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ABSTRACT: PSA results are expected to be used to improve the design, the operating procedures or
the safety policy of a system. It then appears logical to combine a risk analysis with an optimisation
procedure, aiming at minimising a cost function to determine the most appropriate strategy. This idea is
applied in this work to dynamic systems, i.e. installations for which the probabilistic risk analysis must
be conducted using dynamic reliability methods. As several system parameters can be uncertain, the
cost function turns out to be a random variable. Stochastic programming techniques are convenient for
such calculations. The whole optimisation procedure is presented, and a first application of the algorithm

on a HNQOj3 supply system is provided.

1 INTRODUCTION

Dynamic reliability (Siu 1994; Devooght 1997) is
gaining more and more recognition in the reliabil-
ity community as a more appropriate methodol-
ogy to perform probabilistic safety studies of sys-
tems in which dynamic aspects of the accidental
transients turn out to be essential. Due to the nu-
merical complexity of the problem, Monte Carlo
(MC) simulation stands out as one of the most
convenient solution scheme for large installations,
provided information from very probable faultless
evolutions is used to drive the MC algorithm to-
wards transients with potential damage (Labeau
1996; Labeau 1997).

As experience in performing PSA studies grows,
using their results in decision making, system man-
agement or design optimisation becomes a main
topic of interest. For severe accidental transients,
this issue can be related with the choice of an op-
timal safety procedure. This includes e.g. a choice
of equipment, or the definition of a threshold on a
critical process variable, which corresponds to the
triggering of a protection device. This last situa-
tion is of practical importance: a quick shutdown
of the system is conservatively safe, but it entails
more regularly a loss of revenue due to the inter-
ruption in the production; on the other hand, a
delayed reaction to the development of a transient
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can significantly reduce the safety margin of the
system, and hence affect the probability of an im-
portant cost associated with a damage. Having this
economical context in mind, the present work deals
with pioneer efforts in order to couple optimisation
techniques with a dynamic approach to reliability.

The problem under study amounts to minimis-
ing a cost function, the definition of which includes
both the investment cost to implement a given
safety policy (refered to as a strategy in the fol-
lowing), and the cost induced by a damage in case
of system failure or by the loss of revenue follow-
ing a system shutdown. This cost function depends
on the safety characteristics of the system. What-
ever strategy is considered, uncertainties on system
parameters make the cost function random. One
could minimise the expected value of this func-
tion, hence obtaining again a classical optimisation
problem. But in actuality, the designer is more in-
terested in being as sure as possible that the to-
tal cost will not exceed a given limit. The optimal
strategy is thus that maximising the probability of
such event.

This paper is organised as follows. Section 2 is
dedicated to the mathematical expression of the
optimisation problem, and to the numerical as-
pects of the algorithm used to solve it. The whole
procedure is applied in section 3 to a H NOj3 sup-
ply system, which displays a dynamic behaviour
for the kind of transients that we will consider.
Results from several numerical tests are presented
and commented. Some conclusions and perspec-
tives are briefly discussed at the end of the paper.



2.1 Mathematical definition of the problem

Consider a vector u of strategies, which are ac-
tually parameters determining the safety policy
adopted for the system. These strategies belong
to a given space U C R™. Our optimisation prob-
lem consists in minimising on all values of u a cost
function ¢. If we plan to select the most appropri-
ate safety policy to mitigate a dynamic transient
in the system, we must account in the definition of
¢ for different kinds of costs:

e the investment budget ¢;,, necessary to im-
plement the chosen strategy;

e the cost ¢, induced by a system shutdown,
and

e the damage ¢; entailed by a system failure.

Therefore, the total cost is expressed as

d): Qsinv +ps¢s +pf¢f (1)

where p; and py are the probability of a system
shutdown and that of its failure, respectively. All
these quantities depend on the strategy. But for
a given 4, ¢ turns out to be a random function,
because some system parameters, which do not in-
tervene in the definition of the strategies, are not
perfectly known, and are hence better represented
by distributions. These uncertain parameters are
denoted by a vector @, defined in a space A C RP.
Vector a includes e.g. component failure rates, ran-
dom delays in control devices, magnitudes of ini-
tiating events ... These stochastic aspects of the
problem lead to the definition of a probability func-
tion P,(u) that the total cost does not exceed a
maximal admissible budget ¢:

Py(u) = P{acAl¢(u,a) < ¢}  (2)

The desired optimal strategy u, is that max-
imising the probability function

U, = argmax P,(a) (3)

In stochastic programming (Kibzun & Kan
1996), eqns.(2) and (3) define a primal stochastic
problem. We have implicitly assumed that po-
tential constraints on the possible strategies are
accounted for in the definition of U, what avoids
supplementary complications in our problem.

A general iterative scheme of the form

Ugy1 = My [t + préi] (4)
can be used to solve the primal stochastic problem.
In eqn.(4), [Ty is the Euclidian projector on the
space U C R™, py, is the magnitude of the change in
strategy at this iteration, and & should represent
the gradient of the probability function P,(a) at
point u;. However, the computation of the gradient
is a time-consuming numerical operation: indeed,
it implies the integration of the cost function of all
valus of @ € A, for several values of @ in a neigh-
bourhood of 4. Instead, (Kibzun & Kan 1996)
propounds the use of a stochastic quasi-gradient,
which is a random vector such that

E(&lux) = a(ur)Va Pp(r) +b(ur) — (5)

When a(@) = 1 and b(ii) = 0, the stochastic
quasi-gradient is unbiased. This property is sat-
isfied if we define & in the following way. Let
ai,...,a; be t samples of the random parameters a.

An unbiased estimator of the probability function
is given by

B = Y Hle-owa) ()

if H(.) is the Heaviside stepfunction.

Consider a parameter 0, at the k' iteration,
and let ty; represent random variables uniformly
distributed on the intervals [uy; — O, ugj + 0,7 =
1...m. Then, the stochastic quasi-gradient & used
in (Kibzun & Kan 1996), p.259-262, is given by

_ 1 &, "
fk = ﬁZ[Ptk(ukb“'7ukj+5k7“.7Ukm)
kj:1

— Oy Ukm)]E; (7)
where €;,7 = 1...m, define the canonical basis on
R™.

Then, uy is shown to converge almost surely to
the optimal u,, if the iterative method embodied
by eqns.(4) to (7) is used, provided the following
conditions are fulfilled:

% [~
_Ptk (ukl, ceey Ukj

(i) the probability function P, (@) is concave and
Lipschitz on the convex, compact domain U;
the optimum u, € int(U).

(ii) the (deterministic) sequence {py} satisfies
o0 oo
pr >0, Zpk:oo,and Zpi < 00
k=1 k=1

(iii) the (deterministic) sequences {dx} and {#x}
satisty
(Sk >0, (Sk — 0,1ty — 00, and k1+6/((5,%tk) —0

as k — oo, for some € > 0.



Each iteration of the algorithm described in the
previous paragraph calls for running two nested
loops of MC simulation. The inner loop corre-
sponds to the estimation of the cost function
¢(u,a) for given values of @ and a, while the outer
loop performs the samplings of the random vector
a. The latter issue is tackled by using Latin Hy-
percube Sampling, in order to achieve a sampling
of domain A which is as systematic as possible.

The estimation of the cost function is a more
complicated task, since it involves the estimation
of the probability of system shutdown and that
of system failure. These situations usually refer
to rare combinations of events, which are unlikely
to be often sampled in an analogue simulation.
Therefore, we have implemented in the algorithm
efficient MC techniques that were developed to
assess small failure risks in dynamic reliability
(Labeau 1996; Labeau 1997). Two free-flight
estimators are used: one for the probability of a
system shutdown, and the other one associated
with failure situations. These estimators consist
in scoring the probability of an event of interest
(shutdown or failure) from each stage of an
history, be this event sampled or not. These
estimators are combined with the memorisation
- before the simulation proper - of the most
probable evolutions from any possible initial state
the transient can start in. These trajectories
correpond to the expected behaviour of the
system after the initiating event, if all control and
protection devices are correctly working, and if all
transitions in operation are disabled. This allows
to speed up the simulation, as well as to drive the
histories towards unexpected sequences of events.
The net result is a more accurate estimation of
the probability of rare events.

3 APPLICATION

In order to illustrate the optimisation procedure
described in section 2, we have applied it on a
HNOj3 cooling system (Signoret et al. 1997). It
has been previously used as a test case in order
to assess the capabilities of risk assessment meth-
ods to deal with time-dependent processes (Pas-
quet et al. 1997), but no truly dynamic analysis
had been performed on this example yet.

3.1 Description

The system under study is presented in fig.1. Its
mission consists in cooling down a flow of ni-
tric acid within a specified temperature range, the
whole system being a supply unit in acid for an-

within the desired interval, the cooling system is
equipped with two nested feedback loops. These
are designed to modify the characteristics of the
heat exchanger in order to adapt to variations in
the input temperature. The inner loop comprises
an automatic controller and a human operator,
whose actions prevail on the controller’s ones. The
manual shutdown of the system, performed by the
operator if the output temperature goes out of the
required interval, constitutes the outer loop.
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Figure 1: HNOj3 cooling system

The FMEA of the system is summarized in the
following enumeration of the components, together

with the various states they can lie in (Signoret
et al. 1997):

1. valve V1. This is the inlet point of HNOj3
in the cooling system. V1 can be either open,
closed (in case of shutdown), or stuck open.

2. temperature sensor 7'1. This device measures
the initial temperature of nitric acid. It can be
found in any of the following four states: op-
erational, failed-stuck, or displaying a positive
or a negative set-point deviation.

3. temperature sensor 1'S. It measures the fi-
nal temperature of H NOj3, and has the same
states as T'1.

4. valve V5. This valve controls the cooling wa-
ter flow. It is either working or stuck.

5. air pressure AP. This device is acting on V5
to control its position. It can become ineffi-
cient in case of air pressure loss.

6. main pressure M P. This is the main cooling
water supply, which becomes unavailable in
case of main pressure loss.

7. emergency supply ES. This secondary water
supply has the same states as M P.

8. pump P. This pump causes a cooling water
flow. It can be working or failed.



provides the only signal accessible to the op-
erator OP, by displaying the output temper-
ature of HNQO;5. The same states as those for
T'1 are possible.

10. failure detector F'D. Its mission consists in
closing V1 if P fails, if it is not blocked.

11. operator OP. The operator has no role as
long as the cooling system works as expected
and the automatic controller is operational.
But he comes into play as soon as critical val-
ues of T'I are transmitted. He can be present,
absent, worried or panicked. As we did not in-
tend to implement a sophisticated human re-
liability model in order to better concentrate
on the optimisation algorithm, the last two
states were introduced, together with a delay
before operator action. This allows for a ba-
sic modelling of a diagnostic time and of the
ordering in the actions of the operator.

12. temperature controller 7’C'. This device is in-
tended to compute the optimal position of V5
according to the values given by 7T'1 and T'S.
It displays the same states as T'1.

The heat exchanger itself is assumed to stay oper-
ational during the whole transient.

This cooling system displays two major char-
acteristics: it is sequential and non coherent (Sig-
noret et al. 1997). Therefore, the timing and order-
ing of events strongly influence the consequences
of accident sequences. A dynamic approach to this
risk analysis problem is thus well adapted (Siu
1994). But up to now, no dynamic model of the
system had been provided. Evolution equations
are to be written for the main process variables
describing the cooling installation, for all config-
urations it can be found in. The full expression
of these dynamics can be found in (Bourgeois &
Labeau 1999), while the set of process variables
that are taken into account is given herebelow:

1. input temperature of HNQOj. This variable
obeys a given increasing function of time,
which models the initiating event causing the
transient in the system.

2. cooling water flow. As long as the automatic
controller is operational, the value of this flow
exponentially converges to the optimal water
flow computed by T'C, given the desired out-
put temperature of H NOs. Its variation only
depends on T'I if OP is solicitated. If AP or
V5 is stuck, it remains constant.

3. output temperature of HNQOj3. Its value is
calculated using the heat exchanger proper-
ties, for given values of the input temperature
of HNQO3 and the water flow.

ator’s next action, it remains constant unless
OP is worried or panicked.

5. value of T'1. This indication is supposed to be
equal to the input temperature of acid, though
it could be constant or biased, depending on
the state of T'1.

6. value of T'S. This variable plays the same role
as the value of T'1 for the output temperature.

7. value used in T'C'. This temperature indica-
tion is equal to the value of T'S, plus or minus
a bias in case of setpoint deviation. It is con-
stant if T'C' is stuck.

8. value of T'I. This is the information accessible
to OP, and its behaviour is similar to that of
the previous variable.

9. optimal water flow for T'C'. It expresses the
cooling water flow corresponding to the de-
sired output temperature of acid, provided
the input temperature communicated to 7T'C
is the actual one.

10. computed water flow for T'C'. This variable
gives the water flow leading to an output tem-
perature equal to that received by T'C', given
the value of T'1.

We still have to define the system failure: it oc-
curs either because the output temperature leaves
an admissible range, or because an unacceptable
hardware state is entered. The latter situation cor-
responds in our case to the loss of the cooling water
flow, when M P and ES are simultaneously failed,
or when P fails while V'1 is still open. Let us finally
remind that the system can be shut down by the
operator, by manually closing V'1.

3.2 The primal stochastic problem

After having described our cooling system, its pos-
sible component states and the dynamic model of
the system evolution following a variation in the
inlet temperature, we now have to specify the op-
timisation problem itself. We consider a bidimen-
sional vector of strategies. The first component of
@ is associated with the quality of the temperature
sensors to be used in the system. This character-
istic is represented by the value of the setpoint
deviation they are likely to display. The choice of
uy is related to the operator’s mission, through a
desired probability of presence (and hence of unde-
layed reaction to a potential transient). The vari-
ations of uy then corresponds to variations in the
value of the transition rate between the “present”
and “absent” states OP can be in.



for in vector a: a; gives the variations of the fail-
ure rates of the various temperature sensors, while
ay determines the characteristics of the initiating
event (magnitude and rise time of the inlet tem-
perature modification).

Let X be one of the physical quantities influ-
enced by the strategies. We choose to express X
as a linear function of its extreme values X, and
X1, and of u; or us:

X:Xo+ui(X1—Xo) (8)

where ¢ = 1 or ¢ = 2. The same treatment is done
for the distributed parameters described by a.
Therefore, both vectors @ and @ are defined on the
domain [0, 1] x [0, 1]. For the sake of simplicity, we
assume the total cost linearly depends on the vec-
tor of strategies, so that eqn.(1) becomes:

¢ =c U+ psds +pros (9)

where ¢ is a constant vector.

3.3 Numerical tests

The algorithm presented in eqns.(4) to (7) was ap-
plied to the nitric acid cooling system, while con-
sidering the cost function (9). The results obtained
with this procedure turned out to be unsatisfac-
tory. This is mainly due to the nature of the es-
timator (6) of P,(u), and its use in the calcula-
tion of the stochastic quasi-gradient (7). Indeed,
two strategies belonging to the same neighbour-
hood of @, are likely to give, for each sample of a,
two values of ¢ which are both larger (or smaller)
than ¢. But this situation leads to an estimation
of the quasi-gradient that vanishes in many cases,
because of the stepfunctions in the expression of
P}(@). This makes the algorithm totally inefficient.

In order to address this problem, it is worth re-
minding that the cost function is estimated via
a MC simulation computing ps and py. This MC
game provides us with an estimation ¢(u,a) of
the cost function, which is the expected value of
the random variable ®(@,a) associated with the
MC algorithm. This random variable has a normal
distribution, because of the central-limit theorem,
and its variance can be estimated during the same
simulation. Therefore, we can replace the estima-
tor (6) with the following expression :

P (@) = %;Prob(é(a,&i) <o) (10)

With this new estimator, the optimisation algo-
rithm displays a more interesting behaviour. It has
thus been used in the sequel of the numerical tests.

An important observation was done when study-
ing the optimisation procedure on our test-case:

termining the success or failure of the algorithm.
Indeed, an overestimated value of ¢ leads to val-
ues of P,(u) which are very close to 1, whatever
strategy is selected. No distinction between val-
ues of u can then be achieved. On the other hand,
a small value of ¢ entails an erratic behaviour of
the algorithm, as most estimations of ¢ exceed the
budget ¢. This undesired situation is illustrated
by the evolution of P,(@) during the first itera-
tions of the procedure, as displayed in table 2, if
the parameters of the optimisation problem take
the values given in table 1. Table 2 also gives the
evolution of ¢g,, average cost on all estimations
performed with the current strategy. Obviously, as
most estimated costs are larger than ¢, the algo-
rithm tends to select strategies enlarging the dis-
persion of ¢(u,a) to maximise P,(u). But such a
situation is unacceptable, because it drives the op-
timisation scheme towards strategies likely to give
important values of ¢ for specific values of a.

Table 1: Parameters of the optimisation problem

C1 | C2 of" Gs ¥
1.0 ] 3.0 | 1000.0 | 10.0 | 5.4

Table 2: Evolution of the probability function
and of the average cost

iter | uy U9 Gavg P,
0 [0.60]0.33 | 832+ 4.68 | 0.227
1 10.921]0.01]12.89 4+ 8.82 | 0.235
2 10.98]0.01 | 13.87 & 8.55 | 0.267
3 10.98]0.01 | 14.09 4+ 8.52 | 0.258
4 1098 |0.13 | 14.32 £ 8.58 | 0.243

To obtain a relevant value of ¢, one can use the
estimations of ¢(u, a) realised with the initial strat-
egy i,. Numerical experiments have shown that a
value of ¢ slightly larger than the median of the
computed costs obtained with %, was a good start
for the algorithm. But after some iterations, the
current strategy can give values of ¢ for which
the initial budget ¢ is not convenient anymore.
To tackle this new difficulty, we propound the use
of an adaptable budget: when the performances
of the algorithm become unsatisfactory with the
first guess for o, a new value ¢’ can be deter-
mined, based on the costs obtained with the cur-
rent, strategy. This operation defines a new opti-
misation problem, which leads to strategies asso-
ciated with a smaller ¢,,. This situation is illus-
trated in tables 3 and 4.

Table 3: Parameters of the optimisation problem



g e r r

300.0 | 10.0 | 2.9 | 2.56

2.0 1.0

Table 4: Evolution of the probability function
and of the average cost

iter | uy U Pavg P,
0 1050050267 =x0.48 ] 0.662
1 0.64 | 0.48 | 2.30 £ 0.52 | 1.000
1 0.599
2 10.831]0.50 |2.07 +0.90 | 0.950

Finally, we have performed a sensitivity analy-
sis on the choice of the initial strategy. The values
of @ obtained after a few iterations clearly depend
on @,. An “optimal region” belonging to U is un-
derlined in this fashion, and a set of equivalent
strategies associated with values of P, very close
to each other is found by repeating the calculations
for several values of @,. Even if our algorithm does
not appear capable of finding its way in this opti-
mal zone, the propounded sensitivity analysis can
provide a map of this region, that can help the
designer to select the most appropriate strategy.

4 SUMMARY AND CONCLUSIONS

This work is dedicated to the implementation of
stochastic programming techniques within a dy-
namic PRA context. Such a coupling can be en-
visioned to define an optimal design of protection
devices, or to select the optimal values of parame-
ters of emergency procedures.

The reasons why we had to resort to stochastic
programming were first given: the total cost, in-
cluding the investment necessary to implement a
given strategy as well as the cost or loss of rev-
enue entailed by a system failure or its shutdown,
is a random function, due to the presence of dis-
tributed parameters in the risk analysis. Rather
than minimising the expected value of this total
cost, we maximise, in our reliability context, the
probability that the total cost does not exceed a
critical value. This way, our optimisation problem
takes the form of a primal stochastic problem.

An algorithm based on the estimation of a
stochastic quasi-gradient of the probability func-
tion was considered to obtain the optimal strat-
egy. [t was applied to a H NOj; cooling system, the
dynamic description of which was realised. The nu-
merical tests have demonstrated that: a. the esti-
mator (6) of P,(u) is inefficient; b. the choice of the
maximal budget ¢ is critical; c. the initial strategy
in the optimisation scheme influences the conver-
gence of the algorithm.

erence method which were propounded to tackle
these issues have led to significant improvements
in the search for the optimal strategy. Yet the con-
vergence of the scheme still appears unsatisfactory
when the strategy enters an optimal zone. Various
reasons can explain this undesired behaviour : a.
the probability function in our problem is not con-
vex, as required to ensure the convergence of the
algorithm; b. the definition of the cost function
does not allow a sufficiently fine selection between
neighbouring strategies ...

Among possible perspectives for future develop-
ments of the method, let us cite the use of an-
other optimisation method (like simulated anneal-
ing) within an optimal zone, a non linear param-
eterisation of the strategies, or the expression of
the optimisation problem as an inverse stochastic
problem (Kibzun & Kan 1996). In the latter case,
one aims at minimising the critical value ¢ of the
total cost such that P,(@) exceeds a desired level
of confidence. Such approach would allow to get
rid of the difficulties related to the choice of ¢.
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