛKq

“

´

ż

Gr7

m,d

f dµGrm,d

¯´

ż

Lat1m,n

g dµLat1m,n

¯

` Oν,δ,I

`

q ℓd ip´τ`δq
ν }f}ϵ }g}ϵ

˘

.

Proof. Let Λ P PL 7

m,d. Then there exists g P Γ7 (thus g P UG) such that we have
Λ “ Λg “ gpR m

ν ˆt0uq, so that if g “ u´ g2 z u` is the decomposition given by Proposition
2.5, then u´ P U´pOνq. Hence by Proposition 2.8 (i), we have

VΛ “ VΛg “ VΛu´
P Gr7

m,d “ U´pOνqVR m
ν ˆt0u .

Furthermore, we have JΛK P Lat1m,n by Equation (49), so that the statement of Theorem
4.7 is well defined.

Let I be a nonzero ideal of Rν . Let τ “ τpΓIq P s0, 1
2d2 s be as in Theorem 4.3 applied

with G1 “ G, with Γ1 “ ΓI and with the family pV 1
ϵ qϵą0 “ pVϵqϵą0 given by Equation (65),

which has an upper local dimension ρ “ d2 ´ 1 according to the final claim of Lemma 4.4.
Let δ P s0, τ r.

Let Φ be a closed ball in Grm,d of radius rΦ P s0, c
1

mn
1 s, where c1 ď 1 is given by

Proposition 2.5. Besides, we assume that Φ is contained in Gr7

m,d. By Lemma 3.1 and with
the notation of Equation (53), it follows that rΦ “ orb ´1

m pΦq is a closed ball of radius rΦ
in Mn,mpOνq. Let χΦ be the characteristic function of Φ, which is rΦ-locally constant with
}χΦ}rΦ “ 1

rΦ
ě 1. By Equation (56), we have

µGrm,d
pΦq “

1

c1
Haarn,mprΦq “

1

c1
r mn
Φ ď 1 ,

so that, since τ ď 1
2d2 ď 1

mn , we have

µGrm,d
pΦq´τ`δ ď µGrm,d

pΦq´τ “ Op}χΦ}rΦq . (74)

Let E be a closed ball in Lat1m,n of radius rE P s0, 1s small enough so that µLat1m,n
pE q ď 1

and there exists a closed ball rE0 in G2
♢ mapping isometrically to E by πm,n : G

2 Ñ Lat1m,n.
Let rE “ π ´1

m,n pE q “
Ů

γPG2pRνq
rE0 γ. Let χE be the characteristic function of E , which is

rE -locally constant with }χE }rE “ 1
rE

ě 1. By Equation (60) and by the Alhfors regularity
of the homogeneous measure µG2 of the group G2 with dimension dimG2 ď m2 `n2 ď 2d2
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for the distance d defined in Section 3.3 (see in particular Equation (45)), there exists a
constant c ą 0 such that

µLat1m,n
pE q “

pqν ´ 1q2

pq ´ 1q q 2
ν

µG2pG2
rE
q “

pqν ´ 1q2

pq ´ 1q q 2
ν

µG2p rE0q ě c r dimG2

E ě c r 2d2

E ,

so that, since τ ď 1
2d2 and µLat1m,n

pE q ď 1, we have

µLat1m,n
pE q´τ`δ “ Op}χE }rE q . (75)

For every r P N, let us define

PL 7

m,dpI,Φ,E , rq “ tΛ P PL 7

m,dpIq : VΛ P Φ, JΛK P E , Covol Λ “ q ℓ r
ν u

Using respectively
‚ Proposition 4.2 for the first equality,
‚ Theorem 4.3 applied to the family pZr “ ΩΦ,E ,rqrPN (where the set ΩΦ,E ,r is defined

in Equation (54)), which is 0-Lipschitz well-rounded with respect to pVϵqϵą0 by Proposition
4.6 for the second equality,

‚ Lemma 4.1 for the third equality,
‚ Equations (74) and (75) for the last equality (and the fact that µGrm,d

and µLat1m,n

are finite measures),
we have

CardPL 7

m,dpI,Φ,E , rq “ CardpΩΦ,E ,r X ΓIq

“
1

}µG{ΓI
}
µGpΩΦ,E ,rq

`

1 ` O
`

µGpΩΦ,E ,rq´τ`δ
˘˘

“
c1
1 q

d ℓ r
ν

}µG{ΓI
}
µGrm,d

pΦqµLat1m,n
pE q

`

1 ` O
`

q d ℓ rp´τ`δq
ν µGrm,d

pΦq´τ`δµLat1m,n
pE q´τ`δ

˘˘

“
c1
1 q

d ℓ r
ν

}µG{ΓI
}

`

µGrm,d
pΦqµLat1m,n

pE q ` O
`

q d ℓ rp´τ`δq
ν }χΦ}rΦ }χE }rE

˘˘

. (76)

Let cI “
}µG{ΓI

}

c1
1

“
rΓ:ΓI s }µG{Γ}

c1
1

. With the value of rΓ : ΓIs given by Lemma 2.3 (2), the
value of }µG{Γ} given by Equation (40) with k “ d and the value of c1

1 given in Lemma
4.1, we have

cI “
N pIqmn

ś

p |I

śm
i“1

Nppqi´Nppq´n

Nppqi´1
q pg´1qpd2´d`1q

śd´1
i“1

ζKp1`iq
q i
ν ´1

pq ´ 1q qpg´1qmn q 2mn`2
ν

śm
i“1pq i

ν ´1q2
śn

i“1pq i
ν ´1q2

pqν´1q2
śd

i“1pq i
ν ´1q2

,

as wanted in Equation (72). Note that every compactly supported ϵ-locally constant map
on an ultrametric space is a finite linear combination of characteristic functions of balls of
radius ϵ. By a finite bilinearity argument, Theorem 4.7 follows from Equation (76). l

Corollary 4.8 For every nonzero ideal I of Rν , for the weak-star convergence of Borel
measures on the locally compact space Grm,d ˆSh1m ˆSh1n, we have

lim
iÑ`8

cI p1 ´ q ´1
ν q´2

q ℓd i
ν

ÿ

ΛPPL m,dpIq : Covol Λ“ q ℓ i
ν

∆VΛ
b ∆shpΛq b ∆shpΛKq

“ µGrm,d
b µSh1m

b µSh1n
. (77)
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Furthermore, there exists τ P s0, 1
2d2 s such that for all δ P s0, τ r and ϵ P s0, 1s, there is an

additive error term of the form Oν,δ,I

`

q
ℓd ip´τ`δq
ν }f}ϵ }f1}8}f2}8

˘

in the above equidistri-
bution claim when evaluated on pf, f1, f2q for every compactly supported ϵ-locally constant
map f : Grm,d Ñ R and for all finitely supported maps f1 : Sh1m Ñ R and f2 : Sh1n Ñ R :
as i Ñ `8, we have

cI p1 ´ q ´1
ν q´2

q ℓd i
ν

ÿ

ΛPPL m,dpIq : Covol Λ“ q ℓ i
ν

fpVΛq f1pshpΛqq f2pshpΛKqq

“

´

ż

Grm,d

f dµGrm,d

¯´

ż

Sh1m

f1 dµSh1m

¯´

ż

Sh1n

f2 dµSh1n

¯

` Oν,δ,I

`

q ℓd ip´τ`δq
ν }f}ϵ }f1}8}f2}8

˘

.

Theorem 1.2 in the Introduction follows from the first claim of this corollary by taking
I “ Rν .

Proof. Step 1. We first prove the result with Gr7

m,d instead of Grm,d and PL 7

m,dpIq

instead of PL m,dpIq.
Since the map φm,n (defined in Equation (48)) is proper by Lemma 3.4, the pushforward

map pφm,nq˚ of Borel measures by φm,n is linear and weak-star continuous. Hence applying
the map pidˆφm,nq˚ to Equation (73), using Lemma 3.4 (2) on the left hand side of
Equation (73), and Lemma 3.4 (1) on the right hand side of Equation (73), we have

lim
iÑ`8

cI
q ℓd i
ν

ÿ

ΛPPL 7

m,dpIq : Covol Λ“ q ℓ i
ν

∆VΛ
b ∆shpΛq b ∆shpΛKq

“ p1 ´ q ´1
ν q2 µGrm,d |Gr7

m,d

b µSh1m
b µSh1n

.

It follows from Lemma 3.4 (3) and from the error term in Theorem 4.7 applied with the
compactly supported ρ0-locally constant function g “ pf1 ˆ f2q ˝ φm,n that we have an
additive error term of the form Oν,δ,I

`

q
ℓd ip´τ`δq
ν }f}ϵ }f1}8}f2}8

˘

in this equidistribution
claim when evaluated on pf, f1, f2q for every compactly supported ϵ-locally constant map
f : Gr7

m,d Ñ R and for all finitely supported maps f1 : Sh
1
m Ñ R and f2 : Sh

1
n Ñ R .

Step 2. We now explain how to deduce Corollary 4.8 from the equidistribution of
pVΛ, shpΛq, shpΛKqq in Gr7

m,d ˆSh1m ˆSh1n when Λ varies in PL 7

m,dpIq with the appropriate
covolume. The key technical lemma is the following one.

Let us denote by Wd the Weyl subgroup of GLdpKνq consisting in the permutation
matrices of the canonical basis of K d

ν . Note that Wd is contained in GLdpRνq XGLdpOνq.

Lemma 4.9 For every g P GLdpKνq, there exists σ P Wd such that if σg “
` α γ
β δ

˘

with
α P MmpKνq, then α P GLmpKνq and β α´1 P Mn,mpOνq.

Proof. For every g P MdpKνq, we denote by gm| the submatrix of g consisting of its first
m columns. For all α P MmpKνq and j, k P J1,mK, we denote by α

pj,pk
the submatrix of α

where the j-th row and k-th column have been removed. Recall that the pj, kq coefficient
of the comatrix Commpαq of α is Commpαqj,k “ p´1qj`k detα

pj,pk
.

Note that the statement of Lemma 4.9 is invariant by multiplication of the left of g
by an element of Wd. Since multiplying on the left g by an element of Wd amounts to
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permuting the rows of g, up to such a multiplication, we may assume that the absolute
value of the upper-left mˆm minor of gm| (hence of g) is maximal over the absolute values
of all m ˆ m minors of gm|. Let us then prove that if g “

` α γ
β δ

˘

with α P MmpKνq, then
α P GLmpKνq and β α´1 P Mn,mpOνq, which proves Lemma 4.9 by taking σ “ id.

Since g is invertible, the rank of its submatrix gm| is m. Hence gm| has at least one
nonzero m ˆ m minor, so that | detα| ‰ 0 by the above maximality property.

For all i P J1, nK and j P J1,mK, let us prove that the pi, jq-coefficient pβα´1qi,j of the
matrix βα´1 P Mn,mpKνq has absolute value at most 1, which proves Lemma 4.9. We
denote by Api, jq P MmpKνq the matrix α where its j-th row has been replaced by the
pi ` mq-th row of gm|. By the above maximality property and since detApi, jq is an m ˆ m
minor of gm|, we have

| detApi, jq| ď |detα| .

Since the i-th row of β is the pi ` mq-th row of gm|, since α´1 “ 1
detα

tCommpαq, and by
the Laplace expansion formula for the determinant of Api, jq with respect to its j-th row,
we have

pβα´1qij “

m
ÿ

k“1

βi,kpα´1qk,j “
1

detα

m
ÿ

k“1

gi`m,k Commpαqj,k

“
1

detα

m
ÿ

k“1

p´1qj`kgi`m,k detα
pj,pk

“
detApi, jq

detα
.

Therefore |pβα´1qij | ď 1, as wanted. l

The linear action of an element σ of the Weyl group Wd on an element Λ P PLm,d

satisfies the following properties.
‚ Since σ P GLdpRνq, the m-lattice σΛ is primitive, and by Equation (8), we have

CovolpσΛq “ CovolpΛq .

‚ We have VσΛ “ σVΛ by the left hand side of Equation (7).
‚ Since σ P GLdpOνq, and by the construction of the shape map sh in and above

Equation (27), we have shpσΛq “ shpΛq.
‚ Let R d,˚

ν be the standard full Rν-lattice of the dual space of K d
ν , which is invariant

under the dual action of σ since qσ “ tσ´1 P GLdpRνq. As seen in Equation (12), we have
pσΛqK “ qσpΛKq. Hence shppσΛqKq “ shpΛKq since qσ P GLdpOνq.

‚ By the GLdpOνq-invariance of the probability measure µGrm,d
(see Subsection 3.1),

and since σ P GLdpOνq, we have σ˚µGrm,d
“ µGrm,d

.
‚ Since σ P GLdpOνq, the left action of σ on Grm,d is isometric for the distance d on

Grm,d constructed in Subsection 3.1.

By Lemma 4.9, for every Λ P PLm,d∖PL 7

m,d with CovolpΛq P q ℓZ
ν , there exists

σ P Wd such that σΛ P PL 7

m,d and VσΛ “ σVΛ P Gr7

m,d. Furthermore, σ maps a small
ball centered at VΛ contained in Grm,d∖Gr7

m,d to a ball contained in Gr7

m,d centered at
VσΛ of the same radius, by the last point above. Hence the equidistribution with error
term as i Ñ `8 of pVΛ, shpΛq, shpΛKqq in Grm,d ˆSh1m ˆSh1n when Λ varies in PL m,dpIq

with CovolpΛq “ q ℓ i
ν follows from the equidistribution with error term as i Ñ `8 of

pVΛ, shpΛq, shpΛKqq in Gr7

m,d ˆSh1m ˆSh1n when Λ varies in PL 7

m,dpIq with CovolpΛq “ q ℓ i
ν .

l
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We conclude this paper with a proof of Corollary 1.1 in the introduction.

Proof that Theorem 1.2 implies Corollary 1.1. For k “ m, n, with rΓk “ GLkpRνq,
let us consider the map ι : D ÞÑ D´1 defined in the Introduction from the discrete set
Sh1k “ GLkpOνq zGL1

kpKνq { rΓk to the discrete set rΓkzV0Iν,k “ rΓk zGL1
kpKνq { GLkpOνq.

By Equation (36) , this map satisfies

ι˚µSh1k
“ µGL1

kpKνqpGLkpOνqqµ
rΓkzV0Iν,k

“ p1 ´ q ´1
ν qµ

rΓkzV0Iν,k
.

Let φ1 : Grm,d ˆSh1m ˆSh1n Ñ rΓmzV0Iν,m ˆ rΓnzV0Iν,n be the continuous map defined by
px, y, zq ÞÑ py´1, z´1q. Since Grm,d is compact, this map φ1 is proper, and the pushforward
map φ1

˚ of Borel measures by φ1 is linear and weak-star continuous. With ℓ “ lcmpm, nq,
the image by φ1

˚ of the left hand side of Equation (1) is hence

lim
iÑ`8

c2

q ℓd i
ν

ÿ

ΛPPL m,d : CovolpΛq“q ℓ i
ν

∆shpΛq´1 b ∆shpΛKq´1 .

Since }µGrm,d
} “ 1 by Equation (32), the image by φ1

˚ of the right hand side of Equation
(1) is p1 ´ q ´1

ν q2 µ
rΓmzV0Iν,m

b µ
rΓnzV0Iν,n

. Hence with c1 “ c2

p1´q ´1
ν q2

as given in Corollary
1.1, Theorem 1.2 does imply Corollary 1.1. l

Remark. Proceeding as in the proof of Corollary 4.8, for every nonzero ideal I of Rν ,
we have the following version with error term and congruences of Corollary 1.1 : There
exists τ P s0, 1

2d2 s such that for all finitely supported maps f1 : rΓmzV0Iν,m Ñ R and
f2 : rΓnzV0Iν,n Ñ R and for every δ P s0, τ r, we have

c1

q ℓd i
ν

ÿ

ΛPPL m,dpIq : Covol Λ“ q ℓ i
ν

f1pshpΛq´1q f2pshpΛKq´1q

“

´

ż

f1 dµ
rΓmzV0Iν,m

¯´

ż

f2 dµ
rΓnzV0Iν,n

¯

` Oν,δ,I

`

q ℓd ip´τ`δq
ν }f1}8}f2}8

˘

. (78)

A Dual and factor partial lattices

Let V be a Kν-vector space with finite dimension D ě 2 endowed with an ultrametric norm
} }. Let k P J1, D ´ 1K and let W be a k-dimensional Kν-vector subspace of V , endowed
with the restriction norm. We endow the quotient pD ´ kq-dimensional Kν-vector space
V {W with the quotient norm. We denote by π : V Ñ V {W the canonical projection. Then
the Haar measures µV , µW and µV {W on respectively V , W , V {W , normalized by these
choices of norms as explained in Subsection 2.2, satisfy the following Weil’s normalization
process (see [Wei3, §9]). For all x P V {W and x P V such that πpxq “ x, let µπ´1pxq be the
measure on the Kν-affine subspace π´1pxq “ x`W such that the translation τx : y ÞÑ x`y,
which is a homeomorphism from W to π´1pxq, satisfies pτxq˚µW “ µπ´1pxq (this does not
depend on the choice of x in π´1pxq). Then Weil’s normalisation is asking that we have
the following disintegration property of the measure µV over the measure µV {W by π:

dµV “

ż

xPV {W
dµπ´1pxq dµV {W pxq . (79)
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This formula implies that the normalizations of µV and µW uniquely determine the normal-
ization of µV {W . In order to check that this normalization coincides with the one coming
from the quotient norm on V {W , we apply the above formula on BV p0, 1q, noting that
πpBV p0, 1qq “ BV {W p0, 1q and that, by the ultrametric property, for every x P BV p0, 1q,
we have ´x ` BV p0, 1q X px ` W q “ BW p0, 1q.

Let Λ be a k-lattice in V . Its dual lattice is the Rν-submodule of the dual Kν-vector
space V ˚

Λ defined by
Λ˚ “ tℓ P V ˚

Λ : @ x P Λ, ℓpxq P Rνu .

Lemma A.1 The dual lattice Λ˚ is a full Rν-lattice in V ˚
Λ , we have pΛ˚q˚ “ Λ and

CovolpΛ˚qCovolpΛq “ q2kpg´1q .

Proof. Let pb1, . . . , bkq be an Rν-basis of Λ. Then pb1, . . . , bkq is a Kν-basis in VΛ, and
we denote by pb˚

1 , . . . , b
˚
kq its dual basis in V ˚

Λ . A linear form ℓ “
řk

i“1 λib
˚
1 P V ˚

Λ takes
integral values on all elements of Λ if and only if it takes integral values on b1, . . . , bk, that
is, if and only if its coordinates λ1, . . . , λk are integral. Thus Λ˚ “ ‘k

i“1Rνb
˚
i , which is a

k-lattice in the k-dimensional vector space V ˚
Λ . Since the dual basis in pV ˚

Λ q˚ “ VΛ of the
Kν-basis pb˚

1 , . . . , b
˚
kq of V ˚

Λ is the Kν-basis pb1, . . . , bkq of VΛ, we have pΛ˚q˚ “ Λ.
The duality pairing V ˚

Λ ˆVΛ Ñ Kν defined by pℓ, xq ÞÑ ℓpxq, which sends Λ˚ ˆΛ to Rν

induces a Kν-linear isomorphism V ˚
Λ ˆ VΛ Ñ Kν

2k that sends the full Rν-lattice Λ˚ ˆ Λ
to Rν

2k and the supremum product norm of the norm on VΛ and of its dual norm on V ˚
Λ

to the standard supremum norm on Kν
2k. Hence, using Equation (9) for the last equality,

we have

CovolpΛ˚qCovolpΛq “ CovolpΛ˚ ˆ Λq “ CovolpRν
2kq “ q2kpg´1q . l

Assume that V is also endowed with an integral structure VRν . Let Λ be a primitive
k-lattice in the integral Kν-space V . The factor lattice of Λ is the Rν-submodule Λπ of
the quotient Kν-vector space V {VΛ which is the image of VRν by the canonical projection
π : V Ñ V {VΛ.

Lemma A.2 The factor lattice Λπ is a full Rν-lattice in V {VΛ. The canonical Kν-linear
isomorphism V {VΛ Ñ pV K

Λ q˚ maps Λπ to pΛKq˚. We have

CovolpΛπq “ CovolppΛKq˚q and CovolpΛπqCovolpΛq “ CovolpVRν q

Proof. Since the k-lattice Λ is primitive, there exists an Rν-basis pb1, . . . , bDq of VRν such
that pb1, . . . , bkq is an Rν-basis of Λ, hence a Kν-basis of VΛ. Then pπpbk ` 1q, . . . , πpbDqq

is a Kν-basis of V {VΛ, and an Rν-basis of Λπ by definition. Hence Λπ is a pD ´ kq-lattice
in the pD ´ kq-dimensional vector space V {VΛ.

Identifying a Kν-vector space W with its bidual pW ˚q˚ by the map x ÞÑ pℓ ÞÑ ℓpxqq

as usual, the map ĂΘ2 : V Ñ pV K
Λ q˚ defined by x ÞÑ x|V K

Λ
induces a Kν-linear isomorphism

Θ2 : V {VΛ Ñ pV K
Λ q˚. With pb1, . . . , bDq as above, we have seen in the proof of Proposition

2.2 that pb˚
k`1, . . . , b

˚
Dq is an Rν-basis of ΛK, hence a Kν-basis of VΛK “ V K

Λ . As seen in
the proof of Lemma A.1, the dual Kν-basis pb˚

k`1
˚, . . . , b˚

D
˚
q of pb˚

k`1, . . . , b
˚
Dq is an Rν-

basis of pΛKq˚. But pb˚
k`1

˚, . . . , b˚
D

˚
q is exactly

`

Θ2pπpbk`1qq, . . . ,Θ2pπpbk`1qq
˘

. Hence
Θ2pΛπq “ pΛKq˚.
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When V {VΛ is endowed with the quotient norm, and pV K
Λ q˚ with the dual norm of

the restriction to V K
Λ of the dual norm on V ˚, the above map Θ2 is an isometry. Hence

CovolpΛπq “ CovolppΛKq˚q.
Let F be a clopen strict fundamental domain for the action of Rν on Kν . The formula

CovolpVRν q “ CovolpΛqCovolpΛπq follows by integrating Equation (79) with W “ VΛ on
the strict fundamental domain F b1 ` ¨ ¨ ¨ ` F bD of VRν . l

Proof of Equation (13). Under its assumptions, we may assume that V “ Kν
D and

VRν “ Rν
D and that the norm of V is the standard supremum norm of Kν

D. We then have
CovolpVRν q “ qDpg´1q by Equation (9). Hence respectively by Lemma A.1 (recalling that
ΛK is a pD ´ kq-lattice), by the first equality in Lemma A.2, and by the second equality
in Lemma A.2, we have

CovolpΛKq “ q2pD´kqpg´1q CovolppΛKq˚q´1 “ q2pD´kqpg´1q CovolpΛπq´1

“ q2pD´kqpg´1q CovolpΛqq´Dpg´1q “ CovolpΛq qpD´2kqpg´1q ,

as wanted. l
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